The linear convergence of limit periodic continued fractions

C. BREZINSKI and A. LEMBARKI
UER IEEA, Laboratoire d’Analyse Numérique et d’Optimisation, Université de Lille I, 59655 Villeneuve d’Ascq-Cedex, France

Received 2 December 1985

Abstract: The only linearly convergent continued fractions are the limit periodic ones.

Keywords: Continued fractions.

Let us consider the continued fraction
\[\frac{a_1}{1 + \frac{a_2}{1 + \ldots}} \]
where the \(a_n \) are complex numbers.

Let \(C_n = \frac{A_n}{B_n} \) be its convergents. We set \(h_n = \frac{B_n}{B_{n-1}} \).

We assume that \(\lim_{n \to \infty} h_n = h \) is finite.

Theorem 1. If \(\exists a \in \mathbb{C}, \ a \neq -\frac{1}{4} + c \) with \(c \leq 0 \) such that \(\lim_{n \to \infty} a_n = a \) then \(\exists r \in \mathbb{C}, \ |r| < 1 \) such that \(\lim_{n \to \infty} (C_n - C)/(C_{n-1} - C) = r \).

Proof. If \(a \neq -\frac{1}{4} + c \) with \(c \leq 0 \) the two zeros of \(x^2 - x - a = 0 \) have distinct moduli. Since \(B_{n+1} = B_n + a_{n+1}B_{n-1} \) then, by Poincaré’s theorem [9], \(\exists h \in \mathbb{C} \) such that \(\lim_{n \to \infty} h_n = h \). Moreover it is easy to see that \(|h| \neq (\frac{1}{4} - c)^{1/2} \). But we have [10]
\[\frac{\Delta C_n}{\Delta C_{n-1}} = -1 + 1/h_{n+1}. \]
Thus \(\exists r \in \mathbb{C} \) such that \(\lim_{n \to \infty} \Delta C_n/\Delta C_{n-1} = r = -1 + 1/h \). Moreover, since \(h \) is equal to the zero of greatest modulus of \(x^2 - x - a = 0 \), then \(|r| < 1 \). Then, by a result of Delahaye [2],
\[\lim_{n \to \infty} (C_n - C)/(C_{n-1} - C) = r. \]

This theorem was given in [7] with a different proof. See also [8].

Let us now give the reciprocal of this result:

Theorem 2. If \(\exists r \in \mathbb{C}, \ r \neq -1 \) such that \(\lim_{n \to \infty} \Delta C_n/\Delta C_{n-1} = r \) then \(\exists a \in \mathbb{C}, \ such \ that \ lim_{n \to \infty} a_n = a = -r/(1 + r)^2 \).
Proof. From (1) we see that, if \(r \neq -1 \), \(\exists h \neq 0 \) and finite such that \(\lim_{n \to \infty} h_n = h \). But
\[
h_{n+1} = 1 + a_{n+1}/h_n \quad \text{or} \quad h_n(h_{n+1} - 1) = a_{n+1}
\]
which shows that \(\exists a \in \mathbb{C} \) such that \(\lim_{n \to \infty} a_n = a \). \(\square \)

Let us study this reciprocal in more detail. As we saw before \(r \) and \(h \) are related by
\[
h = \frac{1}{1 + r}.
\]
If \(r = e^{i\theta} \), that is if \(|r| = 1 \),
\[
h = \frac{1}{2} - i \frac{\sin \theta}{2(1 + \cos \theta)}.
\]
Hence \(|h|^2 = \frac{1}{4} + \sin^2 \theta / 4(1 + \cos \theta)^2 = \frac{1}{4} - c \) with \(c \leq 0 \). Thus, if \(|r| \neq 1 \), then \(|h| \neq (\frac{1}{4} - c)^{1/2} \) with \(c \leq 0 \). Let us now examine \(|a| \). If \(|r| = 1 \), then
\[
a = -\left(\frac{1}{2} - i \frac{\sin \theta}{2(1 + \cos \theta)} \right) \left(\frac{1}{2} + i \frac{\sin \theta}{2(1 + \cos \theta)} \right)
\]
\[
= -\frac{1}{4} - \frac{\sin^2 \theta}{4(1 + \cos \theta)^2} = -\frac{1}{4} + c.
\]
Finally, if \(|r| \neq 1 \) then \(a \neq -\frac{1}{4} + c \) with \(c \leq 0 \). This last result can be gathered with that of Theorem 1 and we get the:

Theorem 3. A necessary and sufficient condition that \(\exists r \in \mathbb{C}, \ |r| < 1 \) such that \(\lim_{n \to \infty} (C_n - C)/(C_{n-1} - C) = r \) is that \(\exists a \in \mathbb{C}, \ a \neq -\frac{1}{4} + c \) with \(c \leq 0 \) such that \(\lim_{n \to \infty} a_n = a \). Moreover \(a \) and \(r \) are related by \(a = -r/(1 + r)^2 \).

Proof. If \(\exists C \in \mathbb{C}, \exists r \in \mathbb{C}, \ r \neq 1 \) such that \(\lim_{n \to \infty} C_n = C \) and \(\lim_{n \to \infty} (C_n - C)/(C_{n-1} - C) = r \) then, by a result due to Delahaye [2], the ratio \(\Delta C_n/\Delta C_{n-1} \) has a limit and this limit is equal to \(r \).

By Theorem 2, if \(r \neq -1 \), the continued fraction is limit periodic. Moreover, as we saw above, if \(|r| \neq 1 \) then \(a \neq -\frac{1}{4} + c \) with \(c \leq 0 \) and the first part of the result follows from Theorem 1. The reciprocal is Theorem 1. \(\square \)

Remarks. Let us make some remarks on the respective values of \(a \) and \(r \):

(i) \(r = 0 \) if and only if \(a = 0 \). Since \(r = -1 + 1/h \), \(r \) is zero if and only if \(h \) equals 1. If \(h = 1 \) then \(h(h-1) = a = 0 \). Reciprocally if \(a = 0 \), the zeros of \(x^2 - x - a = 0 \) are 0 and 1 and thus, by Poincaré’s theorem, \(h \) is 0 or 1. If \(h = 0 \) then \(r \) is infinite which is impossible. Thus \(h = 1 \) which gives \(r = 0 \). Thus limit periodic continued fractions converge super linearly if and only if \(\lim_{n \to \infty} a_n = 0 \). In that case it is less crucial to be able to accelerate the convergence.

(ii) If \(r = 1 \) then \(a = -\frac{1}{4} \). This is the worst case since the convergence, when it occurs, is very slow (logarithmic convergence). Reciprocally if \(a = -\frac{1}{4} \), the two zeros of \(x^2 - x + \frac{1}{4} = 0 \) are equal to \(\frac{1}{2} \) and Poincaré’s theorem does not allow to conclude.

(iii) Another proof of Theorem 3 by using properties of linear functional transformations and the Koebe function was given to us by Waadeland.

Theorem 3 has important consequences concerning the convergence acceleration of limit periodic continued fractions. Since such fractions are linearly converging if \(a \neq 0 \) (if \(a = 0 \), the
continued fraction converges super linearly and, thus, is less important to accelerate) they can be accelerated in many different ways such as modifications, see [5] for a review, or various sequence transformations, [1,6].

On the other hand, continued fractions which are not 1-limit periodic will be difficult to accelerate. This follows from the theory of remanence of a set of sequences introduced by Delahaye and Germain Bonne [4]. It means that a universal algorithmic method for transforming \((C_n)\) into another sequence converging faster cannot exist for all continued fractions which are not 1-limit periodic (by algorithmic method it is meant a method which does not depend on asymptotic properties of \((C_n)\) but only on a finite number of its terms). Subsets of such continued fractions will have to be considered. Even in the case where the ratios \((C_n - C)/(C_{n-1} - C)\) remain bounded from below and above such a universal transformation cannot exist [3].

Finally let us mention that some similar results seem to exist for limit \(k\)-periodic continued fractions. For example it is easy to see that the even and odd parts of a limit 2-periodic continued fraction are limit periodic with the same asymptotic error coefficient. Obviously, by our Theorem 3, the converse is false.

Acknowledgements

This work was performed under the NATO Research Grant 027.81. We very much benefit from comments by L. Jacobsen and H. Waadeland who are thanked for their help.

References