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In this paper, we establish necessary optimality conditions for a static minmax
programming problem of the form:

minmax ¢(x, y) subjectto g(x) <0,
yeY

in terms of the right derivatives of the functions with respect to the same arc.
Various theorems giving sufficient optimality conditions are proved. A Mond-Weir
type dual is proposed and duality results are established under arcwise connected-
ness and generalized arcwise connectedness assumptions.  © 1999 Academic Press

1. INTRODUCTION

Schmitendorf [14] generalized Gordan’s theorem of alternatives [12] and
used it to derive necessary optimality conditions for the following static
minmax problem:

(P) Minimize f(x)
subjecttog;(x) < 0,1 <j <m,
xeX,
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where

f(x) = supd(x,y)
yeY
and Y is a compact subset of R”, ¢ is a real-valued function defined on
X X Y and ¢(x,-) continuous on Y for every x € X.

Minmax problems of this type were investigated by Bram [4] and
Danskin [6, 7]. These authors obtained the necessary optimality conditions
in the form of Lagrange multiplier rule which was an inequality. However,
the necessary optimality conditions obtained by Schmitendorf [14] were
different from those presented in [4, 6, 7]. He obtained a Lagrange
multiplier rule that was an equality rather than an inequality. Later,
Tanimoto [16] formulated two duals to problem (P) and established various
duality results under convexity assumptions.

Subsequently, necessary and sufficient optimality criteria similar to the
well-known Fritz—John and Karush—Kuhn-Tucker optimality criteria of
nonlinear programming were presented for various minmax problems in [2,
3,5, 8,9, 17] under different setups, and duality results were also studied.
In all the above mentioned references the authors worked under differen-
tiability assumptions.

Avriel and Zang [1] defined the right derivative of a real-valued function
with respect to a continuous vector-valued function called an arc. Making
use of arcwise connected set, as defined by Ortega and Rheinboldt [13],
they extended the concept of convex functions to arcwise connected
functions and generalized arcwise connected functions on an arcwise
connected set. Some properties of these functions were also investigated
by Singh [15].

In this paper, we obtain necessary optimality conditions for a static
minmax programming problem (P) in terms of the right derivative of the
functions involved with respect to the same arc. In doing so, we invoke the
alternative theorem for the system of inequalities involving nonconvex
functions in an infinite dimensional space as established by Jeyakumar and
Gwinner [10]. Various theorems giving sufficient optimality conditions are
proved. A Mond-Weir type dual is presented and duality results are
developed under arcwise connectedness and generalized arcwise connect-
edness assumptions on the functions involved.

2. PRELIMINARIES

For a nonempty set Q in a topological vector space E,Q denote the
closure of Q and

Q* ={v e E*:0(q) 20,Yq € Q)
denotes the dual cone of Q, where E* is the dual space of E.
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For some nonempty set Y, let R = 7, R denote the product space in a
product topology. Then the topological dual space of RY is the generalized
finite sequence space consisting of all the functions u:Y — R with finite
support [11]. The set RY = 7, R, denotes the convex cone of all nonneg-
ative functions on Y. Then (RY)* = A={x=(1),.,:3 a finite set
Y, C Y such that A, =0,Vy € Y\ Y, and A, > 0, Vy € Y}.

DerFinITION 2.1 [1]. A set X ¢ R” is said to be an arcwise connected
(AC) set if for every pair of points x!, x> € X, there exists a continuous
vector-valued function H,. ..:[0,1] — X, called an arc, such that

Hxl,xz(o) =Xl, Hxl,xz(l) =x2.
DerFINITION 2.2 [1]. Let ¢: X — R, where X € R” is an AC set. Then
the function ¢ is called

(a) arcwise connected (CN) function if for every x!, x? € X, there
exists an arc H,: .. in X such that

e(Ha 2(0)) < (1— 0)g(x') + b(x?),  Voe[0,1].

(b) O-connected (QCN) function if for every x!, x? € X, there exists
an arc H. .. in X such that

e(x') < o(x?) = ¢(H, 2(0)) < o(x'), VoE][0,1].

(c) P-connected (PCN) function if for every x!, x? € X, there exist an
arc H,: .. in X and a positive number B,: . such that ¢(x?) < ¢(x') =
gD(Hx{xz(e)) =< (p(xl) — eﬁxl,x27 Vo (0, 1)

(d) Strictly P-connected (STPCN) function if for every x!, x? € X,
there exist an arc H,: . in X and a positive number S,: .. such that
o(x%) < ¢(x), xt # 17

= o(Hu ,2(0)) < o(x') — 0B, 2, VO (0,1).

DerFINITION 2.3 [1]. Let ¢: X — R, where X c R" is an AC set. Let
x', x> € X and H,: . be the arc connecting x' and x? in X. The function
¢ is said to possess a right derivative, denoted by ¢*(H,: ,2(0)), with
respect to an arc H. ,» at 6 =0 if

i £(He2(0)) — o(x")
00+ 0

exists. In that case

o(Hp :(0)) = o(x*) + 0p" (Ho 2(0)) + 0a(0),  (2)
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where 6 € [0,1] and « :[0, 1] — R satisfies
lim 0) =0
00+ «(6)
The following theorem is an easy consequence of the above definitions.

THEOREM 2.1. Let ¢: X — R, where X C R" is an AC set. Then
(@l) ¢ is a CN function if for every x*, x? € X,

e(x%) — ¢(x') = " (H,,,2(0))
(bl) ¢ is a QCN function if for every x*, x? € X,
o(x?) < o(x') = ¢*(H,z 2(0)) < 0.
(c1) ¢ is a PCN function if for every x*, x*> € X,
¢"(Hy 2(0) 2 0= o(x?) = o(x1).
(d1) ¢ is a STPCN function if for every x*, x* € X,
¢ (He 2(0)) 2 0= o(x?) > o(x).

DEFINITION 2.4 [10]. Let ¢: X > Rand G: X XY — R, where X and
Y are arbitrary sets. The pair (¢, G) is called convexlike on X if for every
x!, x? € X there exist x> € X and 6 € (0, 1) such that

e(x%) = (1= 0)e(x!) + Op(x?)
and  G(x°,y) < (1—-0)G(x' y) + 0G(x? y),Vy €Y.
THEOREM 2.2 [10]. Let ¢ X > R and G: X XY > R, where X and Y
are arbitrary nonempty sets. Let the pair (¢, G) be convexlike on X. Assume

that for some neighborhood U of *0" in RY and a constant v > 0, the set
Qo N Ux(product)(—, v] is a nonempty closed subset of RY X R, where

Qo = {(u,r):3x € Xsuch that ¢(x) <r,G(x,y) <u(y),Vy €Y}

Then exactly one of the following systems is solvable:

M) o(x) <0,G(x,y) <0,VyeY (2.2a)
(D) Ve> 0,30 # (A p) € A X R, such that
n(e(x) + &) + X AG(x,y) >0 (2.2b)

yeY
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Remark 2.1. 1f system (11) is solvable, then we have

ple(x) +e)+ Y AG(x,y) > 0.
yeY

Letting ¢ — 0+, we get

pe(x) + X A,G(x,y) 2 0. (2.3)

Moreover, A, € A; therefore, there exists a finite set Y, C Y such that

A, =0  VyeY\Y,, (2.4a)
A, 20 Vyey, (2.4b)

(2.3) together with (2.4a) and (2.4b) yield that there exist an integer « > 0
and vectors y' €Y, 1 <i < a, such that

pe(x) + 2 AG(x,y') = 0.
i=1

To obtain the necessary conditions, we need the following conclusion of
Theorem 2.2.

THEOREM 2.3.  Let all the conditions of Theorem 2.2 hold. Then exactly
one of the following systems is solvable
(M) ¢(x) <0,G(x,y) £0,VyeY

(D) 3 an integer & > 0, scalars ; 20,1 <i < «, p = 0 and vectors
y'eY, 1<ix<a,suchthat (Ay,..., A, n) # 0 and

pe(x) + X AG(x,y') 20
i=1

3. NECESSARY OPTIMALITY CONDITIONS

In order to obtain the necessary optimality conditions for the minmax
problem (P), we assume the following
(A-1) X is an open AC subset of R”.

(A-2) The right derivative of the functions ¢(-,y) and g(-) with
respect to an arc H,. .- at 6 = 0 exist Vx', x> € X, Vy € Y.

(A-3) " (H, 2(0),-) is continuous on Y, Vx', x? € X.
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For x € X, we define
I(x) = {j:g;(x) = 0}
J(x) ={1,2,....m}\I(x)
Y(x) = {y € Y:¢(x,y) = supb(x.2)

zeY

In view of the continuity of ¢(x, ) on Y and compactness of Y, it is
clear that Y(x) is nonempty compact subset of Y,Vx € X.

LEMMA 3.1. Let x* be a solution of minmax problem (P). Then the system

¢+ (Hyx (0),y) <0, VyeY(x*) }

g (He (0) <0,  VjeI(x*) (A)

has no solution x € X.
Proof. Suppose, on the contrary, that there exists ¥ € X such that
¢ (He 2(0),y) <0, VyeY(x*) (3.12)
g (Hu 2(0)) <0, Vjel(x*) (3.1b)

Since X is an open AC set and x* € X, there exists 8, > 0 such that
H.. {(6) € X, V0 € (0, §y). In view of (A-2) and (2.1), there exist functions
@ :[0,1] — R such that

gj(Hx*,;(O)) =g;(x*) + ng*(Hx*’;(O)) + 0w, (9), VjeI(x*)

where
lim «;(6) =0.

6—-0+

Using (3.1b) and the fact that j € I(x*), it follows that there exist §; > 0
such that

g(Hyx (0)) <0, Vo€ (0,8),)e€l(x*). (3.2)
Further, since x* is feasible for (P), we have
g(x*) =0, VjeJ(x*)

which in view of continuity of g;(-) at x* implies that there exist 5, > 0
such that

g(Hx «(0)) <0, V0€(0,§),j<](x*) (3.3)
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Letting & = min{8,, 5,,..., 8,,}, we conclude, from (3.2) and (3.3), that
H,.. (6), Vo € (0, 6), are feasible points for (P).

We next prove that these points yield better objective function values
than x*.

Using (A-3), (3.1a) and the fact that Y(x*) is compact, we can find an
e > 0and &' > 0 such that

¢ (He £(0),y) < —£<0, Vy ey (3.4)

where Yy = {y € Y: [ly —yll < &' for some y € Y(x*)}.
Now, for any y € Y, we can write

G(Hy ¢(0),y) = d(x*,y) + 0¢" (Hy 2(0),y) + 0ay(6) (3.5)
where «a; :[0,1] — R satisfies

lim 0) =0
0—>0+ 0(0( )

Hence, for a given ¢ > 0, there exists §” > 0, such that
ag(0) < &, Vo € (0, 8") (3.6)
Choosing & = min{§’, 8"} and using (3.4) and (3.6) in (3.5), we obtain
¢(Hy 2(0),y) < ¢(x*,y), VOE(0,5),Vye s
Also, we have

d(x*,y) < supp(x*,z), VyeyY.

zeyY

Therefore, we get

G(Hy «(60),y) < supd(x*,z), Voe(0,58),VyeYs (3.7)

zeY

Also, for any y € Y\ Y3, we have

d(x*,y) < sup p(x*, z)

zeY

Then, because of compactness of the set Y\ Y3 and continuity of ¢(x*,-)
on Y, we can find &, > 0 such that

d(x*,y) < su5¢>(x*,z) — &y, Vy e Y\ Ys;. (3.8)
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Using (3.8) in (3.5), we get

b(He 5(0),y) < sup p(x*,z) = &1 + 0(¢" (He 2(0),y) + a(0)).

zeY
(3.9)
Since, for any y € Y\ Y3, we have
im 09" (Hoe 2(0),7) + ao(6)) = 0
Hence, there exist & > 0 such that

0(¢" (Hy 2(0),y) + ap(0)) < &1, VO €(0,5),Vy € Y\V5.
(3.10)

(3.9) and (3.10) together yield

d(Hy +(0),y) < supdp(x*,z), Vo€ (0,8),ye Y\ V5 (3.11)

zeY

Letting 6 = min{5, 5} and noting that ¥ = Y\ Ys; U Y3, it follows from
(3.7) and (3.11) that

d(Hy ¢(0),y) < supp(x*,z), V6 (0,6),VyeY,

zeY
which implies

supp(H,« :(0),z) < supp(x*,z), Ve (0,5),

zeY zeY
that is,
f(Hys 2(0)) <f(x*), ¥0€(0,8).

Finally, we choose 8* = min{8, 8}; then it follows that H.,. «(0), with
0 (0, 6*), are feasible points for (P) and yield better objective values
than x*, thus contradicting the optimality of x*. Therefore, system (A)
cannot have a solution in X.

Forany ¢t > 0 and x € X, define

@o(x) = —t
¢(x) =g/ (He (0)) +1,  jEI(x)
G(x,y) = ¢*(Hx (0),y) +1t, yeEY(x¥)
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where x* is a solution of the minmax problem (P). Then in view of Lemma
3.1, we have that, the system

wo(x) <0
@(x) <0,  Vjel(x¥) (B)
G(x,y) 0, VyeY(x*)
has no solution x € X.
Define the sets
Qo(x*,t) = {(u,r, ro) 11 = (1}) je v @nd Ix € X such that ¢o(x) < ro,

¢ (x) <71, j €1(x*),G(x,y) u(y), Yy € Y(x*)}
Q(x*,t) = {(u,r) ir = (7;);c ) and Ix € X such that ¢;(x) <7,

JEI(x*),G(x,y) su(y) Yy € Y(x*)}
We now prove the following theorem which gives the necessary optimal-
ity conditions for a minmax solution of problem (P).
THeOREM 3.1 (necessary optimality conditions). Let x* be a solution of
minmax problem (P). Further, let ((,o]-, G)]-G 1wy be convexlike on X and let

there exist a neighborhood U of ‘0" in RY™") and constants v = (v,); < 1+,
such that the set Q(x*,t) N U X e ,(x*)(—OO, vj] is a nonempty closed set
for every t > 0. Then there exist an integer a > 0, scalars A\; 2 0,1 <i < «,
w = 0 and vectors y' € Y(x*), 1 <i < a, such that

Z Ai¢+(Hx*,x(O)'yi)+ Z lJ“jngr(Hx*,x(O)) z O’ Vx < X
i=1 j=1

mig;(x*) =0, Vi<jsm

m

LA+ 2w 0.
i=1 j=1

Proof. Since x* is a solution of minmax problem (P). Hence, by
Lemma 3.1, system (B) has no solution x € X, i.e., for any ¢ > 0 the

system
@o(x) <0
goj(x) <0, Vj e I(x*)
G(x,y) =0, Vy e Y(x*)

has no solution x € X.
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By the assumptions, (¢,, ¢;, G); < .+, is convexlike on X and for any
constant v, > 0,

Qo(x*,£) 0 U X 7 gy =0 1] X (=, ]

is a nonempty closed set for any ¢ > 0.
Since all the conditions of Theorem 2.3 are satisfied, there exists an
integer a > 0, scalars A; > 0,0 <i < &, w; 2 0, j € I(x*) such that

(Mov Ao A )y # O

and

Aooo(x) + Y pi@(x) + Z XG(x,y") =0, VxeX
jeI(x*) =

which implies

T (He a3+ T g (Hee ()

jEI(x™®)
g(/\o— Xom— LAt Vx e X,Vt>0.
jEI(x*®) i=1

giving

inf[i)\@*(Hx*,x(O),y"H > u,«gf(Hx*,x(O))l

xeX |1 jel(x®)

éSUplt()\o_ Yom— XA
i=1

t>0 jel(x*®)

] (3.13)

In order that inequality (3.13) always holds, we must have

™=

PURSED M (3.14)
1 jeI(x*)

i

because otherwise as ¢ > 0, the right hand side of (3.13) can be made
arbitrarily large.
On using (3.14) in (3.13), we get

=

Mo (He (0),y) + X wg(Hex (0) 20, VxeX.
1 jeI(x*)

i



ON STATIC MINIMAX PROBLEMS 435

Letting w; = 0 Vj € J(x*), we obtain

Y NG (He (0),y)+ X wgf (He (0)) 20, VxeX
i=1 j=1

g (x*) =0, l1<j=m.

Za: A+ % My = Ag (3.15)

i=1 j=1
(AL Ap, ey Ay Mgy Mgy ey M) # 0 (3.16)
A =0, O<iza (3.17)
nz0, l<j<m (3.18)

Now, A, # 0 because if A, = 0 then (3.15) yields that
E At Z My = 0
i=1 j=1

which in view of (3.17) and (3.18) implies
L=0, O<i<a

m; =0, l1<j=m

But this contradicts (3.16). Hence A, # 0. This completes the proof.

4. SUFFICIENT OPTIMALITY CONDITIONS

We establish sufficient optimality conditions for minmax problem (P)
under arcwise connectedness and generalized arcwise connectedness as-
sumptions on the functions involved.

Let X°={x¢€ X:gi(x) <0, V1 <j <m} denote the set of feasible
solutions of (P).

THEOREM 4.1.  Let x* € X° and assume that there exist an integer a > 0,
scalars \; 20,1 <i <, X A #0, w; 20,1 <j < m and vectors y' €
Y(x*),1 <i < a, such that

Z /\id)Jr(Hx*,x(o)'yi) + Z /‘ngﬁ(Hx*,x(O)) 2 0, VxeX (41)
i=1 j=1

migi(x*) =0, Vi<j<m. (42)
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Further assume that the functions g(-), 1 <j <m and ¢(-,y), y €Y, are
CN with respect to the same arc on X°. Then x* is a minmax solution of (P).

Proof. Suppose that x* is not a minmax solution of (P). Then there
exists an ¥ € X° such that

sup ¢(X,z) < sup ¢(x*,z). (4.3)

zeY zeY

Also, since ¥ € X°, p, > 0, V1 < j < m, we have
m8;(¥) <0

which in view of (4.2) implies that

b :Ungj(f) < X /J“jgj(x*)' (4.4)
j=1 j=1
Further, as y’ € Y(x*), we have
sup p(x*,z) = p(x*,y"), 1l=gizga. (4.5)
zeY

Also, y €Y,1 <i < a, we have

d(X,y") < sup (X%, z), l<iz<a. (4.6)

zeY

(4.3), (4.5) and (4.6) imply

d(%,y') < d(x*,y), 1=ziza. (4.7)
Since \; > 0,1 <i < aand L A # 0, it follows from (4.7) and (4.4) that

LAO(E )+ X g (R) < X Ne(x*,y) + X pgi(x*) (4.8)
i=1 j=1 i=1 j=1

Also, since ¢(-,y"), 1 <i < a and g(), 1 <j <m, are CN, we have
(% y") — d(x*,y) =2 ¢* (Hp 2(0),y"), l<i<a (49)
gi(%) —g(x*) 2g/ (H»(0)), 1l<j=m (4.10)

From (4.9) and (4.10) together with A, > 0,1 <i<aand u; 20,1 <j <
m, we get

i No(X,y) + i ,ujgj(f)} - {i Nd(x*,y') + % w8 (x*)

= _i /\id’+(Hx*,2(0)vyi) + i :Ung;r(Hx*,)?(O))

j=1
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which on using (4.8) gives
Z )‘i¢+(Hx*,£(0)vyi) + Z ;8 (Hx* ‘(0)) <0
i=1 j=1

which contradicts (4.1) for x = x. Hence the result follows.

THEOREM 4.2.  Let x* € X° and assume that there exist an integer a > 0,
scalars A; 20,1 <i < a, XA #0, u; 20, 1 <j < m and vectors y' €
Y(x*), 1 <i < «a, such that (4.1) and (4 2) are satisfied. If the function
Xy ,u]g]( -) is QCN and the function ¥, X, (-, y') is PCN with respect to
the same arc on X°, then x* is a minmax solution of (P).

Proof.  From (4.2), we have
Z Mjgj(X*) = 0.
j=1

Let x € X° Then, since u; > 0,1 <j < m, we get

3

Y omg(x) < i w8 (x*)
~ =

j=1

which, by QCN-ness of X7, u.g,(-) at x*, yields

3

Y g (He (0)) 0. (4.11)
j=1
Using (4.11) in (4.1), we get
Z Ai¢+(Hx*,x(0)’yi) = 0
i=1

which by PCN-ness of & , A, ¢(-, y*) at x* implies

Y d(xy) = X Ab(x*,y). (4.12)
i=1 i=1
Since y' € Y(x*), 1 <i < a, we have
d(x*,y') = SU;})}qﬁ(x* ,Z). (4.13)

Also, since y' €Y, 1 <i < «, we have

b(x,y") < sup d(x, 2) (4.14)

zeY
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Since A\, 20,1 <i<a, ZX, A # 0, (4.12)-(4.14) imply

Sup b(x, ) = SUp (x*,z)

zeY zeY

ie., f(x) = f(x*), Vx € X°
Hence, x* is a minmax solution of (P).

THEOREM 4.3. Let x* € X° and assume that there exist an integer a > 0,
scalars \; 20,1 <i <, XA #0, w; 20,1 <j < m and vectors y' €

i=

Y(x*), 1 <i < a, such that (4.1) and (4.2) are satisfied. If the function
Y71 ;g () is STPCN and the function X 1 X;$(:, y') is QCN with respect
to the same arc on X°, then x* is a minmax solution of (P).

Proof. The proof follows along similar lines as the proof of Theorem
4.2 and hence is omitted.

THEOREM 4.4. Let x* € X° and assume that there exist an integer a > 0,
scalars \; 2 0,1 <i <, X A #0, w; 20,1 <j < m and vectors yi e
Y(x*), 1 <i < a, such that (4.1) and (4.2) are satisfied. If the function g(-),
jeI(x*), j#s,is QCN and g(-) is STPCN with u, > 0 and the function
Y A d(, y) is QCN with respect to the same arc on X°, then x* is a
minmax solution of (P).

Proof. Since for any x € X°, we have
gi(x) =g;(x*),  VjelI(x*) (4.15)

which by means of the QCN-ness assumption on g;(-), j € I(x*), j # s,
gives

g;’(Hx*'x(O)) <0, JEI(x*),j#s (4.16)
Also, strict PCN-ness of g.(-), in view of (4.15), implies
8/ (H: (0)) <0 (4.17)
Since w; =0, Vj € I(x*), u, >0 and w; =0 for j €J(x*), therefore,
from (4.16) and (4.17), we have
’Zl mg (He (0)) <O. (4.18)
j=

Using (4.18) in (4.1), we obtain

Z Ai¢+(Hx*,x(0)’yi) >0
i=1
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which by QCN-ness of = , A, ¢(-, y') at x* implies

Y ad(xy) = X Ad(xF,y) (4.19)

i=1 i=1

(4.19) is same as (4.12). The remainder of the proof is same as that of
Theorem 4.2

5. DUALITY
In this section, we formulate a Mond-Weir type dual (D) to minmax
problem (P).
Let

Il
[EY

G = {(a, A, y): « is a positive integer, A € RY, Y A,
i=1

y=(y1,y2,...,y"‘),yi€Y(x) forsomexeX,léi:a}

A

Xo(a, A, y)

= {(x, p) EXXRY:(yh...,y%) C Y(X);i Ao*(H,,(0),y")

+ Z /J']g;r(wa(O)) > 0,Vw € X and Z I‘Lfgj(x) =20
j=1 j=1

With the above notations, we introduce a dual to problem (P) as follows:

(D) max sup Xa‘, b (x,yY)

(a0, M EG (4, prexola, A y)i=1

If for a triplet (a, A, y) in G the set x,(«a, A, y) is empty then we define
the supremum over it to be —o.
We now establish duality relationship between problems (P) and (D).

THEOREM 5.1.  Let x* be an optimal solution of problem (P) and let there
exist w* € X such that g/ (H,» ,+(0)) <0, 1 <j < m. Assume that condi-
tions of Theorem 3.1 are satisfied. Then there exist (a*, \*, y*) € G and
p* e RYT such that (x*, u*) € x,(a™, A*, y*). Further, if for each fixed
x € X% and (X, p) € x,(a, A, y) any one of the following conditions hold

) oC,y), 1<i<a, gj(-), 1 <j <m are CN with respect to the
same arc
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(i) T A, ¢(, y) is PCN, Xy ,ujgj(-) is QCN with respect to the
same arc

(i) X, 4,0, y) is QCN, Xy ,ujgj(-) is STPCN with respect to the
same arc

(V) & 4 ¢C, y) is QCN, g,(-), j € I(x*), j + s is QCN, g,(-) is
STPCN with u, > 0, with respect to the same arc
Then (x*, u*) and (a™, \*, y*) give an optimal solution to (D). Further-
more, the two problems (P) and (D) have the same extremal values.

Proof. Since x* is an optimal solution of (P) at which the conditions of
Theorem 3.1 are true, therefore there exist an integer a* > 0, scalars
A e R, u® € R” and vectors y* € Y(x*), 1 <i < a* such that

Y NG (Hoe (0), %) + X wlgf (Hu (0)) 20,  VweX (51)
i=1 j=1
nigi(x*) =0, l<j=m

*

R

m
A+ Y pu#0 (5.3)
j=1

Il
-

i

Now, if A% =0,1 <i < a* then, in view of (5.3), u® = (ul,..., u2) # 0.
Also, (5.1) then reduces to

Y we (Hy (0)) 20, VweX. (5.4)
j=1

By assumption, there exists w* e X such that
gf(Hx*’W*(O))<0, l§]§m

which together with u? >0, 1 <j<m, u®=(ud, p3,..., u)) # 0 im-
plies

E

/.Llog;r(Hx*YWx(O)) <0

j=1

But this contradicts (5.4) for w = w*. Therefore, we have

Y AP0
i=1
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Let 7= Zf’:l)\?, M= 70 =71 Then (a* A*,y*) € G and
(x*, Iu*) = XO(a*Y /\*,y*).

(1) Let hypothesis (i) hold, and let (x, u) be any element of
Xola™, A*, y*). Then we have

ﬂ*

L (0] + T (Ho(0)20 (55)

i wigi(x) =0 (5.6)

Since ¢(-,y*i), 1<iz<a¥ g() 1<j<mare CN with respect to the
same arc, we have

$(x* ") = d(x,y*) 2 7 (H, +(0),y*), 1=iza* (57)
gi(x*) —gi(x) 28/ (H, +(0)), 1=<j=m (5.8)
Further, A > 0,1 <i <a* and u; > 0,1 <j < m, it follows from (5.7)

and (5.8) that

a’

i=1

Np(x*, y* ) = L Ap(x,y*) + X g (x*) — Zu,g, x)
i=1 j=1 j=1

o

> £ w0 (1,007) + £ g (4,.00)

Using (5.5) and (5.6) in the above inequality, we get

a*

ZA*qb(x V) = L Ng(x ) = -
i=1

i=1

18 (x*)

nMs

J

which implies

# *

(o4 a

ZA*cb(x ) 2 ZA*rb(xy )

i=1 i=1

as gj(x*) <0, u;20,1<j<m. Hence, (x*, w*) attains the maximum of
the following problem
max 3 Afe(x, y*)
(Dn*) i=1
subject to (x, n) € xo( @™, A*, y*)

where n* = (a*, A*, y*).
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In order to prove the result, we shall show that for any («a, A, y) € G,

sup Z/\¢>(xy)< Z/\*qb(x y)

(x, e xola, A, y)i=1

Let (x, w) be any element of x,(«a, A, y), where («, A, y) € G. Then we
have

i /\i(b+(Hx,x*(O)’yi) + an: /"L]g] ( ,x* (O)) = 0 (59)
i=1 j=1
i w;gi(x) =0 (5.10)

Since ¢(-, y), 1 <i < «, g;("), 1 <j < m are CN with respect to the same
arc, we have

d(x*,y") = d(x,y') 2 ¢ (H, +(0),y), 1=<i<a (511)

gj(x ) _gj(x) ég] (Hx,x*(o))' 1 é] é m (512)
Further, A, 2 0,1 <i < a and yu; = 0,1 <j < m; hence, (5.11) and (5.12)
on using (5.9) and (5.10) implies

YOy = L d(xy) = — X wg(xF)
i=1 i=1 j=1
which implies
Y Ad(x* ) = X ad(x,y) (5.13)
i=1 i=1

as g(x*) <0, u;20,1<j<m Now,as y€Y(x)CY,1<i<a we
have

¢(x*,y*k)= supp(x*,z) = d(x*,y"), lgi<a,lzkzga®

zeY

which implies

Z/\igb( y* ); Z/\-(;')(x*,yi), foreach k,1 < k < a*.
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Since X{ A, = 1, therefore, we get

a

¢>(x*,y*k); Z)\d’(x ,y"), foreach k,1 <k <a*. (5.14)

(5.14) together with the fact that A% >0, 1 <k < o* and T, AF =1,
imply

Y Ap(x, %) = ¥ Ld(x*, ). (5.15)
i=1 i=1
It follows from (5.13) and (5.15) that
Y Ap(x* v ) =2 L Ad(x ), V(X ) € xo(a, A, y).
i=1 i=1

Therefore, we obtain

C(*

sup Y Ab(x,y) = X Afb(x*, y*).

(x, e xola, A, y)i=1 i=1

Thus (a*, A*, y*) and (x*, u*) give an optimal solution to (D). Moreover,
the optimal value of the (D) objective is ¥, A*p(x*, y*') which on using
the facts that y* € Y(x*), 1 <i < o™ and £ ;AF = 1 implies

a

N (%, %) = f(x*).

i=1

Hence, the two problems (P) and (D) have the same extremal values.

(2) Let hypothesis (ii) hold, and let (x, u) be any element of
Xo(a™, A*, y*). Then (5.5) and (5.6) are satisfied. For u € R, g,(x*) <0,
l<j=mand X/, u;g(x) = 0, we obtain

Z Mjgj(X*) = Z /"ngj(x)
j=1 j=1
which on using QCN-ness of 7", u;g;() implies
X g (H, +(0)) =0
j=1
which along with (5.5) yields

izm (H,,+(0),y*') 2 0.
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On using PCN-ness of £, X% (-, y*'), we get

*

X (x, y*)
1

R

> Np(x*,y*) 2
i=1

4

Hence, (x*, u*) attains the maximum of (D,-) where n* = (a*, A*, y*).
Next, let (x, u) € xo(a, A, y) for any (@, A,y) € G. Then (5.9) and
(5.10) are satisfied. Therefore, we have

> ,U«jgj(X*) <0< ) Mjg,‘(x)
j=1 j=1
which in view of the QCN-ness of Y7 | w;g,(-) implies
j=1
The above relation along with (5.9) yields
E Ai¢+(Hx,x*(0)'yi) = 0.
i=1
On using the PCN-ness of X%, A;¢(-, '), we have
LA y) = X Ad(x, )
i=1 i=1

which is the same as (5.13). The remaining part of the proof is the same as
that under hypothesis (i).

In case hypothesis (iii) or hypothesis (iv) hold, then the proof also runs
on similar lines and hence is omitted.
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