
What is the probability of a chance prediction of a protein
structure with an rmsd of 6 Å?
Boris A Reva1*, Alexei V Finkelstein2 and Jeffrey Skolnick3

Background: The root mean square deviation (rmsd) between corresponding
atoms of two protein chains is a commonly used measure of similarity between
two protein structures. The smaller the rmsd is between two structures, the
more similar are these two structures. In protein structure prediction, one needs
the rmsd between predicted and experimental structures for which a prediction
can be considered to be successful. Success is obvious only when the rmsd is
as small as that for closely homologous proteins (< 3 Å). To estimate the quality
of the prediction in the more general case, one has to compare the native
structure not only with the predicted one but also with randomly chosen
protein-like folds. One can ask: how many such structures must be considered
to find a structure with a given rmsd from the native structure?

Results: We calculated the rmsd values between native structures of
142 proteins and all compact structures obtained in the threading of these
protein chains over 364 non-homologous structures. The rmsd distributions
have a Gaussian form, with the average rmsd approximately proportional to the
radius of gyration.

Conclusions: We estimated the number of protein-like structures required to
obtain a structure within an rmsd of 6 Å to be 104–105 for chains of 60–80
residues and 1011–1012 structures for chains of 160–200 residues. The
probability of obtaining a 6 Å rmsd by chance is so remote that when such
structures are obtained from a prediction algorithm, it should be considered
quite successful.

Introduction
Protein structure prediction is the focus of interest of many
research groups. Indicative of this interest is the special
CASP conference [1] for objective testing of different pre-
diction methods. The comparison of predicted and experi-
mentally resolved structures is usually done by calculating
the root mean square deviation (rmsd) between the pre-
dicted and the experimental structures (see Equation 8 in
the Materials and methods section). The rmsd value gives
the average deviation between the corresponding atoms of
two proteins: the smaller the rmsd, the more similar the
two structures. Efficient algorithms have been developed
to find the best orientation of two structures that gives the
minimal possible rmsd [2,3].

A common question in protein structure prediction is what
rmsd value between predicted and experimentally deter-
mined structures can be considered a successful prediction
and what value indicates a failure? Success is obvious when
the rmsd is small (< 3 Å; a typical rmsd for homologous pro-
teins [4]). When the rmsd is ~6 Å, however, as frequently
reported [5–7], there is serious doubt as to whether one can
consider such a result a prediction at all. It is also clear [8,9]
that when one uses rmsd as a measure of similarity between

structures, one needs to take into account the length of the
protein chain: an rmsd of 3 Å between two tripeptides indi-
cates that their structures are different, whereas the same
rmsd for two 100-residue chains indicates that their struc-
tures are similar. To obtain a more objective estimate of
the significance of a given rmsd between two structures,
one could compare it to the rmsd values typical of random
structures of the same size and compactness.

In their early work, Cohen and Sternberg [8] compared the
rmsd between 12 native protein structures and the random
compact-chain structures. They showed that the rmsd of a
protein from a random compact structure is proportional to
R, the radius of the protein (but further considered a linear,
with respect to the number of residues, approximation of
the rmsd values). 

Maiorov and Crippen [9] suggested that globular structures
are “intrinsically similar if their rmsd is smaller than that
when one of them is mirror inverted”. They have shown
that the minimal rmsd with the mirror-inverted structure is
proportional to N1/3 (where N is the number of residues in
the chain) and that ~1% of pairs of compared equal size
protein fragments have an rmsd below this minimal rmsd.
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The above works do not, however, answer the general
question of how to estimate the significance of a given rmsd
between two protein folds of a given size (e.g. between a
true protein structure and its computed model).

Here, we studied the rmsd distributions for 142 proteins
using threading to generate a representative set of protein-
like alternative structures. The average rmsd between
pairs of randomly chosen compact folds is close to their
mean radii of gyration (Rg) and the average rmsd scales
directly as N1/3 (cf. [8,9]). At the same time, the rmsd dis-
persion is found to be virtually independent of chain
length. We investigated the shapes of the obtained rmsd
distributions and show that they are rather close to Gauss-
ian form. The normal distribution is further applied to
estimate the number of randomly chosen protein-like
structures that have to be generated to find one within a
given rmsd from a given protein fold. The result is that
the probability of finding a structure with a 6 Å rmsd from
a given fold is 10–5 for a 70-residue chain and 10–12 for a
180-residue chain, and for 3 Å rmsd the probabilities are
10–7 and 10–17, respectively.

Results and discussion
Generation of alternative structures by gapless threading 
To obtain a desirable rmsd distribution for a given protein,
it is necessary to have a sufficiently large number of alter-
native structures that preserve the characteristic features
of the protein structure, such as layer organization, sec-
ondary structure, and compactness. Ideally, such a set of
alternative structures should consist of true native struc-
tures of globular proteins. Unfortunately, there are not
enough known structures of globular proteins to ensure
the statistics necessary for the derivation of distributions.
One possible way of overcoming this difficulty is to gener-
ate artificial random-walk structures, as was done in [8]. In
this case, however, one loses such important protein fea-
tures as the layer organization and the secondary structure.
There is no algorithm available today that would generate
truly random protein-like structures. 

In this study, we generate a set of alternative protein-like
structures using an approach resembling the gapless thread-
ing method of Hendlich et al. [10]. The alternative struc-
tures are obtained as continuous, equal-length backbone
fragments taken from non-homologous proteins. No gaps or
insertions are allowed; thus, a probe chain of N residues can
be threaded onto a protein molecule of M residues (M ≥ N)
in M – N + 1 different ways. Not all the possible structures
generated by such a procedure can be counted into the
statistics of ‘protein-like structures’, however. First, the
extracted protein fragments must be approximately as com-
pact as the considered protein. Second, the subsequent
structures obtained by threading with the shift of a few
residues along the chain will be essentially the same, having
a small rmsd between them. In practice, we find (Table 1)

that a 10-residue shift between two subsequent threadings
is sufficient to produce essentially different structures as
assessed by their rmsd.

Thus, we assume that the fragments of proteins used in this
study as ‘protein-like structures’ preserve the most impor-
tant features of true proteins that will result in unbiased
rmsd statistics. This assumption will be tested.

Distribution of rmsd
Distributions of rmsd values for 142 protein chains obtained
by the threading procedure are presented in Figure 1. For
two randomly chosen folds of equal size the rmsd values
are plotted versus N1/3 because one can expect that the
distance between corresponding residues is, on average,
proportional to the radius of the globule, that is to N1/3 [8,9].

The least square approximation of the mean rmsd values
for R is given by the power law:

(1)

which gives a = 3.416 and p = 0.3279. The obtained value
of p is indeed very close to 1/3. The best fit of the mean
〈R〉 data to the N1/3 scaling law gives:

(2)

with practically the same accuracy as the best power law
(Equation 1).

〈 〉 ≅R 3.333Nfit
1/3

〈 〉 ≅R aNp
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Table 1

The rmsd for protein fragments depending on their shift along
the chain.*

Protein

1kpt
1ptx chain A 2phy 1lba 1rmi 1gky

Shift N = 64 N = 105 N = 125 N = 146 N = 160 N = 186

1 3.64 3.77 3.78 3.77 3.77 3.81
2 5.74 6.12 6.07 6.01 5.52 5.86
3 7.54 7.97 7.89 7.73 6.02 7.22
4 9.16 9.78 9.61 9.33 7.36 8.87
5 10.42 11.46 11.34 10.83 9.33 10.67
6 11.06 12.73 12.83 11.97 10.60 12.06
7 11.04 13.65 13.99 12.69 11.54 13.18
8 10.50 14.44 14.88 13.07 12.92 14.33
9 9.90 14.86 15.42 13.18 14.33 15.29

10 9.55 14.77 15.09 13.18 15.31 16.02
11 9.56 14.34 14.73 13.15 16.26 16.56
12 9.92 13.82 14.54 13.09 17.36 16.97

Minimum† 7.69 9.44 11.11 10.70 12.02 12.57
Average 11.85 14.54 15.41 16.17 18.32 18.40
Maximum 15.00 17.39 18.55 20.07 21.88 23.03

*The rmsd is calculated between fragments (13, N) and
(13 – S, N – S), where S is a shift and N is a sequence length.
†Minimum, average and maximum rmsd values for each protein found in
the total statistics are given for comparison.



Figure 2 demonstrates that the average rmsd values are
close to Rg values for the corresponding structures: the
proportionality coefficient is close to 1, and the correlation
coefficient is 0.84. The standard deviations (sd) of the
rmsd distributions are given in Figure 3. One can see a sig-
nificant dispersion of the sd values for proteins of equal
size and practically no dependence on the residue number
N (see legend to Figure 3). To see if there is a difference
between rmsd distributions obtained with protein frag-
ments and with true whole protein structures (because
one could suspect that compact fragments of larger pro-
teins have a construction different from that of small pro-
teins), we especially considered the rmsd distributions
obtained by the comparison of equal size proteins. The
values of 〈R〉 ≈ 3.31N1/3 and sd ≈ 1.5 ± 0.7 found in this
test are in good agreement with those presented in
Figures 1 and 2. These results show that 〈R〉 ∝ N1/3,
whereas sd depends on the structure of a protein molecule
rather than on its size. Approximately, the sd can be esti-
mated to be 1.5 ± 0.4 Å. Taking into account both the
deviations of the 〈R〉 values from the mean 〈Rfit〉 values

and their dispersions sd, one can estimate that most of the
rmsd values for an N-residue protein fall in the interval:

(3)

It is noteworthy that 〈R〉 ≈ 3.333N1/3 and sd ≈ 2.0 scale
differently with protein size and this prevents a universal
scaling of rmsd distributions (cf. [11]).

Typical examples of the rmsd distributions are given in
Figure 4. The distribution of Figure 4a is very well approxi-
mated by the normal law according to the χ2 analysis
(χ2 = 0.77). Figure 4b is an example of one of the greatest
observed deviations of the rmsd distribution from the nor-
mal law, according to the χ2 criterion (χ2 = 6.93 >> 1). Even
in this case, however, a close similarity of the observed rmsd
distribution and of its normal approximation is evident.

The most interesting region of the rmsd distribution is
the one in which the rmsd is small. We therefore tried to
find the best approximation to the ‘left side’ of the distri-
bution (i.e. the region where the rmsd is less than the
average value for a given protein). We tested four plausi-
ble expected statistical laws described in the Materials
and methods section (Equations 11–14) and varied their
parameters to achieve the minimal χ2 value for each of
the proteins. Figure 5 shows typical examples of such
best fitted approximations.

In a conventional χ2 test, all the observed values n(0) (see
Equation 9) are treated as independent. In this study, we

3.333N 2.0 R 3.333N 2.01/ 3 1/ 3− ≤ ≤ +
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Figure 1

The rmsd distributions for 142 protein chains. For each chain, the rmsd
distribution is obtained from comparison of its native structure with the
native structure of ~2500 alternative folds taken from the protein data-
base (see the text for more details). The mean rmsd value 〈R〉 for each
chain is marked by a filled square. A thin vertical line passing through
the square presents the central part of the distribution; the dotted
continuations of the thin line embrace 2.5% of the highest and 2.5% of
the lowest rmsd values. The distributions are arranged in progression
of increasing N, the number of chain residues. The abscissa is scaled
as N1/3, in accordance with the expected dependence of 〈R〉 on N. The
thick line presents the theoretical estimate 〈R〉 = 3.333N1/3, the
proportionality coefficient 3.333 being obtained from the least square
fit. The dotted curve (almost completely overlapped with the thick
inclined line) presents the best power law approximation 〈R〉 =
3.416N0.3279, where both the coefficient 3.416 and the index 0.3279
are obtained from the least square fit. The correlation coefficient is
0.72 in both cases. The thin lines show how many protein-like
structures one must attempt to have a given rmsd from a protein
structure of a given size estimated according to Equations 3 and 4; the
lines correspond to 102, 104, 106, 108 and 1016 such structures.

0

5

10

15

20

25

30

35

50 100 150 200

102

104

106

108

1016

N

rm
sd

Folding & Design

Figure 2

The mean rmsd values, 〈R〉, versus the radii of gyration, Rg, for 142
tested proteins. The correlation coefficient is 0.84 and the thin dotted
line corresponds to 〈R〉 = Rg.
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cannot guarantee such an independence because there
can still remain some traces of related structures among
the proteins used as threading targets. The obtained χ2

values can therefore be greater than those for absolutely
independent threadings. Thus, these χ2 estimates have a
relative sense (they tell which ‘expected’ distribution fits
better and which fits worse to the observed rmsd distribu-
tion), but not an absolute one (in this case, χ2 > 1 values do
not prove that the tested theoretical distribution does not
fit to the real one).

Table 2 gives averaged results of approximations of the
experimental rmsd distributions observed for individual
proteins by different statistical distributions.

The normal distribution fits the experimental data better
than the others (although not ideally: χ2 = 2.78 > 1). The
‘gamma’ distribution is somewhat worse, and the ‘stick’
and ‘blob’ distributions show a significantly greater devia-
tion from the experimental data. The last result is a sur-
prise for us because the normal distribution does not
converge to zero when the rmsd converges to zero, whereas
the ‘gamma’, ‘stick’ and ‘blob’ distributions were used
because they converge to zero when the rmsd does.

Although the normal law is not accurate at very small rmsd
values, it gives a reasonable approximation of the observed

low rmsd region (Figure 5), and one can use it to extrapolate
the observed rmsd distributions to reach the ‘moderately
small’ rmsd values in the range of 3–4 Å. We therefore
used the normal law to estimate the number of protein-
like structures required to find one structure within a
given rmsd threshold. This number can be estimated
easily as [9]:

(4)

If Equation 3 is applied to individual proteins, the num-
bers NR (the number of protein-like structures) are rather

( )
( )( )

N
(sd) 2

exp x R 2(sd) x

R

2 2
R=

− −
− ∞
∫

π

/ d
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Figure 4

Histograms of rmsd distributions approximated by the normal law.
(a) A molecule of lectin (PDB code: 1jpc), 108 residues. 3924 rmsd
values form the histogram; the average rmsd is 15.4 Å, sd = 1.28 Å,
the χ2 value is 0.77. (b) Ribonuclease A (PDB code: 7rsa),
124 residues. 3472 rmsd values form the histogram; the average rmsd
is 16.8 Å, sd = 1.37 Å, the χ2 value is 6.93.
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Figure 3

Standard deviation (sd) values for all the 142 rmsd distributions shown
in Figure 1. The least square fit gives sd = 1.1278N0.05201, a nearly
straight line with a correlation coefficient of only 0.046.

50 100 150 200
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

N

sd

Folding & Design



different, mainly because of a great dispersion in the sd
values (Figure 3); NR is considerably smaller (by a few
orders of magnitude) for the proteins with a large sd
(especially if they have a small 〈R〉) than for other proteins.

To get an average estimate of NR, we used the averaged
estimates of 〈R〉 and sd given in Equation 3: 〈R〉 = 3.333N1/3

and sd = 2.0 Å. The lines corresponding to NR, equal to 102,
104, 106, 108 and 1016, are presented in Figure 1. The line
NR = 102 is rather close to the 1% similarity level line from
[9]. Figure 1 shows that the numbers NR increase very
quickly with increasing the chain length and with decreas-
ing the rmsd threshold. We see in Figure 1 that almost

every protein has rmsd points in the range NR = 102–104 (as
must be so because we have ~2500 points per protein and
102 < 2500 < 104); only eight out of 142 proteins have rmsd
points at NR > 104; and no protein has rmsd points in the
range where NR > 106.

Although Figure 1 gives a rather approximate average esti-
mate (the numbers for different proteins can differ signifi-
cantly), one can certainly conclude that protein structure
prediction for these chains of 60 or more residues with an
rmsd of 5–6 Å is practically impossible by chance. Hence,
such a prediction should be considered a successful one.
Figure 1 also shows that some equal size proteins (with
small 〈R〉 and large sd) are easier to ‘predict by chance’
with a lower rmsd than the others. A further analysis is
needed to show which features of protein structures are
responsible for such relatively low rmsd values.

Conclusions
In this work, we examined the distribution of rmsd values
between the native and the protein-like structures of equal
compactness that were produced by a threading approach.
We found that the observed medians of rmsd distributions
satisfy a simple relationship, rmsd ~ N1/3, whereas standard
deviations do not depend on the chain lengths. The nor-
mal distribution gives a reasonable approximation to the
observed rmsd distribution. Using the normal distribution,
we estimated a probability of protein structure prediction
within a given accuracy by chance (see threshold lines in
Figure 1) and showed, in particular, that this probability is
negligible for an rmsd of 6 Å. The thresholds shown in
Figure 1 can also help to estimate a priori what protein-
structure prediction accuracy one can expect with a given
type of (quasi) energetic parameters used in a prediction.
To this end, one has to find the Z score for the native-
protein fold with these parameters (e.g. using a gapless
threading), calculate the number of folds corresponding to
this Z score as:

(5)

and find the rmsd point that corresponds to this NZ (and
the given chain length) in Figure 1.

( )
( )N

2

z 2 z

~ exp Z 2Z

2

Z
2=

−

−

−∞
∫

π

exp /

/

d
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Figure 5

Histograms (shown by stepping line) of rmsd distributions in regions of
small rmsd values for (a) lectin and (b) ribonuclease A and their best
approximations by the normal law; the gamma distribution; the ‘stick’
distribution; and the ‘blob’ distribution. The plots are presented on a
logarithmic scale to emphasize the sparsely populated region of low
rmsd values. The χ2 values for the corresponding distributions are
0.75, 1.09, 1.51 and 2.23 for lectin and 3.75, 5.22, 7.55 and 10.07 for
ribonuclease A.
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(a)

(b)

Normal law
Gamma distribution

Stick distribution
Blob distribution

Table 2

Average χc2 values for four distribution laws used to
approximate observed rmsd statistics for 142 proteins.*

Normal Gamma Stick Blob
(Equation 11) (Equation 12) (Equation 13) (Equation 14)

2.78 (2.38) 3.52 (3.57) 4.69 (5.15) 6.32 (7.22)

*Standard deviations are given in parentheses. These values are large
because χ2 values for some proteins are ~10 for normal distribution
and as large as 54 for blob distribution.



Materials and methods
Preparation of the database
Protein structures used in threading were taken from the 25% similarity
list [12]. Any pair of proteins in this list has a similarity of < 25%
according to the Smith and Watermann [13] gap-allowing sequence
alignment (open gap penalty 3.0, gap elongation penalty 0.05). From
the Hobohm et al. [12] list of October 1997, our database consists of
377 proteins having no chain breaks, with a resolution better than
2.5 Å and an R factor < 0.2.

In this database, there are 155 proteins of 200 residues or less. Each
of them was threaded onto the greater protein structures of the data-
base. When we used a 10-residue shift between two subsequent
threadings (see above) and selected only the compact structures (see
below), the threading gave from 1500–5000 alternative folds per
protein tested.

To select an unbiased set of protein structures, we determined all the
cases of low rmsd between structural pairs. Each of these pairs was
analyzed with SCOP [14] to determine if the proteins of the pair
belonged to the same protein superfamily. In 22 out of 27 of the low
rmsd cases, we found that both proteins belonged to the same super-
families. (In one pair, both proteins belonged to a bacterial pathogens
superfamily; for the other 21 pairs, the proteins belonged to the globin-
like superfamily.) For three out of the five other low rmsd pairs, the pro-
teins belonged to different superfamilies, and for the final two pairs,
SCOP did not classify the proteins. When this analysis was applied to
the protein pairs with an rmsd of 8–9 Å, one more pair of homologous
proteins (superfamily EF hand) was found. Two more pairs (superfami-
lies ConA-like and Lipocalins) were found within an rmsd range of
9–10 Å. Thus, 13 protein chains belonging to the abovementioned
superfamilies (1tiiD, 1eca, 3sdhA, 1babB, 2fal, 1ash, 2hbg, 1mbd,
2gdm, 1cpcA, 1sltB, 1mup and 2scpA; a capital letter after the PDB
code identifies the chain in the protein molecule), were chosen as the
shortest among the homologous pairs and were removed from the data-
base of 377 proteins. The resulting database includes 364 proteins,
142 of which are 60–200 residues in length.

Selection of the compact structures
In threading, to maintain the same level of compactness of the alterna-
tive structures as that of the original structure, we chose only those
structures whose Rg did not exceed 1.2 times the native value. Rg is
calculated as:

(6)

where {ri}, i = 1, ..., N is a set of coordinate vectors for the Cα atoms of
the mainchain of the molecule N residues in length, and:

(7)

are three-dimensional coordinates of the center of mass of the molecule.

Comparison of the native and alternative structures
We consider two folds of protein chains with the same number of
residues, N. The rmsd value between the structures is defined as

(8)

where we trace the structures through the corresponding sets {ri} and
{ri′} of the three-dimensional coordinates for the Cα atoms of the two
molecules. The value of rmsd as defined by Equation 8 depends on the
mutual position and orientation of two proteins. We used our FITT
program [15], based on the algorithm of Lesk [3], which guarantees
that the minimal possible rmsd is very quickly and precisely found.

Estimating the quality of approximation of rmsd distribution
The χ2 value is the usual measure of deviation between an observed
statistic and the expected one [16]. To compute this quantity, we
divide an rmsd distribution into bins and calculate the observed and
expected bin populations. The χ2 value for protein p is computed as:

(9)

where n(0)
p,k and n(e)

p,k are the observed and expected populations, respec-
tively, of rmsd values in bin k for protein p; K is the number of bins taken
into account and M is the number of degrees of freedom. In this study,
M = K – 3 because the total population, mean rmsd value and dispersion
of the expected statistics are adjusted to the observed values.

The averaged (over all the 142 examined proteins) χ2 value is:

(10)

When χ2 ≤ 1, the experimental data can be treated as confirming the
expected statistics [16]. When χ2 > 1, the experimental statistics
deviate from the expected one, and this deviation grows with χ2.

Because the small rmsd region is of major interest, we took the interval
(0,〈Rp〉), where 〈Rp〉 is the average rmsd between protein p and the
alternative folds and divided it into 10 bins: (0,rp), (rp,rp + δ),
(r + δ,rp + 2δ), ..., (rp+ 8δ, 〈Rp〉). Here rp is the tenth lowest rmsd value
and δ = (〈Rp〉 rp)/9 is the bin width. Taking the entire rmsd region into
account (not just the left-hand side), the δ-wide bins (〈Rp〉,〈Rp〉 + δ),
etc., are extended to the right-hand side of the rmsd distribution until
the first δ-wide bin containing < 10 observed rmsd values is found; this
bin is then extended to infinity to comprise all remaining rmsd values.

Statistical laws for fitting of rmsd distribution
We explore four probable statistical distributions to choose the one
that best fits the observed data. First, we consider the normal or
Gaussian distribution:

(11)

where 〈R〉 and sd are the mean and the standard deviation, respec-
tively, for the distribution. The rmsd distribution must converge to zero
when R turns to zero, however, and the normal distribution does not.
We therefore tried a few other plausible distributions that converge to
zero with R.

The first distribution:

(12)

where m ≥ 1, results from a product of m independent normal distribu-
tions centered in r = 0 over the coordinates r1, ..., rm; Pg(R) and
describes the probability of having a given R = (r1

2 + ... + rm2)1/2 value;
it is related to the gamma function [17].

The distributions:

(13)

(14)

come from consideration of a polymer, each link of which is within a
distance R from the corresponding link of another randomly folded
chain. The deviations are penalized by the term exp(–BR2). The entropy
difference between the confined polymer and its random coil is
Sconf – Sc = α/nR, where nR is the number of residues per ‘blob’
(chain region with a characteristic radius R) and α is a conformationally
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independent coefficient proportional to the number of residues in the
chain [18,19]. Usually, the blobs are treated as Gaussian coils, giving
nR ~ R2. Because the probability is the exponential of the entropy,
Equation 13 describes a probability of rmsd ~ R for a Gaussian ‘blob’
model. When R is comparable to the distance between adjacent chain
residues, however, the Gaussian model of a ‘blob’ must be very rough
and a ‘stick’ model where nR ~ R must be better; Equation 13
describes the probability of rmsd ~ R for this ‘stick’ model.
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