

Available online at www.sciencedirect.com

Theoretical Computer Science

Theoretical Computer Science 377 (2007) 170-180

www.elsevier.com/locate/tcs

Panconnectivity and pancyclicity of hypercube-like interconnection networks with faulty elements[☆]

Jung-Heum Park^{a,*}, Hyeong-Seok Lim^b, Hee-Chul Kim^c

^a School of Computer Science and Information Engineering, The Catholic University of Korea, Republic of Korea ^b School of Electronics and Computer Engineering, Chonnam National University, Republic of Korea

^c Computer Science and Information Communications Engineering Division, Hankuk University of Foreign Studies, Republic of Korea

Received 21 September 2006; received in revised form 14 February 2007; accepted 18 February 2007

Communicated by D.-Z. Du

Abstract

In this paper, we deal with the graph $G_0 \oplus G_1$ obtained from merging two graphs G_0 and G_1 with *n* vertices each by *n* pairwise nonadjacent edges joining vertices in G_0 and vertices in G_1 . The main problems studied are how fault-panconnectivity and fault-pancyclicity of G_0 and G_1 are translated into fault-panconnectivity and fault-pancyclicity of $G_0 \oplus G_1$, respectively. Many interconnection networks such as hypercube-like interconnection networks can be represented in the form of $G_0 \oplus G_1$ connecting two lower dimensional networks G_0 and G_1 . Applying our results to a class of hypercube-like interconnection networks called *restricted HL-graphs*, we show that in a restricted HL-graph *G* of degree $m \geq 3$, each pair of vertices are joined by a path in $G \setminus F$ of every length from 2m - 3 to $|V(G \setminus F)| - 1$ for any set *F* of faulty elements (vertices and/or edges) with $|F| \leq m - 3$, and there exists a cycle of every length from 4 to $|V(G \setminus F)|$ for any fault set *F* with $|F| \leq m - 2$. (© 2007 Elsevier B.V. All rights reserved.

Keywords: Embedding; Panconnected; Pancyclic; Edge-pancyclic; Fault-hamiltonicity; Fault tolerance; Restricted HL-graphs; Interconnection networks

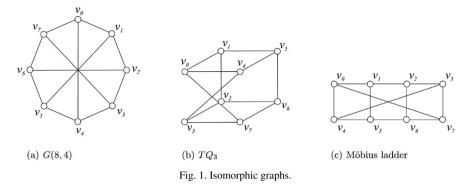
1. Introduction

Linear arrays and rings are two of the most important computational structures in interconnection networks. So, embedding of linear arrays and rings into a faulty interconnection network is one of the important issues in parallel processing [15,22,24]. An interconnection network is often modeled as a graph, in which vertices and edges correspond to nodes and communication links, respectively. Thus, the embedding problem can be modeled as finding fault-free paths and cycles in the graph with some faulty vertices and/or edges. In the embedding problem, if the longest path or cycle is required the problem is closely related to well-known hamiltonian problems in graph theory. In the rest of this paper, we will use standard terminology in graphs (see Ref. [3]).

 $[\]stackrel{\text{res}}{\rightarrow}$ This work was supported by the Korea Research Foundation Grant funded by the Korean Government (MOEHRD) (KRF-2005-041-D00645), and also supported by the Department Specialization Fund, 2006 of The Catholic University of Korea.

^{*} Corresponding author. Tel.: +82 2 2164 4366.

E-mail addresses: j.h.park@catholic.ac.kr (J.-H. Park), hslim@chonnam.ac.kr (H.-S. Lim), hckim@hufs.ac.kr (H.-C. Kim).



Definition 1. A graph G is called f-fault hamiltonian (resp. f-fault hamiltonian-connected) if there exists a hamiltonian cycle (resp. if each pair of vertices are joined by a hamiltonian path) in $G \setminus F$ for any set F of faulty elements with $|F| \leq f$.

For a graph G to be f-fault hamiltonian (resp. f-fault hamiltonian-connected), it is necessary that $f \le \delta(G) - 2$ (resp. $f \le \delta(G) - 3$), where $\delta(G)$ is the minimum degree of G. On the other hand, if the paths joining each pair of vertices of every length shorter than or equal to a hamiltonian path are required the problem is concerned with panconnectivity of the graph. If the cycles of arbitrary size (up to a hamiltonian cycle) are required the problem is concerned with pancyclicity of the graph.

Definition 2. A graph G is called *f*-fault *q*-panconnected if each pair of fault-free vertices are joined by a path in $G \setminus F$ of every length from q to $|V(G \setminus F)| - 1$ inclusive for any set F of faulty elements with $|F| \le f$.

Definition 3. A graph *G* is called *f*-fault pancyclic (resp. *f*-fault almost pancyclic) if $G \setminus F$ contains a cycle of every length from 3 to $|V(G \setminus F)|$ (resp. 4 to $|V(G \setminus F)|$) inclusive for any set *F* of faulty elements with $|F| \le f$.

Pancyclicity of various interconnection networks was investigated in the literature. It was shown in [16] that star graph of degree m - 1 with at most m - 3 edge faults has every cycle of even length 6 or more. Recursive circulant $G(2^m, 4)$ of degree m was shown to be 0-fault almost pancyclic in [2] and then m - 2-fault almost pancyclic in [20]. Möbius cube of degree m is 0-fault almost pancyclic [10] and m - 2-fault almost pancyclic [14]. Crossed cube and twisted cube of degree m were also shown to be m - 2-fault almost pancyclic in [28] and in [29]. Edge-pancyclicity of some fault-free interconnection networks such as recursive circulants, crossed cubes, and twisted cubes was studied in [1,12,11]. The work on panconnectivity of interconnection networks has a relative paucity and some results can be found in [4,17]. As the authors know, no results on fault-panconnectivity were reported in the literature.

Many interconnection networks can be expanded into higher dimensional networks by connecting two lower dimensional networks. As a graph modeling of the expansion, we consider the graph obtained by connecting two graphs G_0 and G_1 with *n* vertices. We denote by V_i and E_i the vertex set and edge set of G_i , i = 0, 1, respectively. We let $V_0 = \{v_1, v_2, \ldots, v_n\}$ and $V_1 = \{w_1, w_2, \ldots, w_n\}$. With respect to a permutation $M = (i_1, i_2, \ldots, i_n)$ of $\{1, 2, \ldots, n\}$, we can "merge" the two graphs into a graph $G_0 \oplus_M G_1$ with 2n vertices in such a way that the vertex set $V = V_0 \cup V_1$ and the edge set $E = E_0 \cup E_1 \cup E_2$, where $E_2 = \{(v_j, w_{i_j}) | 1 \le j \le n\}$. We denote by $G_0 \oplus G_1$ a graph obtained by merging G_0 and G_1 w.r.t. an arbitrary permutation M. Here, G_0 and G_1 are called *components* of $G_0 \oplus G_1$.

Fault-hamiltonicity of $G_0 \oplus G_1$ was investigated in [22]. One of the results is that if each G_i is f-fault hamiltonian-connected and f + 1-fault hamiltonian, then for any $f \ge 2$, $G_0 \oplus G_1$ is f + 1-fault hamiltonian-connected and for any $f \ge 1$, it is f + 2-fault hamiltonian.

Vaidya et al. [26] introduced a class of hypercube-like interconnection networks, called *HL-graphs*, which can be defined by applying the \oplus operation repeatedly as follows: $HL_0 = \{K_1\}$; for $m \ge 1$, $HL_m = \{G_0 \oplus G_1 | G_0, G_1 \in HL_{m-1}\}$. Then, $HL_1 = \{K_2\}$; $HL_2 = \{C_4\}$; $HL_3 = \{Q_3, G(8, 4)\}$. Here, C_4 is a cycle graph with 4 vertices, Q_3 is a 3-dimensional hypercube, and G(8, 4) is a recursive circulant [21] which is isomorphic to twisted cube TQ_3 [13] and Möbius ladder [18] with 4 spokes as shown in Fig. 1. An arbitrary graph which belongs to HL_m is called an *m-dimensional HL-graph*. It was shown by Park and Chwa in [19] that every nonbipartite HL-graph is hamiltonian-connected, and that every bipartite HL-graph is hamiltonian-laceable, that is, every bipartite HL-graph

has a hamiltonian path between any two vertices that belong to different partite sets. Obviously, some *m*-dimensional HL-graphs such as an *m*-dimensional hypercube are bipartite. They are not *f*-fault almost pancyclic for any $f \ge 0$, and thus they are not *f*-fault *q*-panconnected for any $f \ge 0$ and $q \ge 1$.

In [22], a subclass of nonbipartite HL-graphs, called *restricted HL-graphs*, was introduced, which is defined recursively as follows: $RHL_m = HL_m$ for $0 \le m \le 2$; $RHL_3 = HL_3 \setminus Q_3 = \{G(8, 4)\}$; $RHL_m = \{G_0 \oplus G_1 | G_0, G_1 \in RHL_{m-1}\}$ for $m \ge 4$. A graph which belongs to RHL_m is called an *m*-dimensional restricted *HL-graph*. Many of the nonbipartite hypercube-like interconnection networks such as crossed cube [8], Möbius cube [6], twisted cube [13], multiply twisted cube [7], Mcube [25], generalized twisted cube [5], locally twisted cube [27], etc. proposed in the literature are restricted HL-graphs with the exception of recursive circulant $G(2^m, 4)$ [21] and "near" bipartite interconnection networks such as twisted m-cube [9]. It was shown in [22] that every *m*-dimensional restricted HL-graph with *f* or less faulty elements has *k* disjoint paths, covering all the fault-free vertices, joining any *k* distinct source-sink pairs for any $f \ge 0$ and $k \ge 1$ with $f + 2k \le m - 1$. In this paper, we are concerned with panconnectivity and pancyclicity of restricted HL-graphs with faulty elements.

We first investigate panconnectivity and pancyclicity of $G_0 \oplus G_1$ with faulty elements. It will be shown that if each G_i , i = 0, 1, is f-fault q-panconnected and f + 1-fault hamiltonian (with additional conditions $n \ge f + 2q + 1$ and $q \ge 2f + 3$), then $G_0 \oplus G_1$ is f + 1-fault q + 2-panconnected for any $f \ge 2$. To study pancyclicity of $G_0 \oplus G_1$, the notion of *hypohamiltonian-connectivity* is introduced. A graph G is called f-fault hypohamiltonian-connected if each pair of vertices can be joined by a path of length $|V(G \setminus F)| - 2$, that is one less than the longest possible length, in $G \setminus F$ for any fault set F with $|F| \le f$. We will show that if each G_i , i = 0, 1, is f-fault hamiltonian-connected, f-fault hypohamiltonian-connected, and f + 1-fault almost pancyclic, then $G_0 \oplus G_1$ is f + 2-fault almost pancyclic for any $f \ge 1$.

Our main results are applied to restricted HL-graphs. We will show that every *m*-dimensional restricted HL-graph with $m \ge 3$ is m-3-fault 2m-3-panconnected and m-2-fault almost pancyclic. Both bounds m-3 and m-2 on the number of acceptable faulty elements are the maximum possible. Notice that *f*-fault *q*-panconnected graph is *f*-fault hamiltonian-connected, and that *f*-fault almost pancyclic graph is *f*-fault hamiltonian. Our results are not only the extension of some works of [14,28,29] on fault-pancyclicity of restricted HL-graphs, but also a new investigation on fault-panconnectivity of restricted HL-graphs.

The organization of this paper is as follows. In the next section, panconnectivity and pancyclicity of $G_0 \oplus G_1$ with faulty elements will be investigated. In Section 3, fault-panconnectivity and fault-pancyclicity of restricted HL-graphs will be studied. Finally in Section 4, concluding remarks of this paper will be given.

2. Panconnectivity and pancyclicity of $G_0 \oplus G_1$

For a vertex v in $G_0 \oplus G_1$, we denote by \overline{v} the vertex adjacent to v which is in a component different from the component in which v is contained. We denote by F the set of faulty elements. When we are to construct a path from s to t, s and t are called a *source* and a *sink*, respectively, and both of them are called *terminals*. Throughout this paper, a path in a graph is represented as a sequence of vertices.

Definition 4. A vertex v in $G_0 \oplus G_1$ is called *free* if v is fault-free and not a terminal, that is, $v \notin F$ and v is neither a source nor a sink. An edge (v, w) is called *free* if v and w are free and $(v, w) \notin F$.

We denote by V_i and E_i the sets of vertices and edges in G_i , i = 0, 1, and by E_2 the set of edges joining vertices in G_0 and vertices in G_1 . We let $n = |V_0| = |V_1|$. F_0 and F_1 denote the sets of faulty elements in G_0 and G_1 , respectively, and F_2 denotes the set of faulty edges in E_2 , so that $F = F_0 \cup F_1 \cup F_2$. Let $f_0 = |F_0|$, $f_1 = |F_1|$, and $f_2 = |F_2|$.

When we find a path/cycle, sometimes we regard some fault-free vertices and/or edges as faulty elements. They are called *virtual* faults. If G_i is *f*-fault hamiltonian-connected and f + 1-fault hamiltonian, i = 0, 1, then

 $f \leq \delta(G_i) - 3$, and thus $f + 4 \leq n$,

where $\delta(G_i)$ is the minimum degree of G_i .

2.1. Panconnectivity of $G_0 \oplus G_1$

Hamiltonian-connectivity of $G_0 \oplus G_1$ with faulty elements was considered in [22]. In this subsection, we study panconnectivity of $G_0 \oplus G_1$ in the presence of faulty elements. We denote by f_v^0 and f_v^1 the numbers of faulty vertices in G_0 and G_1 , respectively, and by f_v the number of faulty vertices in $G_0 \oplus G_1$, so that $f_v = f_v^0 + f_v^1$. Note that the length of a hamiltonian path in $G_0 \oplus G_1 \setminus F$ is $2n - f_v - 1$.

Theorem 1. Let G_0 and G_1 be graphs with n vertices each. Let f and q be nonnegative integers satisfying $n \ge f + 2q + 1$ and $q \ge 2f + 3$. If each G_i is f-fault q-panconnected and f + 1-fault hamiltonian, then

(a) for any $f \ge 2$, $G_0 \oplus G_1$ is f + 1-fault q + 2-panconnected,

- (b) for f = 1, $G_0 \oplus G_1$ with 2 (= f + 1) faulty elements has a path of every length q + 2 or more joining s and t unless s and t are contained in the same component and \bar{s} and \bar{t} are the faulty elements (vertices), and
- (c) for f = 0, $G_0 \oplus G_1$ with 1 (= f + 1) faulty element has a path of every length q + 2 or more joining s and t unless s and t are contained in the same component and the faulty element is contained in the other component.

Proof. To prove (a), assuming the number of faulty elements $|F| \le f + 1$, we will construct a path of every length l, $q + 2 \le l \le 2n - f_v - 1$, in $G_0 \oplus G_1 \setminus F$ joining any pair of vertices s and t.

Case 1: $f_0, f_1 \leq f$.

When both s and t are contained in G_0 , there exists a path P_0 of length l_0 in G_0 joining s and t for every $q \le l_0 \le n - f_v^0 - 1$. We are to construct a longer path P_1 that passes through vertices in G_1 as well as vertices in G_0 . We first claim that there exists an edge (x, y) on P_0 such that all of \bar{x} , (x, \bar{x}) , \bar{y} , and (y, \bar{y}) are fault-free. There are l_0 candidate edges on P_0 and at most f + 1 faulty elements can "block" the candidates, at most two candidates per one faulty element. By the assumption $l_0 \ge q \ge 2f + 3$, and the claim is proved. The path P_1 can be obtained by merging P_0 and a path P' in G_1 between \bar{x} and \bar{y} with the edges (x, \bar{x}) and (y, \bar{y}) . Here, of course the edge (x, y) is discarded. Letting l' be the length of P', the length l_1 of P_1 can be anything in the range $2q + 1 \le l_1 = l_0 + l' + 1 \le 2n - f_v - 1$. Since $n \ge f + 2q + 1$, we have $2q + 1 \le n - f_v^0$ and we are done.

When s is in G_0 and t is in G_1 , we first find a free edge (x, \bar{x}) in E_2 such that (\bar{x}, t) is an edge and fault-free. The existence of such a free edge (x, \bar{x}) is due to the fact that there are $\delta(G_1)$ candidates and that at most f + 1 faulty elements and the source s can block the candidates. Remember $f \leq \delta(G_1) - 3$. Assuming $x \in V_0$, a path joining s and x in G_0 and an edge (\bar{x}, t) are merged with (x, \bar{x}) into a path P_0 . The length l_0 of P_0 is any integer in the range $q + 2 \leq l_0 \leq n - f_v^0 + 1$. A longer path P_1 is obtained by replacing the edge (\bar{x}, t) with a path in G_1 between \bar{x} and t of length $l'', q \leq l'' \leq n - f_v^1 - 1$. The length l_1 of P_1 is in the range $2q + 1 \leq l_1 \leq 2n - f_v - 1$. We are done since $2q + 1 \leq n - f_v^0$ as shown in the previous subcase.

Case 2: $f_0 = f + 1$ (or symmetrically, $f_1 = f + 1$).

We have $f_1 = f_2 = 0$. First, we consider the subcase $s, t \in V_0$. Letting P' be a path in G_1 joining \bar{s} and \bar{t} , we have a path $P_0 = (s, P', t)$ between s and t. The length l_0 of P_0 is any integer in the range $q + 2 \le l_0 \le n + 1$. To construct a longer path P_1 , we select an arbitrary faulty element α in G_0 . Regarding α as a virtual fault-free element, find a path P'' in G_0 between s and t. If α is a faulty vertex on P'', let x and y be the two vertices on P'' next to α ; else if P'' passes through the faulty edge α , let x and y be the endvertices of α ; else let (x, y) be an arbitrary edge on P''. The path P_1 is obtained by merging $P'' \setminus \alpha$ and a path in G_1 joining \bar{x} and \bar{y} with edges (x, \bar{x}) and (y, \bar{y}) . If α is faulty vertex on P'', the length l_1 of P_1 is in the range $2q \le l_1 \le 2n - f_v - 1$; otherwise, we have $2q + 1 \le l_1 \le 2n - f_v - 1$. In any case, we are done since $2q + 1 \le n + 2$.

Secondly, we consider the subcase $s \in V_0$ and $t \in V_1$. We first find a hamiltonian cycle *C* in $G_0 \setminus F_0$ and let $C = (s = z_0, z_1, z_2, ..., z_k)$, where $k = n - f_v^0 - 1$. Assuming $\bar{z}_l \neq t$ without loss of generality, we can construct a path P_0 by merging $(z_0, z_1, ..., z_l)$ and a path in G_1 between \bar{z}_l and t with the edge (z_l, \bar{z}_l) . The length l_0 of P_0 is any integer in the range $q + l + 1 \le l_0 \le n - f_v^1 + l$. Since *l* itself is any integer in the range $1 \le l \le n - f_v^0 - 1$, we have $q + 2 \le l_0 \le 2n - f_v - 1$.

Finally, we consider the subcase $s, t \in V_1$. We have a path P_0 in G_1 joining s and t, and the length l_0 of P_0 is in the range $q \le l_0 \le n-1$. To construct a longer path P_1 , we let $C = (z_0, z_1, z_2, \ldots, z_k)$ be a hamiltonian cycle in $G_0 \setminus F_0$, where $k = n - f_v^0 - 1$. If $\bar{s} \notin F$, we assume w.l.o.g. $\bar{s} = z_0$. Then, letting w.l.o.g. $\bar{z}_l \neq t$, P_1 is a concatenation of $(s, z_0, z_1, \ldots, z_l)$ and a path in $G_1 \setminus s$ between \bar{z}_l and t. The length l_1 of P_1 is in the range $q + 3 \le l_1 \le 2n - f_v - 1$. If $\bar{s} \in F$, we let (x, \bar{x}) be a free edge such that \bar{x} is adjacent to s. Then, letting w.l.o.g. $x = z_0$ and $\bar{z}_l \neq t$, P_1 is

a concatenation of $(s, \bar{x}, z_0, z_1, ..., z_l)$ and a path in $G_1 \setminus \{s, \bar{x}\}$ between \bar{z}_l and t. Here, the length l_1 of P_1 is in the range $q + 4 \le l_1 \le 2n - f_v - 1$. By the condition of $n \ge f + 2q + 1$ and $q \ge 2f + 3$, we can observe $q + 4 \le n$. Therefore, we are done. This completes the proof of (a).

It immediately follows from Case 1 and the first and second subcases of Case 2, where the assumption $f \ge 2$ is never used, that for $f = 0, 1, G_0 \oplus G_1$ with f + 1 faulty elements has a path of every length q + 2 or more joining *s* and *t* unless *s* and *t* are contained in the same component and all the faulty elements are contained in the other component. Thus, the proof of (c) is done. To prove (b), assuming w.l.o.g. $\bar{s} \notin F$, it suffices to employ the construction of the last subcase of Case 2. Note that in the construction, G_1 is 1-fault *q*-panconnected. This completes the proof. \Box

Corollary 1. Let G_0 and G_1 be graphs with n vertices each. Let f and q be nonnegative integers satisfying $n \ge f + 2q + 1$ and $q \ge 2f + 3$. If each G_i is f-fault q-panconnected and f + 1-fault hamiltonian, then $G_0 \oplus G_1$ is f-fault q + 2-panconnected.

Proof. It is sufficient to consider the case f = 0, 1 by Theorem 1(a). To obtain a path of length q + 2 or more in $G \setminus F$ joining s and t, we can apply Theorem 1 (b) and (c) after we choose f + 1 - |F| fault-free edges in E_2 and regard them as virtual faults. \Box

2.2. Pancyclicity of $G_0 \oplus G_1$

In the presence of faulty elements, the existence of hamiltonian cycle in $G_0 \oplus G_1$ was considered in [22] as in Theorem 2. In this subsection, we investigate almost pancyclicity of $G_0 \oplus G_1$ with faulty elements. We denote by H[v, w|G, F] a hamiltonian path in $G \setminus F$ joining a pair of fault-free vertices v and w in a graph G with a set F of faulty elements. HH[v, w|G, F] denotes a hypohamiltonian path in $G \setminus F$ between v and w.

Theorem 2 ([22]). Let a graph G_i be f-fault hamiltonian-connected and f + 1-fault hamiltonian, i = 0, 1. Then,

- (a) for any $f \ge 1$, $G_0 \oplus G_1$ is f + 2-fault hamiltonian, and
- (b) for f = 0, $G_0 \oplus G_1$ with 2 (= f + 2) faulty elements has a hamiltonian cycle unless one faulty element is contained in G_0 and the other faulty element is contained in G_1 .

Before presenting our theorem on pancyclicity, we will give two lemmas. They imply that to show an f-fault hamiltonian graph is f-fault almost pancyclic, it is sufficient to consider only vertex faults and further the maximum number of vertex faults. We call a graph G to be f-vertex-fault almost pancyclic, if $G \setminus F_v$ contains a cycle of every length from 4 to $|V(G \setminus F_v)|$ for any set of faulty vertices F_v with $|F_v| \leq f$.

Lemma 1. Let a graph G be f-fault hamiltonian and f-vertex-fault almost pancyclic. Then, G is f-fault almost pancyclic.

Proof. We prove that for any faulty set F with $|F| \le f$, $G \setminus F$ is almost pancyclic by induction on the number of faulty edges f_e in F. It holds true for $f_e = 0$. Assume $f_e \ge 1$. Let f_v be the number of faulty vertices and let n be the number of vertices in G. There is a cycle of every length from 4 to $n - f_v - 1$ if we regard a faulty edge (x, y) as a vertex fault of x when x is fault-free, or y when y is fault-free, or an arbitrary fault-free vertex when both x and y are faulty. The cycle of length $n - f_v$ exists since G is f-fault hamiltonian. \Box

Lemma 2. Let a graph G be f-fault hamiltonian and almost pancyclic when the number of faulty vertices $f_v = f$. Then, G is f-vertex-fault almost pancyclic.

Proof. We show that G is almost pancyclic when $f_v < f$. There exists a cycle of every length from 4 to n - f by the condition in lemma. The cycle of length $l, n - f < l \le n - f_v$, can be found by constructing a hamiltonian cycle taking account of fault-free vertices as virtual faults one by one (starting from 0).

Theorem 3. Let a graph G_i be f-fault hamiltonian-connected, f-fault hypohamiltonian-connected, and f + 1-fault almost pancyclic, i = 0, 1. Then,

- (a) for any $f \ge 1$, $G_0 \oplus G_1$ is f + 2-fault almost pancyclic, and
- (b) for f = 0, $G_0 \oplus G_1$ with 2 (= f + 2) faulty elements is almost pancyclic unless one faulty element is contained in G_0 and the other faulty element is contained in G_1 .

175

Proof. To prove (a), we let |F| = f + 2, and assume *F* has only vertex faults by virtue of the above two lemmas. Note that, by Theorem 2(a), $G_0 \oplus G_1$ is f + 2-fault hamiltonian. Assuming $f_0 \ge f_1$ without loss of generality, we will construct cycles in $G_0 \oplus G_1 \setminus F$. By the condition in the theorem, there exist cycles of length from 4 to $n - f_1$ in $G_1 \setminus F_1$. Also, the cycle of length $2n - f_0 - f_1$ exists. So, the construction of remaining cycles of length from $n - f_1 + 1$ to $2n - f_0 - f_1 - 1$ will be given.

Case 1: $f_0 \leq f$.

Subcase 1.1: $n > f_0 + 2f_1$.

There exists a hamiltonian cycle C_0 of length $n - f_0$ in $G_0 \setminus F_0$. On C_0 , we have $n - f_0$ different paths P_k 's of length k for every $1 \le k \le n - f_0 - 1$. Among them, there exists a P_k joining x_k and y_k such that both $\bar{x_k}$ and $\bar{y_k}$ are fault-free, since we have $n - f_0$ candidates and each of f_1 faulty vertices in G_1 can block at most two candidates. Then, $C = (P_k, HH[\bar{y_k}, \bar{x_k}|G_1, F_1])$ is a cycle of length $n - f_1 + k$, $1 \le k \le n - f_0 - 1$.

Subcase 1.2: $n \leq f_0 + 2f_1$.

We find two free edges (x, \bar{x}) and (y, \bar{y}) in E_2 . Such free edges exist since there are $n (\ge f + 4)$ candidates and f + 2 blocking elements. Note that there are no terminals. We will construct a cycle by merging $H[x, y|G_0, F']$ or $HH[x, y|G_0, F']$ or $HH[\bar{x}, \bar{y}|G_1, F'']$. Here, F' (resp. F'') is a set of faulty elements in G_0 (resp. G_1) regarding some fault-free vertices as virtual faults. By taking account of $f - f_0$ vertices in $G_0 \setminus F_0$ excluding $\{x, y\}$ as virtual faults one by one, we can construct paths of length from n - f - 2 to $n - f_0 - 1$ between x and y. Also, by taking account of $f - f_1$ vertices in $G_1 \setminus F_1$ excluding $\{\bar{x}, \bar{y}\}$ as virtual faults one by one, we can construct paths of length from n - f - 2 to $n - f_0 - 1$ between x and y. Also, by taking account of $f - f_1$ vertices in $G_1 \setminus F_1$ excluding $\{\bar{x}, \bar{y}\}$ as virtual faults one by one, we can construct paths of length from n - f - 2 to $n - f_1 - 1$ between \bar{x} and \bar{y} . By merging two paths in G_0 and G_1 , we can obtain cycles of length from 2n - 2f - 2 to $2n - f_0 - f_1$. If $2n - 2f - 2 \le n - f_1 + 1$, we will have all cycles of desired lengths. First, we have $2n - 2f - 2 \le n - f_1 + 2$ since $(2n - 2f - 2) - (n - f_1 + 2) = n - 2f + f_1 - 4 \le (f_0 + 2f_1) - 2f + f_1 - 4 = f_0 + 3f_1 - 2f - 4 = 2f_1 - f - 2 \le 0$. Furthermore, careful observation on the above equation leads to $2n - 2f - 2 \le n - f_1 + 1$ unless $n = f_0 + 2f_1$ and $f_0 = f_1$.

For the remaining case that $n = f_0 + 2f_1$ and $f_0 = f_1$, it is sufficient to construct a cycle of length $n - f_1 + 1$. To do this, we claim that there exists an edge (x, y) in G_0 such that both \bar{x} and \bar{y} are fault-free. Let $W = \{w | w \in V_0 \setminus F_0, \bar{w} \notin F\}$, and let $B = V_0 \setminus (F_0 \cup W)$. It holds true that $|W| \ge |B|$ since $|W| \ge n - f_0 - f_1 = f_1$ and $|B| \le f_1$. Let C_0 be a hamiltonian cycle in $G_0 \setminus F_0$. If there is an edge (a, b) on C_0 such that $a, b \in W$, we are done. Suppose otherwise, we have |W| = |B| and the vertices on C_0 should alternate in W and B. Since $G_0 \setminus F_0$ is hamiltonian-connected, we always have such an edge (x, y) joining vertices in W. Note that $|W|, |B| \ge 2$, and that if there are no edges between vertices in W, there cannot exist a hamiltonian path joining vertices in B. Then, we have a desired cycle $(x, y, HH[\bar{y}, \bar{x}|G_1, F_1])$ of length $n - f_1 + 1$.

Case 2: $f_0 = f + 1$.

We find a hamiltonian cycle C_0 in $G_0 \setminus F_0$, and let x_k and y_k be two vertices in C_0 such that both \bar{x}_k and \bar{y}_k are fault-free and there is a path of length k between x_k and y_k on C_0 , $1 \le k \le n - f_0 - 1$. The existence of such x_k and y_k is due to the fact that the length of C_0 is at least three and $f_1 = 1$. Let P_k be the path of length k on C_0 whose endvertices are x_k and y_k . We construct cycles $(P_k, HH[\bar{y}_k, \bar{x}_k|G_1, F_1])$, $1 \le k \le n - f_0 - 1$, of length from $n - f_1 + 1$ to $2n - f_0 - f_1 - 1$. The hypohamiltonian path in G_1 between \bar{y}_k and \bar{x}_k exists since $f_1 = 1 \le f$.

Case 3: $f_0 = f + 2$. We select an arbitrary faulty vertex v_f in G_0 , regarding it as *a virtual fault-free vertex*, find a hamiltonian cycle C_0 in $G_0 \setminus F'$, where $F' = F_0 \setminus v_f$. The existence of C_0 is due to |F'| = f + 1. Let P_k be an arbitrary path of length k on $C_0 \setminus v_f$ whose endvertices are x_k and y_k , $1 \le k \le n - f_0 - 1$. Then, we have a cycle $(P_k, HH[\bar{y}_k, \bar{x}_k|G_1, \emptyset])$ of length $n - f_1 + k$ for every $1 \le k \le n - f_0 - 1$.

The proof of (b) follows immediately from the proof of (a), where the assumption $f \ge 1$ is used only when $f_1 = 1$ in Case 2. \Box

Remark 1. For f = 0, Theorem 3(a) does not hold true. We can construct a counter example using 3-dimensional hypercube Q_3 . Let W_4 be a wheel graph which consists of length four cycle C_4 and a center vertex adjacent to all the vertices in C_4 . It is easy to verify that W_4 is 0-fault hamiltonian-connected, 0-fault hypohamiltonian-connected, and 1-fault almost pancyclic. Let G be $W_4 \times K_2$, that is, a graph obtained by joining two identical W_4 by an identity permutation. If we remove both center vertices in two component graphs, the resulting graph is isomorphic to Q_3 which is a bipartite graph and thus does not possess any odd length cycle. So, G is not 2-fault almost pancyclic.

3. Restricted HL-graphs

In this section, we will show that every *m*-dimensional restricted HL-graph is m-3-fault 2m-3-panconnected and m-2-fault almost pancyclic. Fault-hamiltonicity of restricted HL-graphs was studied in [22] as follows. Of course, panconnectivity implies the existence of a hamiltonian path and pancyclicity implies the existence of a hamiltonian cycle. Thus, the result given in this section is a generalization of the work in [22].

Theorem 4 ([22]). Every m-dimensional restricted HL-graph, $m \ge 3$, is m - 3-fault hamiltonian-connected and m - 2-fault hamiltonian.

3.1. Panconnectivity of restricted HL-graphs

By induction on *m*, we will prove that every *m*-dimensional restricted HL-graph, $m \ge 3$, is m - 3-fault 2m - 3-panconnected. Recursive circulant G(8, 4) shown in Fig. 1 is a graph defined as follows: vertex set is $\{v_i | 0 \le i \le 7\}$ and the edge set is $\{(v_i, v_j) | i + 1 \text{ or } i + 4 \equiv j \pmod{8}\}$.

Lemma 3. The 3-dimensional restricted HL-graph G(8, 4) is 0-fault 3-panconnected.

Proof. The proof is by an immediate inspection. \Box

To prove that every 4-dimensional restricted HL-graph $G(8, 4) \oplus G(8, 4)$ is 1-fault 5-panconnected and every 5-dimensional restricted HL-graph is 2-fault 7-panconnected, we employ useful properties on disjoint paths in G(8, 4) and in $G(8, 4) \oplus G(8, 4)$, as shown in Lemmas 4–6. Two paths joining $\{s_1, s_2\}$ and $\{t_1, t_2\}$ such that $\{s_1, s_2\} \cap \{t_1, t_2\} = \emptyset$ are defined to be either s_1 - t_1 and s_2 - t_2 paths or s_1 - t_2 and s_2 - t_1 paths. Two paths P_1 and P_2 in a graph G are called *disjoint covering paths* if $V(P_1) \cap V(P_2) = \emptyset$ and $V(P_1) \cup V(P_2) = V(G)$, where $V(P_i)$ is the set of vertices in P_i .

Lemma 4. For any four distinct vertices s_1 , s_2 , t_1 , and t_2 in G(8, 4), there exists a vertex $z \notin \{s_1, s_2, t_1, t_2\}$ such that $G(8, 4) \setminus z$ has two disjoint covering paths joining $\{s_1, s_2\}$ and $\{t_1, t_2\}$ with the unique exception up to symmetry that $\{s_1, s_2\} = \{v_0, v_1\}$ and $\{t_1, t_2\} = \{v_4, v_5\}$.

Proof. The proof is by an immediate inspection and omitted here. \Box

Lemma 5. Let P_1 and P_2 be two disjoint covering paths joining $\{s_1, s_2\}$ and $\{t_1, t_2\}$ in G(8, 4) such that $\{s_1, s_2\} \cap \{t_1, t_2\} = \emptyset$.

(a) When $\{s_1, s_2\} = \{v_0, v_1\}$, they exist unless $\{t_1, t_2\} = \{v_3, v_6\}$.

(b) When $\{s_1, s_2\} = \{v_0, v_2\}$, they exist unless $\{t_1, t_2\} = \{v_3, v_5\}$ or $\{v_5, v_7\}$.

(c) When $\{s_1, s_2\} = \{v_0, v_3\}$, they exist unless $\{t_1, t_2\} = \{v_1, v_6\}$, $\{v_2, v_5\}$, or $\{v_5, v_6\}$.

(d) When $\{s_1, s_2\} = \{v_0, v_4\}$, they exist unless $\{t_1, t_2\} = \{v_2, v_6\}$.

Proof. The proof is enumerative. See Table 1. \Box

Lemma 6. For any four distinct vertices s_1 , s_2 , t_1 , and t_2 in $G(8, 4) \oplus G(8, 4)$, there exists a vertex $z \notin \{s_1, s_2, t_1, t_2\}$ such that $G(8, 4) \oplus G(8, 4) \setminus z$ has two disjoint covering paths joining $\{s_1, s_2\}$ and $\{t_1, t_2\}$.

Proof. We let G_0 and G_1 be graphs isomorphic to G(8, 4). We assume w.l.o.g. that the number of terminals in G_0 is at least that in G_1 . When all the four terminals are contained in G_0 , we first find a hamiltonian path P_0 in G_0 joining s_1 and s_2 , and let $P_0 = (s_1, P_x, x, t_1, P_y, y, t_2, P_z, s_2)$. For a path $P = (v_1, v_2, \ldots, v_l)$, we denote by P^R the reverse of a path P, that is, $P^R = (v_l, v_{l-1}, \ldots, v_1)$. Then, we have $P_1 = (s_1, P_x, x, HH[\bar{x}, \bar{y}|G_1, \emptyset], y, P_y^R, t_1)$ and $P_2 = (s_2, P_z^R, t_2)$. When there are three terminals in G_0 , we assume w.l.o.g. that s_1, s_2 , and t_1 are contained in G_0 . We first find a hamiltonian path P_0 in G_0 joining s_1 and s_2 and let $P_0 = (s_1, P_x, x, t_1, y, P_y, s_2)$. Assuming w.l.o.g. that $\bar{x} \neq t_2$, we have $P_1 = (s_1, P_x, x, HH[\bar{x}, t_2|G_1, \emptyset])$ and $P_2 = (s_2, P_y^R, y, t_1)$.

Now we consider the case that there are two terminals in G_0 . If there are one source and one sink in G_0 , assuming w.l.o.g. that s_1 and t_1 are contained in G_0 , we have $P_1 = HH[s_1, t_1|G_0, \emptyset]$ and $P_2 = H[s_2, t_2|G_1, \emptyset]$. Thus, we assume that s_1 and s_2 are contained in G_0 and t_1 and t_2 are contained in G_1 . We will show that there exist a pair of free

	bint covering paths P_1 and P_2 in $G(8, 4)$ joining $\{s_1, s_2\}$ and $\{t_1, t_2\}$			
$\{s_1, s_2\}$	$\{t_1, t_2\}: P_1, P_2$			
	$\{v_2, v_3\}: v_0-v_7-v_6-v_5-v_4-v_3, v_1-v_2;$	$\{v_2, v_4\}: v_0-v_7-v_3-v_4, v_1-v_5-v_6-v_2;$		
$\{v_0, v_1\}$	$\{v_2, v_5\}: v_0 - v_4 - v_3 - v_7 - v_6 - v_5, v_1 - v_2;$	$\{v_2, v_6\}: v_0-v_7-v_6, v_1-v_5-v_4-v_3-v_2;$		
	$\{v_2, v_7\}$: v_0 - v_4 - v_3 - v_7 , v_1 - v_5 - v_6 - v_2 ;	$\{v_3, v_4\}: v_0-v_7-v_6-v_5-v_4, v_1-v_2-v_3;$		
	$\{v_3, v_5\}$: v_0 - v_4 - v_5 , v_1 - v_2 - v_6 - v_7 - v_3 ;	$\{v_3, v_6\}$: does not exist;		
	$\{v_3, v_7\}$: symmetric to $\{v_2, v_6\}$;	$\{v_4, v_5\}$: v_0 - v_7 - v_6 - v_5 , v_1 - v_2 - v_3 - v_4 ;		
	$\{v_4, v_6\}$: symmetric to $\{v_3, v_5\}$;	$\{v_4, v_7\}$: symmetric to $\{v_2, v_5\}$;		
	$\{v_5, v_6\}$: symmetric to $\{v_3, v_4\}$;	$\{v_5, v_7\}$: symmetric to $\{v_2, v_4\}$;		
	$\{v_6, v_7\}$: symmetric to $\{v_2, v_3\}$;			
{v ₀ , v ₂ }	$\{v_1, v_3\}: v_0-v_7-v_6-v_5-v_4-v_3, v_2-v_1;$	$\{v_1, v_4\}: v_0-v_7-v_3-v_4, v_2-v_6-v_5-v_1;$		
	$\{v_1, v_5\}: v_0-v_1, v_2-v_6-v_7-v_3-v_4-v_5;$	$\{v_1, v_6\}$: symmetric to $\{v_1, v_4\}$;		
	$\{v_1, v_7\}$: symmetric to $\{v_1, v_3\}$;	$\{v_3, v_4\}: v_0 - v_1 - v_5 - v_4, v_2 - v_6 - v_7 - v_3;$		
	$\{v_3, v_5\}$: does not exist;	$\{v_3, v_6\}: v_0-v_7-v_6, v_2-v_1-v_5-v_4-v_3;$		
	$\{v_3, v_7\}: v_0-v_1-v_5-v_4-v_3, v_2-v_6-v_7;$	$\{v_4, v_5\}: v_0 - v_1 - v_5, v_2 - v_6 - v_7 - v_3 - v_4;$		
	$\{v_4, v_6\}: v_0-v_7-v_3-v_4, v_2-v_1-v_5-v_6;$	$\{v_4, v_7\}$: symmetric to $\{v_3, v_6\}$;		
	$\{v_5, v_6\}$: symmetric to $\{v_4, v_5\}$;	$\{v_5, v_7\}$: does not exist;		
	$\{v_6, v_7\}$: symmetric to $\{v_3, v_4\}$;			
{v ₀ , v ₃ }	$\{v_1, v_2\}$: v_0 - v_4 - v_5 - v_1 , v_3 - v_7 - v_6 - v_2 ;	$\{v_1, v_4\}$: v_0 - v_7 - v_6 - v_5 - v_4 , v_3 - v_2 - v_1 ;		
	$\{v_1, v_5\}: v_0-v_7-v_6-v_2-v_1, v_3-v_4-v_5;$	$\{v_1, v_6\}$: does not exist;		
	$\{v_1, v_7\}$: v_0 - v_7 , v_3 - v_4 - v_5 - v_6 - v_2 - v_1 ;	$\{v_2, v_4\}$: symmetric to $\{v_1, v_7\}$;		
	$\{v_2, v_5\}$: does not exist;	$\{v_2, v_6\}$: symmetric to $\{v_1, v_5\}$;		
	$\{v_2, v_7\}$: symmetric to $\{v_1, v_4\}$;	$\{v_4, v_5\}$: v_0 - v_4 , v_3 - v_7 - v_6 - v_2 - v_1 - v_5 ;		
	$\{v_4, v_6\}: v_0 - v_7 - v_6, v_3 - v_2 - v_1 - v_5 - v_4;$	$\{v_4, v_7\}: v_0 - v_4, v_3 - v_2 - v_1 - v_5 - v_6 - v_7;$		
	$\{v_5, v_6\}$: does not exist;	$\{v_5, v_7\}$: symmetric to $\{v_4, v_6\}$;		
	$\{v_6, v_7\}$: symmetric to $\{v_4, v_5\}$;			
{v ₀ , v ₄ }	$\{v_1, v_2\}: v_0-v_7-v_6-v_5-v_1, v_4-v_3-v_2;$	$\{v_1, v_3\}: v_0-v_7-v_3, v_4-v_5-v_6-v_2-v_1;$		
	$\{v_1, v_5\}$: v_0 - v_7 - v_6 - v_5 , v_4 - v_3 - v_2 - v_1 ;	$\{v_1, v_6\}: v_0-v_7-v_3-v_2-v_6, v_4-v_5-v_1;$		
	$\{v_1, v_7\}$: v_0 - v_1 , v_4 - v_5 - v_6 - v_2 - v_3 - v_7 ;	$\{v_2, v_3\}$: symmetric to $\{v_1, v_2\}$;		
	$\{v_2, v_5\}$: symmetric to $\{v_1, v_6\}$;	$\{v_2, v_6\}$: does not exist;		
	$\{v_2, v_7\}$: symmetric to $\{v_1, v_6\}$;	$\{v_3, v_5\}$: symmetric to $\{v_1, v_7\}$;		
	$\{v_3, v_6\}$: symmetric to $\{v_1, v_6\}$;	$\{v_3, v_7\}$: symmetric to $\{v_1, v_5\}$;		
	$\{v_5, v_6\}$: symmetric to $\{v_1, v_2\}$;	$\{v_5, v_7\}$: symmetric to $\{v_1, v_3\}$;		
	$\{v_6, v_7\}$: symmetric to $\{v_1, v_2\}$;			
	· -·			

Table 1 Disjoint covering paths P_1 and P_2 in G(8, 4) joining $\{s_1, s_2\}$ and $\{t_1, t_2\}$

edges (x, \bar{x}) and (y, \bar{y}) with $x, y \in V(G_0)$ satisfying (A1) G_0 has disjoint covering paths joining $\{s_1, s_2\}$ and $\{x, y\}$ and (A2) for some $z \neq \bar{x}, \bar{y}, G_1 \setminus z$ also has disjoint covering paths joining $\{t_1, t_2\}$ and $\{\bar{x}, \bar{y}\}$. Once we have such a pair of free edges, merging the disjoint covering paths in G_0 and the disjoint covering paths in $G_1 \setminus z$ with the pairs of free edges results in disjoint covering paths in $G_0 \oplus G_1 \setminus z$ joining $\{s_1, s_2\}$ and $\{t_1, t_2\}$. There are at least 4 free edges joining vertices in G_0 and vertices in G_1 , and thus there are at least $\binom{4}{2} = 6$ pairs of such edges. Among the 6 pairs, due to Lemma 5, at least 3 pairs satisfy the condition A1, and thus at least 2 pairs satisfy both conditions A1 and A2 by Lemma 4. Therefore, we have the lemma. \Box

Remark 2. Similar to the proof of Lemma 6, we can show that $G(8, 4) \oplus G(8, 4)$ has two disjoint covering paths joining every $\{s_1, s_2\}$ and $\{t_1, t_2\}$ with $\{s_1, s_2\} \cap \{t_1, t_2\} = \emptyset$.

Lemma 7. Every 4-dimensional restricted HL-graph $G(8, 4) \oplus G(8, 4)$ is 1-fault 5-panconnected.

Proof. Let G_0 and G_1 be graphs isomorphic to G(8, 4). By Theorem 1(c) and Corollary 1, it suffices to construct a path of every length 5 or more joining s and t in the case that there is one faulty element in G_0 and s and t are contained in G_1 . In G_1 , we have a path P_0 of length from 3 to 7 inclusive joining s and t by Lemma 3. It remains to construct a path P_1 of every length l_1 , $8 \le l_1 \le 15 - f_v$. Since $G_0 \setminus F_0$ has a hamiltonian cycle C_0 by Theorem 4, we have a path P' on C_0 of length every l', $1 \le l' \le 7 - f_v$, such that (i) letting x and y be the two endvertices of P', $\{s, t\} \cap \{\bar{x}, \bar{y}\} = \emptyset$ and (ii) there exist two disjoint covering paths in $G_1 \setminus z$ for some z joining $\{s, t\}$ and $\{\bar{x}, \bar{y}\}$. Then, P_1 can be constructed by merging P' and two disjoint covering paths in $G_1 \setminus z$ joining $\{s, t\}$ and $\{\bar{x}, \bar{y}\}$. The length l_1 of P_1 is in the range $8 \le l_1 \le 15 - f_v - 1$. A path of length $15 - f_v$ is a hamiltonian path, and its existence is due to Theorem 4. Thus, we have the lemma. \Box

Lemma 8. Every 5-dimensional restricted HL-graph $[G(8,4) \oplus G(8,4)] \oplus [G(8,4) \oplus G(8,4)]$ is 2-fault 7-panconnected.

Proof. The proof of the lemma is similar to that of Lemma 7. Let G_0 and G_1 be graphs isomorphic to $G(8, 4) \oplus G(8, 4)$. By Theorem 1(b) and Corollary 1, we assume that *s* and *t* are contained in G_1 and both \bar{s} and \bar{t} in G_0 are the faulty vertices. There exists a path P_0 in G_1 of every length l_0 , $5 \le l_0 \le 15$, joining *s* and *t* by Lemma 7. Since $G_0 \setminus F_0$ has a hamiltonian cycle C_0 , we can construct a path P' of every length l', $1 \le l' \le 13$. Letting *x* and *y* be the endvertices of P', we can obtain a path P_1 by merging P' and two disjoint covering paths in $G_1 \setminus z$ for some *z* joining $\{s, t\}$ and $\{\bar{x}, \bar{y}\}$ with edges (x, \bar{x}) and (y, \bar{y}) . The length l_1 of P_1 is in the range $16 \le l_1 \le 28$. A hamiltonian path of length 29 exists due to Theorem 4. This completes the proof. \Box

By an inductive argument utilizing Theorem 1(a) and Lemmas 3, 7 and 8, we have Theorem 5. Note that for $n = 2^m$, f = m - 3, and q = 2m - 3, it holds true that for any $m \ge 3$, $n = 2^m \ge f + 2q + 1 = 5m - 8$ and $q = 2m - 3 \ge 2f + 3 = 2m - 3$.

Theorem 5. Every m-dimensional restricted HL-graph, $m \ge 3$, is m - 3-fault 2m - 3-panconnected.

Corollary 2. Every m-dimensional restricted HL-graph, $m \ge 3$, is m - 3-fault hypohamiltonian-connected.

Remark 3. Let q_m^* be the minimum q_m such that every *m*-dimensional restricted HL-graph is m - 3-fault q_m -panconnected. An upper bound 2m - 3 on q_m^* is suggested by Theorem 5. The graph product $G(8, 4) \times Q_{m-3}$ of G(8, 4) and m - 3-dimensional hypercube Q_{m-3} , which is an *m*-dimensional restricted HL-graph, is not 0-fault *m*-panconnected (even though f = 0) since there does not exist a path of length *m* between the two vertices $(v_0, 00 \cdots 0)$ and $(v_0, 11 \cdots 1)$ of distance m - 3. Therefore, we have $m + 1 \le q_m^* \le 2m - 3$.

A graph G is called f-fault q-edge-pancyclic if for any faulty set F with $|F| \le f$, there exists a cycle of every length from q to $|V(G \setminus F)|$ that passes through an arbitrary fault-free edge. Of course, an f-fault q-panconnected graph is always f-fault q + 1-edge-pancyclic. From Theorem 5, we have the following.

Theorem 6. Every *m*-dimensional restricted HL-graph, $m \ge 3$, is m - 3-fault 2m - 2-edge-pancyclic.

3.2. Pancyclicity of restricted HL-graphs

To show that every *m*-dimensional restricted HL-graph is m - 2-fault almost pancyclic, due to Lemmas 1 and 2, we assume that the faulty set *F* contains m - 2 faulty vertices.

Lemma 9. The 3-dimensional restricted HL-graph G(8, 4) is 1-fault almost pancyclic.

Proof. We assume v_0 is faulty. Since G(8, 4) is 1-fault hamiltonian, it is sufficient to construct a cycle C_l of length l for every $4 \le l \le 6$. We have $C_4 = (v_1, v_5, v_6, v_2)$, $C_5 = (v_1, v_2, v_3, v_4, v_5)$, $C_6 = (v_1, v_2, v_3, v_7, v_6, v_5)$.

Lemma 10. Every 4-dimensional restricted HL-graph $G(8, 4) \oplus G(8, 4)$ is 2-fault almost pancyclic.

Proof. We let G_0 and G_1 be graphs isomorphic to G(8, 4). They are 0-fault hamiltonian-connected, 0-fault hypohamiltonian-connected, and 1-fault almost pancyclic by Lemmas 3 and 9. To show $G_0 \oplus G_1$ is 2-fault almost pancyclic, by Theorem 3(b), we assume that each G_i has one faulty vertex. G_0 has cycles of length 4 through 7, and $G_0 \oplus G_1$ has a hamiltonian cycle of length 14. To construct a cycle of length *l* for every $8 \le l \le 13$, we find a path P_0

s	$\frac{1}{t:P}$		
$s = v_1$	$v_2: v_1 - v_5 - v_6 - v_7 - v_3 - v_2;$	$v_3: v_1 - v_2 - v_6 - v_5 - v_4 - v_3;$	$v_4: v_1-v_5-v_6-v_2-v_3-v_4;$
	$v_5: v_1 - v_2 - v_3 - v_7 - v_6 - v_5;$	$v_6: v_1 - v_2 - v_3 - v_4 - v_5 - v_6;$	$v_7: v_1 - v_5 - v_6 - v_2 - v_3 - v_7;$
$s = v_2$	$v_3: v_2 - v_1 - v_5 - v_6 - v_7 - v_3;$	<i>v</i> ₄ : <i>v</i> ₂ - <i>v</i> ₃ - <i>v</i> ₇ - <i>v</i> ₆ - <i>v</i> ₅ - <i>v</i> ₄ ;	$v_5: v_2 - v_6 - v_7 - v_3 - v_4 - v_5;$
	v_6 : does not exist;	v_7 : symm. to (v_1, v_6) ;	
$s = v_3$	v_4 : does not exist;	$v_5: v_3 - v_7 - v_6 - v_2 - v_1 - v_5;$	v_6 : symm. to (v_2, v_5) ;
	v_7 : symm. to (v_1, v_5) ;		
$s = v_4$	v_5 : does not exist;	v_6 : symm. to (v_2, v_4) ;	v_7 : symm. to (v_1, v_4) ;
$s = v_5$	v_6 : symm. to (v_2, v_3) ;	v_7 : symm. to (v_1, v_3) ;	
$s = v_6$	v_7 : symm. to (v_1, v_2) ;		

Table 2 Hypohamiltonian path P in $G(8, 4) \setminus v_0$ between s and t

of length l - 7 in G_0 joining some pair of vertices x and y such that (B1) \bar{x} and \bar{y} are fault-free and (B2) there exists a hypohamiltonian path P_1 in $G_1 \setminus F_1$ between \bar{x} and \bar{y} . Then, P_0 and P_1 are merged with (x, \bar{x}) and (y, \bar{y}) to obtain a cycle of length l. To see the existence of such P_0 and P_1 , let C_0 be a hamiltonian cycle in $G_0 \setminus F_0$. On C_0 , there are 7 different paths of length l - 7. Among them, at least 5 satisfy the condition B1, and furthermore, by Lemma 11 given below, at least 2 also satisfy the condition B2. \Box

Lemma 11. Let G(8, 4) have one faulty vertex v_0 . There exists a hypohamiltonian path in $G(8, 4) \setminus v_0$ between every pair of vertices s and t provided $\{s, t\} \neq \{v_2, v_6\}, \{v_3, v_4\}, and \{v_4, v_5\}.$

Proof. The proof is enumerative. See Table 2. \Box

From Lemmas 9 and 10, Corollary 2, and Theorem 3(a), we have Theorem 7.

Theorem 7. Every *m*-dimensional restricted HL-graph, $m \ge 3$, is m - 2-fault almost pancyclic.

Corollary 3. (a) Twisted cube TQ_m , $m \ge 3$, is m - 2-fault almost pancyclic [29].

- (b) Crossed cube CQ_m , $m \ge 3$, is m 2-fault almost pancyclic [28].
- (c) Multiply twisted cube MQ_m , $m \ge 3$, is m 2-fault almost pancyclic.
- (d) Both 0-Möbius cube and 1-Möbius cube of dimension $m, m \ge 3$, are m 2-fault almost pancyclic [14].
- (e) The m-Mcube, $m \ge 3$, is m 2-fault almost pancyclic.
- (f) Generalized twisted cube GQ_m , $m \ge 3$, is m 2-fault almost pancyclic.
- (g) Locally twisted cube LTQ_m , $m \ge 3$, is m 2-fault almost pancyclic.
- (h) $G(2^m, 4)$, m odd and $m \ge 3$, is m 2-fault almost pancyclic [20].

We note that recursive circulant $G(2^m, 4)$ for an odd *m* is a restricted HL-graph although not every $G(2^m, 4)$ is a restricted HL-graph. One can check without difficulty that G(16, 4) is not isomorphic to $G(8, 4) \oplus_M G(8, 4)$ for any *M*, and even G(16, 4) does not have G(8, 4) as a subgraph.

4. Concluding remarks

In this paper, we studied the problems of how fault-panconnectivity and fault-pancyclicity of two graphs G_0 and G_1 are translated into fault-panconnectivity and fault-pancyclicity of $G_0 \oplus G_1$, respectively. It was proved that if G_0 and G_1 are f-fault q-panconnected and f + 1-fault hamiltonian (with additional conditions $n \ge f + 2q + 1$ and $q \ge 2f + 3$), then $G_0 \oplus G_1$ is f + 1-fault q + 2-panconnected for any $f \ge 2$, and that if G_0 and G_1 are f-fault hamiltonian-connected, f-fault hypohamiltonian-connected, and f + 1-fault almost pancyclic, then $G_0 \oplus G_1$ is f + 2-fault almost pancyclic for any $f \ge 1$. Applying these results to restricted HL-graphs, we concluded that every m-dimensional restricted HL-graph with $m \ge 3$ is m - 3-fault 2m - 3-panconnected and m - 2-fault almost pancyclic.

According to the constructions presented in this paper, we can design efficient algorithms for finding an *s*-*t* path and a fault-free cycle of specified length in a faulty restricted HL-graph. The work on almost pancyclicity of restricted HL-graphs with faulty elements is a generalization of some works on individual interconnection networks such

as crossed cubes [28], Möbius cubes [14], and twisted cubes [29]. As the authors know, no results on faultpanconnectivity and fault-edge-pancyclicity of interconnection networks appeared in the literature. It is worthwhile to investigate fault-panconnectivity and fault-edge-pancyclicity of individual interconnection networks such as recursive circulants, crossed cubes, twisted cubes, etc.

References

- [1] T. Araki, Edge-pancyclicity of recursive circulants, Inform. Proc. Lett. 88 (2003) 287-292.
- [2] T. Araki, Y. Shibata, Pancyclicity of recursive circulant graphs, Inform. Proc. Lett. 81 (2002) 187-190.
- [3] J.A. Bondy, U.S.R. Murty, Graph Theory with Applications, 5th printing, American Elsevier, 1976.
- [4] J.-M. Chang, J.-S. Yang, Y.-L. Wang, Y. Cheng, Panconnectivity, fault-tolerant hamiltonicity and hamiltonian-connectivity in alternating group graphs, Networks 44 (2004) 302–310.
- [5] F.B. Chedid, On the generalized twisted cube, Inform. Proc. Lett. 55 (1995) 49-52.
- [6] P. Cull, S. Larson, The Möbius cubes, in: Proc. of the 6th IEEE Distributed Memory Computing Conf., 1991, pp. 699-702.
- [7] K. Efe, A variation on the hypercube with lower diameter, IEEE Trans. Comput. 40 (11) (1991) 1312–1316.
- [8] K. Efe, The crossed cube architecture for parallel computation, IEEE Trans. Parallel Distributed Syst. 3 (5) (1992) 513–524.
- [9] A.-H. Esfahanian, L.M. Ni, B.E. Sagan, The twisted n-cube with application to multiprocessing, IEEE Trans. Comput. 40 (1) (1991) 88–93.
- [10] J. Fan, Hamilton-connectivity and cycle-embedding of the Möbius cubes, Inform. Proc. Lett. 82 (2002) 113-117.
- [11] J. Fan, X. Lin, X. Jia, R.W.H. Lau, Edge-pancyclicity of twisted cubes, in: Proc. of International Symposium on Algorithms and Computation ISAAC 2005, December 2005, pp. 1090–1099.
- [12] J. Fan, X. Lin, X. Jia, Node-pancyclicity and edge-pancyclicity of crossed cubes, Inform. Proc. Lett. 93 (2005) 133-138.
- [13] P.A.J. Hilbers, M.R.J. Koopman, J.L.A. van de Snepscheut, The Twisted Cube, in: J. Bakker, A. Nijman, P. Treleaven (Eds.), PARLE: Parallel Architectures and Languages Europe, in: Parallel Architectures, vol. I, Springer, 1987, pp. 152–159.
- [14] S.-Y. Hsieh, N.-W. Chang, Cycle embedding on the Möbius cube with both faulty nodes and faulty edges, in: Proc. of 11th International Conference on Parallel and Distributed Systems ICPADS 2005, 2005.
- [15] S. Latifi, N. Bagherzadeh, R.R. Gajjala, Fault-tolerant embedding of linear arrays and rings in the star graph, Comput. Elect. Eng. 23 (2) (1997) 95–107.
- [16] T. Li, Cycle embedding in star graphs with edge faults, Appl. Math. Comput. 167 (2005) 891–900.
- [17] M. Ma, J.-M. Xu, Panconnectivity of locally twisted cubes, Appl. Math. Lett. 19 (2006) 673-677.
- [18] J.P. McSorley, Counting structures in the Möbius ladder, Discrete Math. 184 (1-3) (1998) 137-164.
- [19] C.-D. Park, K.Y. Chwa, Hamiltonian properties on the class of hypercube-like networks, Inform. Proc. Lett. 91 (2004) 11–17.
- [20] J.-H. Park, Cycle embedding of faulty recursive circulants, J. KISS 31 (2) (2004) 86–94 (in Korean).
- [21] J.-H. Park, K.Y. Chwa, Recursive circulants and their embeddings among hypercubes, Theoret. Comput. Sci. 244 (2000) 35-62.
- [22] J.-H. Park, H.-C. Kim, H.-S. Lim, Fault-hamiltonicity of hypercube-like interconnection networks, in: Proc. of IEEE International Parallel and Distributed Processing Symposium IPDPS 2005, Denver, Apr. 2005.
- [23] J.-H. Park, H.-C. Kim, H.-S. Lim, Many-to-many disjoint path covers in hypercube-like interconnection networks with faulty elements, IEEE Trans. Parallel Distributed Syst. 17 (3) (2006) 227–240.
- [24] A. Sengupta, On ring embedding in hypercubes with faulty nodes and links, Inform. Proc. Lett. 68 (1998) 207–214.
- [25] N.K. Singhvi, K. Ghose, The Mcube: A symmetrical cube based network with twisted links, in: Proc. of the 9th IEEE Int. Parallel Processing Symposium IPPS 1995, 1995, pp. 11–16.
- [26] A.S. Vaidya, P.S.N. Rao, S.R. Shankar, A class of hypercube-like networks, in: Proc. of the 5th IEEE Symposium on Parallel and Distributed Processing SPDP 1993, December 1993, pp. 800–803.
- [27] X. Yang, D.J. Evans, G.M. Megson, The locally twisted cubes, Int. J. Comput. Math. 82 (4) (2005) 401-413.
- [28] M.-C. Yang, T.-K. Li, J.J.M. Tan, L.-H. Hsu, Fault-tolerant cycle-embedding of crossed cubes, Inform. Proc. Lett. 88 (2003) 149–154.
- [29] M.-C. Yang, T.-K. Li, J.J.M. Tan, L.-H. Hsu, On embedding cycles into faulty twisted cubes, Inform. Sci. 176 (2006) 676–690.