Panconnectivity and pancyclicity of hypercube-like interconnection networks with faulty elements ${ }^{\text {® }}$

Jung-Heum Park ${ }^{\text {a,* }}$, Hyeong-Seok Lim ${ }^{\text {b }}$, Hee-Chul Kim ${ }^{\text {c }}$
${ }^{\text {a }}$ School of Computer Science and Information Engineering, The Catholic University of Korea, Republic of Korea
${ }^{\mathrm{b}}$ School of Electronics and Computer Engineering, Chonnam National University, Republic of Korea
${ }^{\text {c }}$ Computer Science and Information Communications Engineering Division, Hankuk University of Foreign Studies, Republic of Korea

Received 21 September 2006; received in revised form 14 February 2007; accepted 18 February 2007
Communicated by D.-Z. Du

Abstract

In this paper, we deal with the graph $G_{0} \oplus G_{1}$ obtained from merging two graphs G_{0} and G_{1} with n vertices each by n pairwise nonadjacent edges joining vertices in G_{0} and vertices in G_{1}. The main problems studied are how fault-panconnectivity and fault-pancyclicity of G_{0} and G_{1} are translated into fault-panconnectivity and fault-pancyclicity of $G_{0} \oplus G_{1}$, respectively. Many interconnection networks such as hypercube-like interconnection networks can be represented in the form of $G_{0} \oplus G_{1}$ connecting two lower dimensional networks G_{0} and G_{1}. Applying our results to a class of hypercube-like interconnection networks called restricted HL-graphs, we show that in a restricted HL-graph G of degree $m(\geq 3)$, each pair of vertices are joined by a path in $G \backslash F$ of every length from $2 m-3$ to $|V(G \backslash F)|-1$ for any set F of faulty elements (vertices and/or edges) with $|F| \leq m-3$, and there exists a cycle of every length from 4 to $|V(G \backslash F)|$ for any fault set F with $|F| \leq m-2$.

© 2007 Elsevier B.V. All rights reserved.
Keywords: Embedding; Panconnected; Pancyclic; Edge-pancyclic; Fault-hamiltonicity; Fault tolerance; Restricted HL-graphs; Interconnection networks

1. Introduction

Linear arrays and rings are two of the most important computational structures in interconnection networks. So, embedding of linear arrays and rings into a faulty interconnection network is one of the important issues in parallel processing [$15,22,24]$. An interconnection network is often modeled as a graph, in which vertices and edges correspond to nodes and communication links, respectively. Thus, the embedding problem can be modeled as finding fault-free paths and cycles in the graph with some faulty vertices and/or edges. In the embedding problem, if the longest path or cycle is required the problem is closely related to well-known hamiltonian problems in graph theory. In the rest of this paper, we will use standard terminology in graphs (see Ref. [3]).

[^0]

Fig. 1. Isomorphic graphs.
Definition 1. A graph G is called f-fault hamiltonian (resp. f-fault hamiltonian-connected) if there exists a hamiltonian cycle (resp. if each pair of vertices are joined by a hamiltonian path) in $G \backslash F$ for any set F of faulty elements with $|F| \leq f$.

For a graph G to be f-fault hamiltonian (resp. f-fault hamiltonian-connected), it is necessary that $f \leq \delta(G)-2$ (resp. $f \leq \delta(G)-3$), where $\delta(G)$ is the minimum degree of G. On the other hand, if the paths joining each pair of vertices of every length shorter than or equal to a hamiltonian path are required the problem is concerned with panconnectivity of the graph. If the cycles of arbitrary size (up to a hamiltonian cycle) are required the problem is concerned with pancyclicity of the graph.

Definition 2. A graph G is called f-fault q-panconnected if each pair of fault-free vertices are joined by a path in $G \backslash F$ of every length from q to $|V(G \backslash F)|-1$ inclusive for any set F of faulty elements with $|F| \leq f$.

Definition 3. A graph G is called f-fault pancyclic (resp. f-fault almost pancyclic) if $G \backslash F$ contains a cycle of every length from 3 to $|V(G \backslash F)|$ (resp. 4 to $|V(G \backslash F)|)$ inclusive for any set F of faulty elements with $|F| \leq f$.

Pancyclicity of various interconnection networks was investigated in the literature. It was shown in [16] that star graph of degree $m-1$ with at most $m-3$ edge faults has every cycle of even length 6 or more. Recursive circulant $G\left(2^{m}, 4\right)$ of degree m was shown to be 0 -fault almost pancyclic in [2] and then $m-2$-fault almost pancyclic in [20]. Möbius cube of degree m is 0 -fault almost pancyclic [10] and $m-2$-fault almost pancyclic [14]. Crossed cube and twisted cube of degree m were also shown to be m-2-fault almost pancyclic in [28] and in [29]. Edge-pancyclicity of some fault-free interconnection networks such as recursive circulants, crossed cubes, and twisted cubes was studied in $[1,12,11]$. The work on panconnectivity of interconnection networks has a relative paucity and some results can be found in $[4,17]$. As the authors know, no results on fault-panconnectivity were reported in the literature.

Many interconnection networks can be expanded into higher dimensional networks by connecting two lower dimensional networks. As a graph modeling of the expansion, we consider the graph obtained by connecting two graphs G_{0} and G_{1} with n vertices. We denote by V_{i} and E_{i} the vertex set and edge set of $G_{i}, i=0$, 1, respectively. We let $V_{0}=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and $V_{1}=\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}$. With respect to a permutation $M=\left(i_{1}, i_{2}, \ldots, i_{n}\right)$ of $\{1,2, \ldots, n\}$, we can "merge" the two graphs into a graph $G_{0} \oplus_{M} G_{1}$ with $2 n$ vertices in such a way that the vertex set $V=V_{0} \cup V_{1}$ and the edge set $E=E_{0} \cup E_{1} \cup E_{2}$, where $E_{2}=\left\{\left(v_{j}, w_{i_{j}}\right) \mid 1 \leq j \leq n\right\}$. We denote by $G_{0} \oplus G_{1}$ a graph obtained by merging G_{0} and G_{1} w.r.t. an arbitrary permutation M. Here, G_{0} and G_{1} are called components of $G_{0} \oplus G_{1}$.

Fault-hamiltonicity of $G_{0} \oplus G_{1}$ was investigated in [22]. One of the results is that if each G_{i} is f-fault hamiltonianconnected and $f+1$-fault hamiltonian, then for any $f \geq 2, G_{0} \oplus G_{1}$ is $f+1$-fault hamiltonian-connected and for any $f \geq 1$, it is $f+2$-fault hamiltonian.

Vaidya et al. [26] introduced a class of hypercube-like interconnection networks, called HL-graphs, which can be defined by applying the \oplus operation repeatedly as follows: $H L_{0}=\left\{K_{1}\right\}$; for $m \geq 1, H L_{m}=\left\{G_{0} \oplus G_{1} \mid G_{0}, G_{1} \in\right.$ $\left.H L_{m-1}\right\}$. Then, $H L_{1}=\left\{K_{2}\right\} ; H L_{2}=\left\{C_{4}\right\} ; H L_{3}=\left\{Q_{3}, G(8,4)\right\}$. Here, C_{4} is a cycle graph with 4 vertices, Q_{3} is a 3-dimensional hypercube, and $G(8,4)$ is a recursive circulant [21] which is isomorphic to twisted cube $T Q_{3}$ [13] and Möbius ladder [18] with 4 spokes as shown in Fig. 1. An arbitrary graph which belongs to $H L_{m}$ is called an m-dimensional HL-graph. It was shown by Park and Chwa in [19] that every nonbipartite HL-graph is hamiltonian-connected, and that every bipartite HL-graph is hamiltonian-laceable, that is, every bipartite HL-graph
has a hamiltonian path between any two vertices that belong to different partite sets. Obviously, some m-dimensional HL-graphs such as an m-dimensional hypercube are bipartite. They are not f-fault almost pancyclic for any $f \geq 0$, and thus they are not f-fault q-panconnected for any $f \geq 0$ and $q \geq 1$.

In [22], a subclass of nonbipartite HL-graphs, called restricted HL-graphs, was introduced, which is defined recursively as follows: $R H L_{m}=H L_{m}$ for $0 \leq m \leq 2 ; R H L_{3}=H L_{3} \backslash Q_{3}=\{G(8,4)\} ; R H L_{m}=$ $\left\{G_{0} \oplus G_{1} \mid G_{0}, G_{1} \in R H L_{m-1}\right\}$ for $m \geq 4$. A graph which belongs to $R H L_{m}$ is called an m-dimensional restricted HL-graph. Many of the nonbipartite hypercube-like interconnection networks such as crossed cube [8], Möbius cube [6], twisted cube [13], multiply twisted cube [7], Mcube [25], generalized twisted cube [5], locally twisted cube [27], etc. proposed in the literature are restricted HL-graphs with the exception of recursive circulant $G\left(2^{m}, 4\right)$ [21] and "near" bipartite interconnection networks such as twisted m-cube [9]. It was shown in [22] that every m-dimensional restricted HL-graph, $m \geq 3$, is $m-3$-fault hamiltonian-connected and $m-2$-fault hamiltonian. In [23], it was shown that every m-dimensional restricted HL-graph with f or less faulty elements has k disjoint paths, covering all the fault-free vertices, joining any k distinct source-sink pairs for any $f \geq 0$ and $k \geq 1$ with $f+2 k \leq m-1$. In this paper, we are concerned with panconnectivity and pancyclicity of restricted HL-graphs with faulty elements.

We first investigate panconnectivity and pancyclicity of $G_{0} \oplus G_{1}$ with faulty elements. It will be shown that if each $G_{i}, i=0,1$, is f-fault q-panconnected and $f+1$-fault hamiltonian (with additional conditions $n \geq f+2 q+1$ and $q \geq 2 f+3$), then $G_{0} \oplus G_{1}$ is $f+1$-fault $q+2$-panconnected for any $f \geq 2$. To study pancyclicity of $G_{0} \oplus G_{1}$, the notion of hypohamiltonian-connectivity is introduced. A graph G is called f-fault hypohamiltonian-connected if each pair of vertices can be joined by a path of length $|V(G \backslash F)|-2$, that is one less than the longest possible length, in $G \backslash F$ for any fault set F with $|F| \leq f$. We will show that if each $G_{i}, i=0,1$, is f-fault hamiltonian-connected, f-fault hypohamiltonian-connected, and $f+1$-fault almost pancyclic, then $G_{0} \oplus G_{1}$ is $f+2$-fault almost pancyclic for any $f \geq 1$.

Our main results are applied to restricted HL-graphs. We will show that every m-dimensional restricted HL-graph with $m \geq 3$ is $m-3$-fault $2 m-3$-panconnected and $m-2$-fault almost pancyclic. Both bounds $m-3$ and $m-2$ on the number of acceptable faulty elements are the maximum possible. Notice that f-fault q-panconnected graph is f-fault hamiltonian-connected, and that f-fault almost pancyclic graph is f-fault hamiltonian. Our results are not only the extension of some works of $[14,28,29]$ on fault-pancyclicity of restricted HL-graphs, but also a new investigation on fault-panconnectivity of restricted HL-graphs.

The organization of this paper is as follows. In the next section, panconnectivity and pancyclicity of $G_{0} \oplus G_{1}$ with faulty elements will be investigated. In Section 3, fault-panconnectivity and fault-pancyclicity of restricted HL-graphs will be studied. Finally in Section 4, concluding remarks of this paper will be given.

2. Panconnectivity and pancyclicity of $\boldsymbol{G}_{\boldsymbol{0}} \oplus \boldsymbol{G}_{\mathbf{1}}$

For a vertex v in $G_{0} \oplus G_{1}$, we denote by \bar{v} the vertex adjacent to v which is in a component different from the component in which v is contained. We denote by F the set of faulty elements. When we are to construct a path from s to t, s and t are called a source and a sink, respectively, and both of them are called terminals. Throughout this paper, a path in a graph is represented as a sequence of vertices.

Definition 4. A vertex v in $G_{0} \oplus G_{1}$ is called free if v is fault-free and not a terminal, that is, $v \notin F$ and v is neither a source nor a sink. An edge (v, w) is called free if v and w are free and $(v, w) \notin F$.

We denote by V_{i} and E_{i} the sets of vertices and edges in $G_{i}, i=0,1$, and by E_{2} the set of edges joining vertices in G_{0} and vertices in G_{1}. We let $n=\left|V_{0}\right|=\left|V_{1}\right| . F_{0}$ and F_{1} denote the sets of faulty elements in G_{0} and G_{1}, respectively, and F_{2} denotes the set of faulty edges in E_{2}, so that $F=F_{0} \cup F_{1} \cup F_{2}$. Let $f_{0}=\left|F_{0}\right|, f_{1}=\left|F_{1}\right|$, and $f_{2}=\left|F_{2}\right|$.

When we find a path/cycle, sometimes we regard some fault-free vertices and/or edges as faulty elements. They are called virtual faults. If G_{i} is f-fault hamiltonian-connected and $f+1$-fault hamiltonian, $i=0,1$, then

$$
f \leq \delta\left(G_{i}\right)-3, \text { and thus } f+4 \leq n,
$$

where $\delta\left(G_{i}\right)$ is the minimum degree of G_{i}.

2.1. Panconnectivity of $G_{0} \oplus G_{1}$

Hamiltonian-connectivity of $G_{0} \oplus G_{1}$ with faulty elements was considered in [22]. In this subsection, we study panconnectivity of $G_{0} \oplus G_{1}$ in the presence of faulty elements. We denote by f_{v}^{0} and f_{v}^{1} the numbers of faulty vertices in G_{0} and G_{1}, respectively, and by f_{v} the number of faulty vertices in $G_{0} \oplus G_{1}$, so that $f_{v}=f_{v}^{0}+f_{v}^{1}$. Note that the length of a hamiltonian path in $G_{0} \oplus G_{1} \backslash F$ is $2 n-f_{v}-1$.

Theorem 1. Let G_{0} and G_{1} be graphs with n vertices each. Let f and q be nonnegative integers satisfying $n \geq f+2 q+1$ and $q \geq 2 f+3$. If each G_{i} is f-fault q-panconnected and $f+1$-fault hamiltonian, then
(a) for any $f \geq 2, G_{0} \oplus G_{1}$ is $f+1$-fault $q+2$-panconnected,
(b) for $f=1, G_{0} \oplus G_{1}$ with $2(=f+1)$ faulty elements has a path of every length $q+2$ or more joining s and t unless s and t are contained in the same component and \bar{s} and \bar{t} are the faulty elements (vertices), and
(c) for $f=0, G_{0} \oplus G_{1}$ with $1(=f+1)$ faulty element has a path of every length $q+2$ or more joining s and t unless s and t are contained in the same component and the faulty element is contained in the other component.

Proof. To prove (a), assuming the number of faulty elements $|F| \leq f+1$, we will construct a path of every length l, $q+2 \leq l \leq 2 n-f_{v}-1$, in $G_{0} \oplus G_{1} \backslash F$ joining any pair of vertices s and t.

Case 1: $f_{0}, f_{1} \leq f$.
When both s and t are contained in G_{0}, there exists a path P_{0} of length l_{0} in G_{0} joining s and t for every $q \leq l_{0} \leq n-f_{v}^{0}-1$. We are to construct a longer path P_{1} that passes through vertices in G_{1} as well as vertices in G_{0}. We first claim that there exists an edge (x, y) on P_{0} such that all of $\bar{x},(x, \bar{x}), \bar{y}$, and (y, \bar{y}) are fault-free. There are l_{0} candidate edges on P_{0} and at most $f+1$ faulty elements can "block" the candidates, at most two candidates per one faulty element. By the assumption $l_{0} \geq q \geq 2 f+3$, and the claim is proved. The path P_{1} can be obtained by merging P_{0} and a path P^{\prime} in G_{1} between \bar{x} and \bar{y} with the edges (x, \bar{x}) and (y, \bar{y}). Here, of course the edge (x, y) is discarded. Letting l^{\prime} be the length of P^{\prime}, the length l_{1} of P_{1} can be anything in the range $2 q+1 \leq l_{1}=l_{0}+l^{\prime}+1 \leq 2 n-f_{v}-1$. Since $n \geq f+2 q+1$, we have $2 q+1 \leq n-f_{v}^{0}$ and we are done.

When s is in G_{0} and t is in G_{1}, we first find a free edge (x, \bar{x}) in E_{2} such that (\bar{x}, t) is an edge and fault-free. The existence of such a free edge (x, \bar{x}) is due to the fact that there are $\delta\left(G_{1}\right)$ candidates and that at most $f+1$ faulty elements and the source s can block the candidates. Remember $f \leq \delta\left(G_{1}\right)-3$. Assuming $x \in V_{0}$, a path joining s and x in G_{0} and an edge (\bar{x}, t) are merged with (x, \bar{x}) into a path P_{0}. The length l_{0} of P_{0} is any integer in the range $q+2 \leq l_{0} \leq n-f_{v}^{0}+1$. A longer path P_{1} is obtained by replacing the edge ($\left.\bar{x}, t\right)$ with a path in G_{1} between \bar{x} and t of length $l^{\prime \prime}, q \leq l^{\prime \prime} \leq n-f_{v}^{1}-1$. The length l_{1} of P_{1} is in the range $2 q+1 \leq l_{1} \leq 2 n-f_{v}-1$. We are done since $2 q+1 \leq n-f_{v}^{0}$ as shown in the previous subcase.

Case 2: $f_{0}=f+1$ (or symmetrically, $f_{1}=f+1$).
We have $f_{1}=f_{2}=0$. First, we consider the subcase $s, t \in V_{0}$. Letting P^{\prime} be a path in G_{1} joining \bar{s} and \bar{t}, we have a path $P_{0}=\left(s, P^{\prime}, t\right)$ between s and t. The length l_{0} of P_{0} is any integer in the range $q+2 \leq l_{0} \leq n+1$. To construct a longer path P_{1}, we select an arbitrary faulty element α in G_{0}. Regarding α as a virtual fault-free element, find a path $P^{\prime \prime}$ in G_{0} between s and t. If α is a faulty vertex on $P^{\prime \prime}$, let x and y be the two vertices on $P^{\prime \prime}$ next to α; else if $P^{\prime \prime}$ passes through the faulty edge α, let x and y be the endvertices of α; else let (x, y) be an arbitrary edge on $P^{\prime \prime}$. The path P_{1} is obtained by merging $P^{\prime \prime} \backslash \alpha$ and a path in G_{1} joining \bar{x} and \bar{y} with edges (x, \bar{x}) and (y, \bar{y}). If α is faulty vertex on $P^{\prime \prime}$, the length l_{1} of P_{1} is in the range $2 q \leq l_{1} \leq 2 n-f_{v}-1$; otherwise, we have $2 q+1 \leq l_{1} \leq 2 n-f_{v}-1$. In any case, we are done since $2 q+1 \leq n+2$.

Secondly, we consider the subcase $s \in V_{0}$ and $t \in V_{1}$. We first find a hamiltonian cycle C in $G_{0} \backslash F_{0}$ and let $C=\left(s=z_{0}, z_{1}, z_{2}, \ldots, z_{k}\right)$, where $k=n-f_{v}^{0}-1$. Assuming $\bar{z}_{l} \neq t$ without loss of generality, we can construct a path P_{0} by merging $\left(z_{0}, z_{1}, \ldots, z_{l}\right)$ and a path in G_{1} between \bar{z}_{l} and t with the edge $\left(z_{l}, \bar{z}_{l}\right)$. The length l_{0} of P_{0} is any integer in the range $q+l+1 \leq l_{0} \leq n-f_{v}^{1}+l$. Since l itself is any integer in the range $1 \leq l \leq n-f_{v}^{0}-1$, we have $q+2 \leq l_{0} \leq 2 n-f_{v}-1$.

Finally, we consider the subcase $s, t \in V_{1}$. We have a path P_{0} in G_{1} joining s and t, and the length l_{0} of P_{0} is in the range $q \leq l_{0} \leq n-1$. To construct a longer path P_{1}, we let $C=\left(z_{0}, z_{1}, z_{2}, \ldots, z_{k}\right)$ be a hamiltonian cycle in $G_{0} \backslash F_{0}$, where $k=n-f_{v}^{0}-1$. If $\bar{s} \notin F$, we assume w.l.o.g. $\bar{s}=z_{0}$. Then, letting w.l.o.g. $\bar{z}_{l} \neq t, P_{1}$ is a concatenation of $\left(s, z_{0}, z_{1}, \ldots, z_{l}\right)$ and a path in $G_{1} \backslash s$ between \bar{z}_{l} and t. The length l_{1} of P_{1} is in the range $q+3 \leq l_{1} \leq 2 n-f_{v}-1$. If $\bar{s} \in F$, we let (x, \bar{x}) be a free edge such that \bar{x} is adjacent to s. Then, letting w.l.o.g. $x=z_{0}$ and $\bar{z}_{l} \neq t, P_{1}$ is
a concatenation of $\left(s, \bar{x}, z_{0}, z_{1}, \ldots, z_{l}\right)$ and a path in $G_{1} \backslash\{s, \bar{x}\}$ between \bar{z}_{l} and t. Here, the length l_{1} of P_{1} is in the range $q+4 \leq l_{1} \leq 2 n-f_{v}-1$. By the condition of $n \geq f+2 q+1$ and $q \geq 2 f+3$, we can observe $q+4 \leq n$. Therefore, we are done. This completes the proof of (a).

It immediately follows from Case 1 and the first and second subcases of Case 2 , where the assumption $f \geq 2$ is never used, that for $f=0,1, G_{0} \oplus G_{1}$ with $f+1$ faulty elements has a path of every length $q+2$ or more joining s and t unless s and t are contained in the same component and all the faulty elements are contained in the other component. Thus, the proof of (c) is done. To prove (b), assuming w.l.o.g. $\bar{s} \notin F$, it suffices to employ the construction of the last subcase of Case 2. Note that in the construction, G_{1} is 1 -fault q-panconnected. This completes the proof.
Corollary 1. Let G_{0} and G_{1} be graphs with n vertices each. Let f and q be nonnegative integers satisfying $n \geq f+2 q+1$ and $q \geq 2 f+3$. If each G_{i} is f-fault q-panconnected and $f+1$-fault hamiltonian, then $G_{0} \oplus G_{1}$ is f-fault $q+2$-panconnected.
Proof. It is sufficient to consider the case $f=0,1$ by Theorem 1(a). To obtain a path of length $q+2$ or more in $G \backslash F$ joining s and t, we can apply Theorem 1 (b) and (c) after we choose $f+1-|F|$ fault-free edges in E_{2} and regard them as virtual faults.

2.2. Pancyclicity of $G_{0} \oplus G_{1}$

In the presence of faulty elements, the existence of hamiltonian cycle in $G_{0} \oplus G_{1}$ was considered in [22] as in Theorem 2. In this subsection, we investigate almost pancyclicity of $G_{0} \oplus G_{1}$ with faulty elements. We denote by $H[v, w \mid G, F]$ a hamiltonian path in $G \backslash F$ joining a pair of fault-free vertices v and w in a graph G with a set F of faulty elements. $H H[v, w \mid G, F]$ denotes a hypohamiltonian path in $G \backslash F$ between v and w.

Theorem 2 ([22]). Let a graph G_{i} be f-fault hamiltonian-connected and $f+1$-fault hamiltonian, $i=0,1$. Then,
(a) for any $f \geq 1, G_{0} \oplus G_{1}$ is $f+2$-fault hamiltonian, and
(b) for $f=0, G_{0} \oplus G_{1}$ with $2(=f+2)$ faulty elements has a hamiltonian cycle unless one faulty element is contained in G_{0} and the other faulty element is contained in G_{1}.
Before presenting our theorem on pancyclicity, we will give two lemmas. They imply that to show an f-fault hamiltonian graph is f-fault almost pancyclic, it is sufficient to consider only vertex faults and further the maximum number of vertex faults. We call a graph G to be f-vertex-fault almost pancyclic, if $G \backslash F_{v}$ contains a cycle of every length from 4 to $\left|V\left(G \backslash F_{v}\right)\right|$ for any set of faulty vertices F_{v} with $\left|F_{v}\right| \leq f$.
Lemma 1. Let a graph G be f-fault hamiltonian and f-vertex-fault almost pancyclic. Then, G is f-fault almost pancyclic.
Proof. We prove that for any faulty set F with $|F| \leq f, G \backslash F$ is almost pancyclic by induction on the number of faulty edges f_{e} in F. It holds true for $f_{e}=0$. Assume $f_{e} \geq 1$. Let f_{v} be the number of faulty vertices and let n be the number of vertices in G. There is a cycle of every length from 4 to $n-f_{v}-1$ if we regard a faulty edge (x, y) as a vertex fault of x when x is fault-free, or y when y is fault-free, or an arbitrary fault-free vertex when both x and y are faulty. The cycle of length $n-f_{v}$ exists since G is f-fault hamiltonian.

Lemma 2. Let a graph G be f-fault hamiltonian and almost pancyclic when the number of faulty vertices $f_{v}=f$. Then, G is f-vertex-fault almost pancyclic.

Proof. We show that G is almost pancyclic when $f_{v}<f$. There exists a cycle of every length from 4 to $n-f$ by the condition in lemma. The cycle of length $l, n-f<l \leq n-f_{v}$, can be found by constructing a hamiltonian cycle taking account of fault-free vertices as virtual faults one by one (starting from 0).
Theorem 3. Let a graph G_{i} be f-fault hamiltonian-connected, f-fault hypohamiltonian-connected, and $f+1$-fault almost pancyclic, $i=0,1$. Then,
(a) for any $f \geq 1, G_{0} \oplus G_{1}$ is $f+2$-fault almost pancyclic, and
(b) for $f=0, G_{0} \oplus G_{1}$ with $2(=f+2)$ faulty elements is almost pancyclic unless one faulty element is contained in G_{0} and the other faulty element is contained in G_{1}.

Proof. To prove (a), we let $|F|=f+2$, and assume F has only vertex faults by virtue of the above two lemmas. Note that, by Theorem 2(a), $G_{0} \oplus G_{1}$ is $f+2$-fault hamiltonian. Assuming $f_{0} \geq f_{1}$ without loss of generality, we will construct cycles in $G_{0} \oplus G_{1} \backslash F$. By the condition in the theorem, there exist cycles of length from 4 to $n-f_{1}$ in $G_{1} \backslash F_{1}$. Also, the cycle of length $2 n-f_{0}-f_{1}$ exists. So, the construction of remaining cycles of length from $n-f_{1}+1$ to $2 n-f_{0}-f_{1}-1$ will be given.

Case 1: $f_{0} \leq f$.
Subcase 1.1: $n>f_{0}+2 f_{1}$.
There exists a hamiltonian cycle C_{0} of length $n-f_{0}$ in $G_{0} \backslash F_{0}$. On C_{0}, we have $n-f_{0}$ different paths P_{k} 's of length k for every $1 \leq k \leq n-f_{0}-1$. Among them, there exists a P_{k} joining x_{k} and y_{k} such that both $\overline{x_{k}}$ and $\overline{y_{k}}$ are fault-free, since we have $n-f_{0}$ candidates and each of f_{1} faulty vertices in G_{1} can block at most two candidates. Then, $C=\left(P_{k}, H H\left[\overline{y_{k}}, \overline{x_{k}} \mid G_{1}, F_{1}\right]\right)$ is a cycle of length $n-f_{1}+k, 1 \leq k \leq n-f_{0}-1$.

Subcase 1.2: $n \leq f_{0}+2 f_{1}$.
We find two free edges (x, \bar{x}) and (y, \bar{y}) in E_{2}. Such free edges exist since there are $n(\geq f+4)$ candidates and $f+2$ blocking elements. Note that there are no terminals. We will construct a cycle by merging $H\left[x, y \mid G_{0}, F^{\prime}\right]$ or $H H\left[x, y \mid G_{0}, F^{\prime}\right]$ with $H\left[\bar{x}, \bar{y} \mid G_{1}, F^{\prime \prime}\right]$ or $H H\left[\bar{x}, \bar{y} \mid G_{1}, F^{\prime \prime}\right]$. Here, F^{\prime} (resp. $F^{\prime \prime}$) is a set of faulty elements in G_{0} (resp. G_{1}) regarding some fault-free vertices as virtual faults. By taking account of $f-f_{0}$ vertices in $G_{0} \backslash F_{0}$ excluding $\{x, y\}$ as virtual faults one by one, we can construct paths of length from $n-f-2$ to $n-f_{0}-1$ between x and y. Also, by taking account of $f-f_{1}$ vertices in $G_{1} \backslash F_{1}$ excluding $\{\bar{x}, \bar{y}\}$ as virtual faults one by one, we can construct paths of length from $n-f-2$ to $n-f_{1}-1$ between \bar{x} and \bar{y}. By merging two paths in G_{0} and G_{1}, we can obtain cycles of length from $2 n-2 f-2$ to $2 n-f_{0}-f_{1}$. If $2 n-2 f-2 \leq n-f_{1}+1$, we will have all cycles of desired lengths. First, we have $2 n-2 f-2 \leq n-f_{1}+2$ since $(2 n-2 f-2)-\left(n-f_{1}+2\right)=n-2 f+f_{1}-4 \leq$ $\left(f_{0}+2 f_{1}\right)-2 f+f_{1}-4=f_{0}+3 f_{1}-2 f-4=2 f_{1}-f-2 \leq 0$. Furthermore, careful observation on the above equation leads to $2 n-2 f-2 \leq n-f_{1}+1$ unless $n=f_{0}+2 f_{1}$ and $f_{0}=f_{1}$.

For the remaining case that $n=f_{0}+2 f_{1}$ and $f_{0}=f_{1}$, it is sufficient to construct a cycle of length $n-f_{1}+1$. To do this, we claim that there exists an edge (x, y) in G_{0} such that both \bar{x} and \bar{y} are fault-free. Let $W=\left\{w \mid w \in V_{0} \backslash F_{0}\right.$, $\bar{w} \notin F\}$, and let $B=V_{0} \backslash\left(F_{0} \cup W\right)$. It holds true that $|W| \geq|B|$ since $|W| \geq n-f_{0}-f_{1}=f_{1}$ and $|B| \leq f_{1}$. Let C_{0} be a hamiltonian cycle in $G_{0} \backslash F_{0}$. If there is an edge (a, b) on C_{0} such that $a, b \in W$, we are done. Suppose otherwise, we have $|W|=|B|$ and the vertices on C_{0} should alternate in W and B. Since $G_{0} \backslash F_{0}$ is hamiltonian-connected, we always have such an edge (x, y) joining vertices in W. Note that $|W|,|B| \geq 2$, and that if there are no edges between vertices in W, there cannot exist a hamiltonian path joining vertices in B. Then, we have a desired cycle ($x, y, H H\left[\bar{y}, \bar{x} \mid G_{1}, F_{1}\right]$) of length $n-f_{1}+1$.

Case 2: $f_{0}=f+1$.
We find a hamiltonian cycle C_{0} in $G_{0} \backslash F_{0}$, and let x_{k} and y_{k} be two vertices in C_{0} such that both $\overline{x_{k}}$ and $\overline{y_{k}}$ are fault-free and there is a path of length k between x_{k} and y_{k} on $C_{0}, 1 \leq k \leq n-f_{0}-1$. The existence of such x_{k} and y_{k} is due to the fact that the length of C_{0} is at least three and $f_{1}=1$. Let P_{k} be the path of length k on C_{0} whose endvertices are x_{k} and y_{k}. We construct cycles ($P_{k}, H H\left[\overline{y_{k}}, \overline{x_{k}} \mid G_{1}, F_{1}\right]$), $1 \leq k \leq n-f_{0}-1$, of length from $n-f_{1}+1$ to $2 n-f_{0}-f_{1}-1$. The hypohamiltonian path in G_{1} between $\overline{y_{k}}$ and $\overline{x_{k}}$ exists since $f_{1}=1 \leq f$.

Case 3: $f_{0}=f+2$.
We select an arbitrary faulty vertex v_{f} in G_{0}, regarding it as a virtual fault-free vertex, find a hamiltonian cycle C_{0} in $G_{0} \backslash F^{\prime}$, where $F^{\prime}=F_{0} \backslash v_{f}$. The existence of C_{0} is due to $\left|F^{\prime}\right|=f+1$. Let P_{k} be an arbitrary path of length k on $C_{0} \backslash v_{f}$ whose endvertices are x_{k} and $y_{k}, 1 \leq k \leq n-f_{0}-1$. Then, we have a cycle ($P_{k}, H H\left[\overline{y_{k}}, \overline{x_{k}} \mid G_{1}, \emptyset\right]$) of length $n-f_{1}+k$ for every $1 \leq k \leq n-f_{0}-1$.

The proof of (b) follows immediately from the proof of (a), where the assumption $f \geq 1$ is used only when $f_{1}=1$ in Case 2.

Remark 1. For $f=0$, Theorem 3(a) does not hold true. We can construct a counter example using 3-dimensional hypercube Q_{3}. Let W_{4} be a wheel graph which consists of length four cycle C_{4} and a center vertex adjacent to all the vertices in C_{4}. It is easy to verify that W_{4} is 0 -fault hamiltonian-connected, 0 -fault hypohamiltonian-connected, and 1-fault almost pancyclic. Let G be $W_{4} \times K_{2}$, that is, a graph obtained by joining two identical W_{4} by an identity permutation. If we remove both center vertices in two component graphs, the resulting graph is isomorphic to Q_{3} which is a bipartite graph and thus does not possess any odd length cycle. So, G is not 2-fault almost pancyclic.

3. Restricted HL-graphs

In this section, we will show that every m-dimensional restricted HL-graph is $m-3$-fault $2 m-3$-panconnected and m - 2-fault almost pancyclic. Fault-hamiltonicity of restricted HL-graphs was studied in [22] as follows. Of course, panconnectivity implies the existence of a hamiltonian path and pancyclicity implies the existence of a hamiltonian cycle. Thus, the result given in this section is a generalization of the work in [22].
Theorem 4 ([22]). Every m-dimensional restricted HL-graph, $m \geq 3$, is m-3-fault hamiltonian-connected and $m-2$-fault hamiltonian.

3.1. Panconnectivity of restricted HL-graphs

By induction on m, we will prove that every m-dimensional restricted HL-graph, $m \geq 3$, is $m-3$-fault $2 m-3$ panconnected. Recursive circulant $G(8,4)$ shown in Fig. 1 is a graph defined as follows: vertex set is $\left\{v_{i} \mid 0 \leq i \leq 7\right\}$ and the edge set is $\left\{\left(v_{i}, v_{j}\right) \mid i+1\right.$ or $\left.i+4 \equiv j(\bmod 8)\right\}$.

Lemma 3. The 3-dimensional restricted HL-graph $G(8,4)$ is 0 -fault 3-panconnected.
Proof. The proof is by an immediate inspection.
To prove that every 4-dimensional restricted HL-graph $G(8,4) \oplus G(8,4)$ is 1-fault 5-panconnected and every 5 -dimensional restricted HL-graph is 2 -fault 7 -panconnected, we employ useful properties on disjoint paths in $G(8,4)$ and in $G(8,4) \oplus G(8,4)$, as shown in Lemmas 4-6. Two paths joining $\left\{s_{1}, s_{2}\right\}$ and $\left\{t_{1}, t_{2}\right\}$ such that $\left\{s_{1}, s_{2}\right\} \cap\left\{t_{1}, t_{2}\right\}=\emptyset$ are defined to be either $s_{1}-t_{1}$ and $s_{2}-t_{2}$ paths or $s_{1}-t_{2}$ and $s_{2}-t_{1}$ paths. Two paths P_{1} and P_{2} in a graph G are called disjoint covering paths if $V\left(P_{1}\right) \cap V\left(P_{2}\right)=\emptyset$ and $V\left(P_{1}\right) \cup V\left(P_{2}\right)=V(G)$, where $V\left(P_{i}\right)$ is the set of vertices in P_{i}.

Lemma 4. For any four distinct vertices s_{1}, s_{2}, t_{1}, and t_{2} in $G(8,4)$, there exists a vertex $z \notin\left\{s_{1}, s_{2}, t_{1}, t_{2}\right\}$ such that $G(8,4) \backslash z$ has two disjoint covering paths joining $\left\{s_{1}, s_{2}\right\}$ and $\left\{t_{1}, t_{2}\right\}$ with the unique exception up to symmetry that $\left\{s_{1}, s_{2}\right\}=\left\{v_{0}, v_{1}\right\}$ and $\left\{t_{1}, t_{2}\right\}=\left\{v_{4}, v_{5}\right\}$.

Proof. The proof is by an immediate inspection and omitted here.
Lemma 5. Let P_{1} and P_{2} be two disjoint covering paths joining $\left\{s_{1}, s_{2}\right\}$ and $\left\{t_{1}, t_{2}\right\}$ in $G(8,4)$ such that $\left\{s_{1}, s_{2}\right\} \cap$ $\left\{t_{1}, t_{2}\right\}=\emptyset$.
(a) When $\left\{s_{1}, s_{2}\right\}=\left\{v_{0}, v_{1}\right\}$, they exist unless $\left\{t_{1}, t_{2}\right\}=\left\{v_{3}, v_{6}\right\}$.
(b) When $\left\{s_{1}, s_{2}\right\}=\left\{v_{0}, v_{2}\right\}$, they exist unless $\left\{t_{1}, t_{2}\right\}=\left\{v_{3}, v_{5}\right\}$ or $\left\{v_{5}, v_{7}\right\}$.
(c) When $\left\{s_{1}, s_{2}\right\}=\left\{v_{0}, v_{3}\right\}$, they exist unless $\left\{t_{1}, t_{2}\right\}=\left\{v_{1}, v_{6}\right\},\left\{v_{2}, v_{5}\right\}$, or $\left\{v_{5}, v_{6}\right\}$.
(d) When $\left\{s_{1}, s_{2}\right\}=\left\{v_{0}, v_{4}\right\}$, they exist unless $\left\{t_{1}, t_{2}\right\}=\left\{v_{2}, v_{6}\right\}$.

Proof. The proof is enumerative. See Table 1.
Lemma 6. For any four distinct vertices s_{1}, s_{2}, t_{1}, and t_{2} in $G(8,4) \oplus G(8,4)$, there exists a vertex $z \notin\left\{s_{1}, s_{2}, t_{1}, t_{2}\right\}$ such that $G(8,4) \oplus G(8,4) \backslash z$ has two disjoint covering paths joining $\left\{s_{1}, s_{2}\right\}$ and $\left\{t_{1}, t_{2}\right\}$.
Proof. We let G_{0} and G_{1} be graphs isomorphic to $G(8,4)$. We assume w.l.o.g. that the number of terminals in G_{0} is at least that in G_{1}. When all the four terminals are contained in G_{0}, we first find a hamiltonian path P_{0} in G_{0} joining s_{1} and s_{2}, and let $P_{0}=\left(s_{1}, P_{x}, x, t_{1}, P_{y}, y, t_{2}, P_{z}, s_{2}\right)$. For a path $P=\left(v_{1}, v_{2}, \ldots, v_{l}\right)$, we denote by P^{R} the reverse of a path P, that is, $P^{R}=\left(v_{l}, v_{l-1}, \ldots, v_{1}\right)$. Then, we have $P_{1}=\left(s_{1}, P_{x}, x, H H\left[\bar{x}, \bar{y} \mid G_{1}, \emptyset\right], y, P_{y}^{R}, t_{1}\right)$ and $P_{2}=\left(s_{2}, P_{z}^{R}, t_{2}\right)$. When there are three terminals in G_{0}, we assume w.loog. that s_{1}, s_{2}, and t_{1} are contained in G_{0}. We first find a hamiltonian path P_{0} in G_{0} joining s_{1} and s_{2} and let $P_{0}=\left(s_{1}, P_{x}, x, t_{1}, y, P_{y}, s_{2}\right)$. Assuming w.l.o.g. that $\bar{x} \neq t_{2}$, we have $P_{1}=\left(s_{1}, P_{x}, x, H H\left[\bar{x}, t_{2} \mid G_{1}, \emptyset\right]\right)$ and $P_{2}=\left(s_{2}, P_{y}^{R}, y, t_{1}\right)$.

Now we consider the case that there are two terminals in G_{0}. If there are one source and one sink in G_{0}, assuming w.l.o.g. that s_{1} and t_{1} are contained in G_{0}, we have $P_{1}=H H\left[s_{1}, t_{1} \mid G_{0}, \emptyset\right]$ and $P_{2}=H\left[s_{2}, t_{2} \mid G_{1}, \emptyset\right]$. Thus, we assume that s_{1} and s_{2} are contained in G_{0} and t_{1} and t_{2} are contained in G_{1}. We will show that there exist a pair of free

Table 1
Disjoint covering paths P_{1} and P_{2} in $G(8,4)$ joining $\left\{s_{1}, s_{2}\right\}$ and $\left\{t_{1}, t_{2}\right\}$

$\left\{s_{1}, s_{2}\right\}$	$\left\{t_{1}, t_{2}\right\}: P_{1}, P_{2}$	
$\left\{v_{0}, v_{1}\right\}$	$\left\{v_{2}, v_{3}\right\}: v_{0}-v_{7}-v_{6}-v_{5}-v_{4}-v_{3}, v_{1}-v_{2} ;$	$\left\{v_{2}, v_{4}\right\}: v_{0}-v_{7}-v_{3}-v_{4}, v_{1}-v_{5}-v_{6}-v_{2} ;$
	$\left\{v_{2}, v_{5}\right\}: v_{0}-v_{4}-v_{3}-v_{7}-v_{6}-v_{5}, v_{1}-v_{2} ;$	$\left\{v_{2}, v_{6}\right\}: v_{0}-v_{7}-v_{6}, v_{1}-v_{5}-v_{4}-v_{3}-v_{2} ;$
	$\left\{v_{2}, v_{7}\right\}: v_{0}-v_{4}-v_{3}-v_{7}, v_{1}-v_{5}-v_{6}-v_{2} ;$	$\left\{v_{3}, v_{4}\right\}: v_{0}-v_{7}-v_{6}-v_{5}-v_{4}, v_{1}-v_{2}-v_{3} ;$
	$\left\{v_{3}, v_{5}\right\}: v_{0}-v_{4}-v_{5}, v_{1}-v_{2}-v_{6}-v_{7}-v_{3} ;$	$\left\{v_{3}, v_{6}\right\}$: does not exist;
	$\left\{v_{3}, v_{7}\right\}$: symmetric to $\left\{v_{2}, v_{6}\right\}$;	$\left\{v_{4}, v_{5}\right\}: v_{0}-v_{7}-v_{6}-v_{5}, v_{1}-v_{2}-v_{3}-v_{4} ;$
	$\left\{v_{4}, v_{6}\right\}$: symmetric to $\left\{v_{3}, v_{5}\right\}$;	$\left\{v_{4}, v_{7}\right\}$: symmetric to $\left\{v_{2}, v_{5}\right\}$;
	$\left\{v_{5}, v_{6}\right\}$: symmetric to $\left\{v_{3}, v_{4}\right\}$;	$\left\{v_{5}, v_{7}\right\}$: symmetric to $\left\{v_{2}, v_{4}\right\}$;
	$\left\{v_{6}, v_{7}\right\}$: symmetric to $\left\{v_{2}, v_{3}\right\}$;	
$\left\{v_{0}, v_{2}\right\}$	$\left\{v_{1}, v_{3}\right\}: v_{0}-v_{7}-v_{6}-v_{5}-v_{4}-v_{3}, v_{2}-v_{1} ;$	$\left\{v_{1}, v_{4}\right\}: v_{0}-v_{7}-v_{3}-v_{4}, v_{2}-v_{6}-v_{5}-v_{1} ;$
	$\left\{v_{1}, v_{5}\right\}: v_{0}-v_{1}, v_{2}-v_{6}-v_{7}-v_{3}-v_{4}-v_{5} ;$	$\left\{v_{1}, v_{6}\right\}$: symmetric to $\left\{v_{1}, v_{4}\right\}$;
	$\left\{v_{1}, v_{7}\right\}$: symmetric to $\left\{v_{1}, v_{3}\right\}$;	$\left\{v_{3}, v_{4}\right\}: v_{0}-v_{1}-v_{5}-v_{4}, v_{2}-v_{6}-v_{7}-v_{3} ;$
	$\left\{v_{3}, v_{5}\right\}$: does not exist;	$\left\{v_{3}, v_{6}\right\}: v_{0}-v_{7}-v_{6}, v_{2}-v_{1}-v_{5}-v_{4}-v_{3} ;$
	$\left\{v_{3}, v_{7}\right\}: v_{0}-v_{1}-v_{5}-v_{4}-v_{3}, v_{2}-v_{6}-v_{7} ;$	$\left\{v_{4}, v_{5}\right\}: v_{0}-v_{1}-v_{5}, v_{2}-v_{6}-v_{7}-v_{3}-v_{4} ;$
	$\left\{v_{4}, v_{6}\right\}: v_{0}-v_{7}-v_{3}-v_{4}, v_{2}-v_{1}-v_{5}-v_{6} ;$	$\left\{v_{4}, v_{7}\right\}$: symmetric to $\left\{v_{3}, v_{6}\right\}$;
	$\left\{v_{5}, v_{6}\right\}$: symmetric to $\left\{v_{4}, v_{5}\right\}$;	$\left\{v_{5}, v_{7}\right\}$: does not exist;
	$\left\{v_{6}, v_{7}\right\}$: symmetric to $\left\{v_{3}, v_{4}\right\}$;	
$\left\{v_{0}, v_{3}\right\}$	$\left\{v_{1}, v_{2}\right\}: v_{0}-v_{4}-v_{5}-v_{1}, v_{3}-v_{7}-v_{6}-v_{2} ;$	$\left\{v_{1}, v_{4}\right\}: v_{0}-v_{7}-v_{6}-v_{5}-v_{4}, v_{3}-v_{2}-v_{1} ;$
	$\left\{v_{1}, v_{5}\right\}: v_{0}-v_{7}-v_{6}-v_{2}-v_{1}, v_{3}-v_{4}-v_{5} ;$	$\left\{v_{1}, v_{6}\right\}$: does not exist;
	$\left\{v_{1}, v_{7}\right\}: v_{0}-v_{7}, v_{3}-v_{4}-v_{5}-v_{6}-v_{2}-v_{1} ;$	$\left\{v_{2}, v_{4}\right\}$: symmetric to $\left\{v_{1}, v_{7}\right\}$;
	$\left\{v_{2}, v_{5}\right\}$: does not exist;	$\left\{v_{2}, v_{6}\right\}$: symmetric to $\left\{v_{1}, v_{5}\right\}$;
	$\left\{v_{2}, v_{7}\right\}$: symmetric to $\left\{v_{1}, v_{4}\right\}$;	$\left\{v_{4}, v_{5}\right\}: v_{0}-v_{4}, v_{3}-v_{7}-v_{6}-v_{2}-v_{1}-v_{5} ;$
	$\left\{v_{4}, v_{6}\right\}: v_{0}-v_{7}-v_{6}, v_{3}-v_{2}-v_{1}-v_{5}-v_{4} ;$	$\left\{v_{4}, v_{7}\right\}: v_{0}-v_{4}, v_{3}-v_{2}-v_{1}-v_{5}-v_{6}-v_{7} ;$
	$\left\{v_{5}, v_{6}\right\}$: does not exist;	$\left\{v_{5}, v_{7}\right\}$: symmetric to $\left\{v_{4}, v_{6}\right\}$;
	$\left\{v_{6}, v_{7}\right\}$: symmetric to $\left\{v_{4}, v_{5}\right\}$;	
$\left\{v_{0}, v_{4}\right\}$	$\left\{v_{1}, v_{2}\right\}: v_{0}-v_{7}-v_{6}-v_{5}-v_{1}, v_{4}-v_{3}-v_{2} ;$	$\left\{v_{1}, v_{3}\right\}: v_{0}-v_{7}-v_{3}, v_{4}-v_{5}-v_{6}-v_{2}-v_{1} ;$
	$\left\{v_{1}, v_{5}\right\}: v_{0}-v_{7}-v_{6}-v_{5}, v_{4}-v_{3}-v_{2}-v_{1} ;$	$\left\{v_{1}, v_{6}\right\}: v_{0}-v_{7}-v_{3}-v_{2}-v_{6}, v_{4}-v_{5}-v_{1} ;$
	$\left\{v_{1}, v_{7}\right\}: v_{0}-v_{1}, v_{4}-v_{5}-v_{6}-v_{2}-v_{3}-v_{7} ;$	$\left\{v_{2}, v_{3}\right\}$: symmetric to $\left\{v_{1}, v_{2}\right\}$;
	$\left\{v_{2}, v_{5}\right\}$: symmetric to $\left\{v_{1}, v_{6}\right\}$;	$\left\{v_{2}, v_{6}\right\}$: does not exist;
	$\left\{v_{2}, v_{7}\right\}$: symmetric to $\left\{v_{1}, v_{6}\right\}$;	$\left\{v_{3}, v_{5}\right\}$: symmetric to $\left\{v_{1}, v_{7}\right\}$;
	$\left\{v_{3}, v_{6}\right\}$: symmetric to $\left\{v_{1}, v_{6}\right\}$;	$\left\{v_{3}, v_{7}\right\}$: symmetric to $\left\{v_{1}, v_{5}\right\}$;
	$\left\{v_{5}, v_{6}\right\}$: symmetric to $\left\{v_{1}, v_{2}\right\}$;	$\left\{v_{5}, v_{7}\right\}$: symmetric to $\left\{v_{1}, v_{3}\right\}$;
	$\left\{v_{6}, v_{7}\right\}$: symmetric to $\left\{v_{1}, v_{2}\right\}$;	

edges (x, \bar{x}) and (y, \bar{y}) with $x, y \in V\left(G_{0}\right)$ satisfying (A1) G_{0} has disjoint covering paths joining $\left\{s_{1}, s_{2}\right\}$ and $\{x, y\}$ and (A2) for some $z \neq \bar{x}, \bar{y}, G_{1} \backslash z$ also has disjoint covering paths joining $\left\{t_{1}, t_{2}\right\}$ and $\{\bar{x}, \bar{y}\}$. Once we have such a pair of free edges, merging the disjoint covering paths in G_{0} and the disjoint covering paths in $G_{1} \backslash z$ with the pairs of free edges results in disjoint covering paths in $G_{0} \oplus G_{1} \backslash z$ joining $\left\{s_{1}, s_{2}\right\}$ and $\left\{t_{1}, t_{2}\right\}$. There are at least 4 free edges joining vertices in G_{0} and vertices in G_{1}, and thus there are at least $\binom{4}{2}=6$ pairs of such edges. Among the 6 pairs, due to Lemma 5, at least 3 pairs satisfy the condition A1, and thus at least 2 pairs satisfy both conditions A1 and A2 by Lemma 4 . Therefore, we have the lemma.

Remark 2. Similar to the proof of Lemma 6, we can show that $G(8,4) \oplus G(8,4)$ has two disjoint covering paths joining every $\left\{s_{1}, s_{2}\right\}$ and $\left\{t_{1}, t_{2}\right\}$ with $\left\{s_{1}, s_{2}\right\} \cap\left\{t_{1}, t_{2}\right\}=\emptyset$.

Lemma 7. Every 4-dimensional restricted HL-graph $G(8,4) \oplus G(8,4)$ is 1-fault 5-panconnected.

Proof. Let G_{0} and G_{1} be graphs isomorphic to $G(8,4)$. By Theorem 1(c) and Corollary 1, it suffices to construct a path of every length 5 or more joining s and t in the case that there is one faulty element in G_{0} and s and t are contained in G_{1}. In G_{1}, we have a path P_{0} of length from 3 to 7 inclusive joining s and t by Lemma 3. It remains to construct a path P_{1} of every length $l_{1}, 8 \leq l_{1} \leq 15-f_{v}$. Since $G_{0} \backslash F_{0}$ has a hamiltonian cycle C_{0} by Theorem 4 , we have a path P^{\prime} on C_{0} of length every $l^{\prime}, 1 \leq l^{\prime} \leq 7-f_{v}$, such that (i) letting x and y be the two endvertices of P^{\prime}, $\{s, t\} \cap\{\bar{x}, \bar{y}\}=\emptyset$ and (ii) there exist two disjoint covering paths in $G_{1} \backslash z$ for some z joining $\{s, t\}$ and $\{\bar{x}, \bar{y}\}$. Then, P_{1} can be constructed by merging P^{\prime} and two disjoint covering paths in $G_{1} \backslash z$ joining $\{s, t\}$ and $\{\bar{x}, \bar{y}\}$. The length l_{1} of P_{1} is in the range $8 \leq l_{1} \leq 15-f_{v}-1$. A path of length $15-f_{v}$ is a hamiltonian path, and its existence is due to Theorem 4. Thus, we have the lemma.

Lemma 8. Every 5-dimensional restricted HL-graph $[G(8,4) \oplus G(8,4)] \oplus[G(8,4) \oplus G(8,4)]$ is 2-fault 7-panconnected.

Proof. The proof of the lemma is similar to that of Lemma 7. Let G_{0} and G_{1} be graphs isomorphic to $G(8,4) \oplus$ $G(8,4)$. By Theorem 1(b) and Corollary 1, we assume that s and t are contained in G_{1} and both \bar{s} and \bar{t} in G_{0} are the faulty vertices. There exists a path P_{0} in G_{1} of every length $l_{0}, 5 \leq l_{0} \leq 15$, joining s and t by Lemma 7. Since $G_{0} \backslash F_{0}$ has a hamiltonian cycle C_{0}, we can construct a path P^{\prime} of every length $l^{\prime}, 1 \leq l^{\prime} \leq 13$. Letting x and y be the endvertices of P^{\prime}, we can obtain a path P_{1} by merging P^{\prime} and two disjoint covering paths in $G_{1} \backslash z$ for some z joining $\{s, t\}$ and $\{\bar{x}, \bar{y}\}$ with edges (x, \bar{x}) and (y, \bar{y}). The length l_{1} of P_{1} is in the range $16 \leq l_{1} \leq 28$. A hamiltonian path of length 29 exists due to Theorem 4. This completes the proof.

By an inductive argument utilizing Theorem 1(a) and Lemmas 3, 7 and 8, we have Theorem 5. Note that for $n=2^{m}, f=m-3$, and $q=2 m-3$, it holds true that for any $m \geq 3, n=2^{m} \geq f+2 q+1=5 m-8$ and $q=2 m-3 \geq 2 f+3=2 m-3$.
Theorem 5. Every m-dimensional restricted HL-graph, $m \geq 3$, is $m-3$-fault $2 m$-3-panconnected.
Corollary 2. Every m-dimensional restricted HL-graph, $m \geq 3$, is m - 3-fault hypohamiltonian-connected.
Remark 3. Let q_{m}^{*} be the minimum q_{m} such that every m-dimensional restricted HL-graph is m - 3 -fault q_{m}-panconnected. An upper bound $2 m-3$ on q_{m}^{*} is suggested by Theorem 5. The graph product $G(8,4) \times Q_{m-3}$ of $G(8,4)$ and $m-3$-dimensional hypercube Q_{m-3}, which is an m-dimensional restricted HL-graph, is not 0 -fault m-panconnected (even though $f=0$) since there does not exist a path of length m between the two vertices $\left(v_{0}, 00 \cdots 0\right)$ and $\left(v_{0}, 11 \cdots 1\right)$ of distance $m-3$. Therefore, we have $m+1 \leq q_{m}^{*} \leq 2 m-3$.

A graph G is called f-fault q-edge-pancyclic if for any faulty set F with $|F| \leq f$, there exists a cycle of every length from q to $|V(G \backslash F)|$ that passes through an arbitrary fault-free edge. Of course, an f-fault q-panconnected graph is always f-fault $q+1$-edge-pancyclic. From Theorem 5 , we have the following.

Theorem 6. Every m-dimensional restricted HL-graph, $m \geq 3$, is $m-3$-fault $2 m$-2-edge-pancyclic.

3.2. Pancyclicity of restricted HL-graphs

To show that every m-dimensional restricted HL-graph is m - 2-fault almost pancyclic, due to Lemmas 1 and 2, we assume that the faulty set F contains $m-2$ faulty vertices.

Lemma 9. The 3-dimensional restricted HL-graph $G(8,4)$ is 1-fault almost pancyclic.
Proof. We assume v_{0} is faulty. Since $G(8,4)$ is 1 -fault hamiltonian, it is sufficient to construct a cycle C_{l} of length l for every $4 \leq l \leq 6$. We have $C_{4}=\left(v_{1}, v_{5}, v_{6}, v_{2}\right), C_{5}=\left(v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right), C_{6}=\left(v_{1}, v_{2}, v_{3}, v_{7}, v_{6}, v_{5}\right)$.
Lemma 10. Every 4-dimensional restricted HL-graph $G(8,4) \oplus G(8,4)$ is 2-fault almost pancyclic.
Proof. We let G_{0} and G_{1} be graphs isomorphic to $G(8,4)$. They are 0 -fault hamiltonian-connected, 0 -fault hypohamiltonian-connected, and 1 -fault almost pancyclic by Lemmas 3 and 9 . To show $G_{0} \oplus G_{1}$ is 2 -fault almost pancyclic, by Theorem 3(b), we assume that each G_{i} has one faulty vertex. G_{0} has cycles of length 4 through 7 , and $G_{0} \oplus G_{1}$ has a hamiltonian cycle of length 14 . To construct a cycle of length l for every $8 \leq l \leq 13$, we find a path P_{0}

Table 2
Hypohamiltonian path P in $G(8,4) \backslash v_{0}$ between s and t

s	$t: P$		
	$v_{2}: v_{1}-v_{5}-v_{6}-v_{7}-v_{3}-v_{2} ;$	$v_{3}: v_{1}-v_{2}-v_{6}-v_{5}-v_{4}-v_{3} ;$	$v_{4}: v_{1}-v_{5}-v_{6}-v_{2}-v_{3}-v_{4} ;$
	$v_{5}: v_{1}-v_{2}-v_{3}-v_{7}-v_{6}-v_{5} ;$	$v_{6}: v_{1}-v_{2}-v_{3}-v_{4}-v_{5}-v_{6} ;$	$v_{7}: v_{1}-v_{5}-v_{6}-v_{2}-v_{3}-v_{7} ;$
$s=v_{2}$	$v_{3}: v_{2}-v_{1}-v_{5}-v_{6}-v_{7}-v_{3} ;$	$v_{4}: v_{2}-v_{3}-v_{7}-v_{6}-v_{5}-v_{4} ;$	$v_{5}: v_{2}-v_{6}-v_{7}-v_{3}-v_{4}-v_{5} ;$
	$v_{6}:$ does not exist;	$v_{7}: \operatorname{symm}$. to $\left(v_{1}, v_{6}\right) ;$	
	$v_{4}:$ does not exist;	$v_{5}: v_{3}-v_{7}-v_{6}-v_{2}-v_{1}-v_{5} ;$	$v_{6}:$ symm. to $\left(v_{2}, v_{5}\right) ;$
	$v_{7}:$ symm. to $\left(v_{1}, v_{5}\right) ;$		
$s=v_{4}$	$v_{5}:$ does not exist;	$v_{6}:$ symm. to $\left(v_{2}, v_{4}\right) ;$	$v_{7}:$ symm. to $\left(v_{1}, v_{4}\right) ;$
$s=v_{5}$	$v_{6}:$ symm. to $\left(v_{2}, v_{3}\right) ;$	$v_{7}:$ symm. to $\left(v_{1}, v_{3}\right) ;$	
$s=v_{6}$	$v_{7}:$ symm. to $\left(v_{1}, v_{2}\right) ;$		

of length $l-7$ in G_{0} joining some pair of vertices x and y such that (B1) \bar{x} and \bar{y} are fault-free and (B2) there exists a hypohamiltonian path P_{1} in $G_{1} \backslash F_{1}$ between \bar{x} and \bar{y}. Then, P_{0} and P_{1} are merged with (x, \bar{x}) and (y, \bar{y}) to obtain a cycle of length l. To see the existence of such P_{0} and P_{1}, let C_{0} be a hamiltonian cycle in $G_{0} \backslash F_{0}$. On C_{0}, there are 7 different paths of length $l-7$. Among them, at least 5 satisfy the condition B1, and furthermore, by Lemma 11 given below, at least 2 also satisfy the condition B2.
Lemma 11. Let $G(8,4)$ have one faulty vertex v_{0}. There exists a hypohamiltonian path in $G(8,4) \backslash v_{0}$ between every pair of vertices s and provided $\{s, t\} \neq\left\{v_{2}, v_{6}\right\},\left\{v_{3}, v_{4}\right\}$, and $\left\{v_{4}, v_{5}\right\}$.
Proof. The proof is enumerative. See Table 2.
From Lemmas 9 and 10, Corollary 2, and Theorem 3(a), we have Theorem 7.
Theorem 7. Every m-dimensional restricted HL-graph, $m \geq 3$, is $m-2$-fault almost pancyclic.
Corollary 3. (a) Twisted cube $T Q_{m}, m \geq 3$, is $m-2$-fault almost pancyclic [29].
(b) Crossed cube $C Q_{m}, m \geq 3$, is $m-2$-fault almost pancyclic [28].
(c) Multiply twisted cube $M Q_{m}, m \geq 3$, is $m-2$-fault almost pancyclic.
(d) Both 0-Möbius cube and 1-Möbius cube of dimension m, $m \geq 3$, are $m-2$-fault almost pancyclic [14].
(e) The m-Mcube, $m \geq 3$, is $m-2$-fault almost pancyclic.
(f) Generalized twisted cube $G Q_{m}, m \geq 3$, is $m-2$-fault almost pancyclic.
(g) Locally twisted cube $L T Q_{m}, m \geq 3$, is $m-2$-fault almost pancyclic.
(h) $G\left(2^{m}, 4\right)$, m odd and $m \geq 3$, is $m-2$-fault almost pancyclic [20].

We note that recursive circulant $G\left(2^{m}, 4\right)$ for an odd m is a restricted HL-graph although not every $G\left(2^{m}, 4\right)$ is a restricted HL-graph. One can check without difficulty that $G(16,4)$ is not isomorphic to $G(8,4) \oplus_{M} G(8,4)$ for any M, and even $G(16,4)$ does not have $G(8,4)$ as a subgraph.

4. Concluding remarks

In this paper, we studied the problems of how fault-panconnectivity and fault-pancyclicity of two graphs G_{0} and G_{1} are translated into fault-panconnectivity and fault-pancyclicity of $G_{0} \oplus G_{1}$, respectively. It was proved that if G_{0} and G_{1} are f-fault q-panconnected and $f+1$-fault hamiltonian (with additional conditions $n \geq f+2 q+1$ and $q \geq 2 f+3$), then $G_{0} \oplus G_{1}$ is $f+1$-fault $q+2$-panconnected for any $f \geq 2$, and that if G_{0} and G_{1} are f-fault hamiltonian-connected, f-fault hypohamiltonian-connected, and $f+1$-fault almost pancyclic, then $G_{0} \oplus G_{1}$ is $f+2$-fault almost pancyclic for any $f \geq 1$. Applying these results to restricted HL-graphs, we concluded that every m-dimensional restricted HL-graph with $m \geq 3$ is $m-3$-fault $2 m-3$-panconnected and $m-2$-fault almost pancyclic.

According to the constructions presented in this paper, we can design efficient algorithms for finding an s - t path and a fault-free cycle of specified length in a faulty restricted HL-graph. The work on almost pancyclicity of restricted HL-graphs with faulty elements is a generalization of some works on individual interconnection networks such
as crossed cubes [28], Möbius cubes [14], and twisted cubes [29]. As the authors know, no results on faultpanconnectivity and fault-edge-pancyclicity of interconnection networks appeared in the literature. It is worthwhile to investigate fault-panconnectivity and fault-edge-pancyclicity of individual interconnection networks such as recursive circulants, crossed cubes, twisted cubes, etc.

References

[1] T. Araki, Edge-pancyclicity of recursive circulants, Inform. Proc. Lett. 88 (2003) 287-292.
[2] T. Araki, Y. Shibata, Pancyclicity of recursive circulant graphs, Inform. Proc. Lett. 81 (2002) 187-190.
[3] J.A. Bondy, U.S.R. Murty, Graph Theory with Applications, 5th printing, American Elsevier, 1976.
[4] J.-M. Chang, J.-S. Yang, Y.-L. Wang, Y. Cheng, Panconnectivity, fault-tolerant hamiltonicity and hamiltonian-connectivity in alternating group graphs, Networks 44 (2004) 302-310.
[5] F.B. Chedid, On the generalized twisted cube, Inform. Proc. Lett. 55 (1995) 49-52.
[6] P. Cull, S. Larson, The Möbius cubes, in: Proc. of the 6th IEEE Distributed Memory Computing Conf., 1991, pp. 699-702.
[7] K. Efe, A variation on the hypercube with lower diameter, IEEE Trans. Comput. 40 (11) (1991) 1312-1316.
[8] K. Efe, The crossed cube architecture for parallel computation, IEEE Trans. Parallel Distributed Syst. 3 (5) (1992) $513-524$.
[9] A.-H. Esfahanian, L.M. Ni, B.E. Sagan, The twisted n-cube with application to multiprocessing, IEEE Trans. Comput. 40 (1) (1991) 88-93.
[10] J. Fan, Hamilton-connectivity and cycle-embedding of the Möbius cubes, Inform. Proc. Lett. 82 (2002) 113-117.
[11] J. Fan, X. Lin, X. Jia, R.W.H. Lau, Edge-pancyclicity of twisted cubes, in: Proc. of International Symposium on Algorithms and Computation ISAAC 2005, December 2005, pp. 1090-1099.
[12] J. Fan, X. Lin, X. Jia, Node-pancyclicity and edge-pancyclicity of crossed cubes, Inform. Proc. Lett. 93 (2005) 133-138.
[13] P.A.J. Hilbers, M.R.J. Koopman, J.L.A. van de Snepscheut, The Twisted Cube, in: J. Bakker, A. Nijman, P. Treleaven (Eds.), PARLE: Parallel Architectures and Languages Europe, in: Parallel Architectures, vol. I, Springer, 1987, pp. 152-159.
[14] S.-Y. Hsieh, N.-W. Chang, Cycle embedding on the Möbius cube with both faulty nodes and faulty edges, in: Proc. of 11th International Conference on Parallel and Distributed Systems ICPADS 2005, 2005.
[15] S. Latifi, N. Bagherzadeh, R.R. Gajjala, Fault-tolerant embedding of linear arrays and rings in the star graph, Comput. Elect. Eng. 23 (2) (1997) 95-107.
[16] T. Li, Cycle embedding in star graphs with edge faults, Appl. Math. Comput. 167 (2005) 891-900.
[17] M. Ma, J.-M. Xu, Panconnectivity of locally twisted cubes, Appl. Math. Lett. 19 (2006) 673-677.
[18] J.P. McSorley, Counting structures in the Möbius ladder, Discrete Math. 184 (1-3) (1998) 137-164.
[19] C.-D. Park, K.Y. Chwa, Hamiltonian properties on the class of hypercube-like networks, Inform. Proc. Lett. 91 (2004) 11-17.
[20] J.-H. Park, Cycle embedding of faulty recursive circulants, J. KISS 31 (2) (2004) 86-94 (in Korean).
[21] J.-H. Park, K.Y. Chwa, Recursive circulants and their embeddings among hypercubes, Theoret. Comput. Sci. 244 (2000) $35-62$.
[22] J.-H. Park, H.-C. Kim, H.-S. Lim, Fault-hamiltonicity of hypercube-like interconnection networks, in: Proc. of IEEE International Parallel and Distributed Processing Symposium IPDPS 2005, Denver, Apr. 2005.
[23] J.-H. Park, H.-C. Kim, H.-S. Lim, Many-to-many disjoint path covers in hypercube-like interconnection networks with faulty elements, IEEE Trans. Parallel Distributed Syst. 17 (3) (2006) 227-240.
[24] A. Sengupta, On ring embedding in hypercubes with faulty nodes and links, Inform. Proc. Lett. 68 (1998) 207-214.
[25] N.K. Singhvi, K. Ghose, The Mcube: A symmetrical cube based network with twisted links, in: Proc. of the 9th IEEE Int. Parallel Processing Symposium IPPS 1995, 1995, pp. 11-16.
[26] A.S. Vaidya, P.S.N. Rao, S.R. Shankar, A class of hypercube-like networks, in: Proc. of the 5th IEEE Symposium on Parallel and Distributed Processing SPDP 1993, December 1993, pp. 800-803.
[27] X. Yang, D.J. Evans, G.M. Megson, The locally twisted cubes, Int. J. Comput. Math. 82 (4) (2005) 401-413.
[28] M.-C. Yang, T.-K. Li, J.J.M. Tan, L.-H. Hsu, Fault-tolerant cycle-embedding of crossed cubes, Inform. Proc. Lett. 88 (2003) 149-154.
[29] M.-C. Yang, T.-K. Li, J.J.M. Tan, L.-H. Hsu, On embedding cycles into faulty twisted cubes, Inform. Sci. 176 (2006) 676-690.

[^0]: ${ }^{*}$ This work was supported by the Korea Research Foundation Grant funded by the Korean Government (MOEHRD) (KRF-2005-041-D00645), and also supported by the Department Specialization Fund, 2006 of The Catholic University of Korea.

 * Corresponding author. Tel.: +82 221644366.

 E-mail addresses: j.h.park @catholic.ac.kr (J.-H. Park), hslim@chonnam.ac.kr (H.-S. Lim), hckim@hufs.ac.kr (H.-C. Kim).

