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We developed a Monte Carlo event generator for production of nucleon configurations in complex
nuclei consistently including effects of nucleon–nucleon (NN) correlations. Our approach is based on
the Metropolis search for configurations satisfying essential constraints imposed by short- and long-
range NN correlations, guided by the findings of realistic calculations of one- and two-body densities
for medium-heavy nuclei. The produced event generator can be used for Monte Carlo (MC) studies of p A
and A A collisions. We perform several tests of consistency of the code and comparison with previous
models, in the case of high energy proton–nucleus scattering on an event-by-event basis, using nucleus
configurations produced by our code and Glauber multiple scattering theory both for the uncorrelated
and the correlated configurations; fluctuations of the average number of collisions are shown to be
affected considerably by the introduction of NN correlations in the target nucleus. We also use the
generator to estimate maximal possible gluon nuclear shadowing in a simple geometric model.

© 2009 Elsevier B.V. Open access under CC BY license. 
1. Introduction

The structure of nuclei has been described for a long time by
independent particle models in which the nucleus is treated as
a collection of fermions freely moving about, this picture being
suggested by the fact that nuclear matter is a dilute system. Nev-
ertheless the short range structure of nuclei cannot be accurately
described by this simplified picture, and essential aspects of nuclei
such as high momentum component of the nuclear wave function
are completely missed by the non-interacting model; configura-
tions of nucleons at short separations are known as short range
correlations (SRC) [1,2]. NN correlations have been recently un-
ambiguously observed [3] in a series of dedicated experiments, in
which high-momentum nucleons were knocked out by high energy
probes and their correlated partner were observed with opposite
momentum; the probability for a nucleon to belong to a SRC pair
was measured to be about 20% in 12C and 25% in heavy nuclei; see
Ref. [4] for a review. A theoretical description of SRC can be made
in a satisfactory way using nonrelativistic Hamiltonians contain-
ing two- and three-body realistic potentials. It is currently possible
to solve exactly the Schrödinger equation for light nuclei while,
for A > 12, approximate methods must be considered, which have
been shown to produce a reasonable approximation to the basic
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ground state quantities such as one- and two-body densities and
momentum distributions. These studies demonstrated that NN cor-
relations produce non-negligible effects in a variety of processes
including those which are not specially probing SRC. For example,
significant effects are found for high energy total nucleon–nucleus
cross sections [5], and it has thus been shown that they must
be taken into account in the theoretical calculation of such pro-
cesses. In this Letter we are addressing the challenging problem of
including NN correlations in the description of high energy proton–
nucleus and nucleus–nucleus collisions. It was shown in Ref. [6]
that using correlated two-body densities for the analysis of fluc-
tuations of the mean number of participating nucleons in proton–
nucleus collisions significantly modifies the results, especially the
tails of the distribution, and it was pointed out the importance of
implementing NN correlations in the event generator for nucleon
configurations in a way consistent with the single nucleon nuclear
density and use it for description of the heavy ion collisions on an
event-by-event basis. Simulations of such processes are commonly
performed using configurations of nucleons as an input, consisting
of nucleons spatial locations and isospins, generated assuming the
independent particle model; however, inclusion of NN correlations
can provide a more realistic description of initial states of nuclei
and appears to be feasible with a good accuracy.

The Letter is organized as follows; in Section 2, details of NN
correlations are discussed and the method adopted for generation
of configurations is outlined; we describe the generation of nu-
clear configurations within a MC approach including central two-
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body correlations which are consistent with realistic calculations
of one- and two-body density distributions. In Section 3 we intro-
duce the probability distribution functions P N for the N-th order,
N = 1, . . . , A, interaction of a projectile nucleon with a nucleus A,
and we present results for fluctuations. In Section 4 we use our
event generator to calculate maximal possible shadowing for glu-
ons based on simple geometric considerations.

2. NN correlations

The aim of the present work is to develop a MC procedure for
generating spatial nucleon configurations to be used as an input
for simulations of collisions involving heavy nuclei which treats
NN correlations in a realistic way. The commonly used approach
to this problem is taking a given number of nucleons out of a
Woods–Saxon density distribution, which describes the probabil-
ity density function of a nucleon to be located at a distance r from
the center of the system. As a result, the A nucleons are posi-
tioned independently from each other, such that all two-particle
(and higher) correlations are completely ignored; this is justified
by the assumption that inclusive quantities are not very much de-
pendent on these correlations. Alternatively one puts nucleons in
consequently one after another imposing the condition that the
distance between nucleons should be larger than some minimal
one. This procedure, however, results in a wrong single nucleon
distribution of the nucleons and must be improved.

We argue that when considering event-by-event observables,
NN correlations in the nuclear wave function are relevant. This ex-
tends observation of [6] that NN correlations significantly modify
the variance of the distribution over the number of collisions. In
the present work we analyze several different approximations for
correlations. A full implementation of realistic short range corre-
lations [7,8] in the wave function Ψ of a complex nucleus can be
made using an independent particle model wave function Φ and a
proper correlation operator F̂ = ∏A

i< j f̂ (ri j) as follows:

Ψ (r1, . . . , rA) = F̂Φ(r1, . . . , rA), (1)

f̂ being a set of state-dependent correlation functions f̂ (ri j) =∑
n f (n)(ri j)Ô (n)

i j obtained variationally from a nonrelativistic

Hamiltonian with realistic two- and three-body interactions; Ô (n)
i j

is the spin–isospin operator appearing in the realistic two-body
potential, usually written in the form V̂ = ∑

i< j v̂(ri j) =∑
i< j

∑
n v(n)(ri j)Ô (n)

i j . In the present implementation of correla-
tions, we did not consider the full realistic set of correlations
shown in Eq. (1), which would imply using the full |Ψ |2 as a
probability function for the Metropolis random search. This would
be numerically very demanding, especially for heavy nuclei, as it
would involve generating a full configuration of A nucleons. Hence
as a first step we will implement only effective central correla-
tions; the inclusion of spin- and isospin-dependent configurations,
which allows to account for most of the properties of one- and
two-body densities described in [7,9,10] and references therein,
will be discussed later on.

A major problem with using a system of uncorrelated nucleons
for the event generators is the occurrence of hot spots: regions
in space where two or more nucleons are allowed to overlap and
produce unrealistically high local densities. A simple excluded vol-
ume model, in which nucleons are prevented from being closer
than a fixed distance of about the nucleon size d = 1 fm does not
account for the realistic picture of nuclei, since this approach arti-
ficially moves density from the center of the nucleus towards the
periphery, distorting the nuclear profile and altering the surface
properties. The first constraint in our generator is thus to preserve
the one body density of the nucleus, defined as follows:

ρ(1)(r1) = A

∫ A∏
i=2

dri
∣∣Ψ (r1, . . . , rA)

∣∣2
. (2)

We suggest a method for generating the spatial configurations of
nuclei with the following essential features: (i) the nucleons are
distributed according to a given single-particle distribution; (ii)
each configuration embodies the NN pair correlations. The result-
ing two-body densities are by far more realistic than the com-
monly used independent particle model ones, or even those of
the excluded volume approximation. The outlined results can be
achieved by first generating a large number of random nucleon
positions in a cube with given density (0.17 nucleons/fm3). Next,
a Metropolis random search is performed, with a probability func-
tion given by the square of the wave function; at this stage, we
impose the constraint of the Woods–Saxon probability distribu-
tion (Ref. [11]), choosing those nucleons which are relevant to the
desired one-body density. The procedure comes to an end when
exactly A nucleons satisfy the constraints at the same time.

It was shown in Refs. [7,9] that SRC have sizable effects on
the single particle density (Eq. (2)) as well as on those quanti-
ties which depend on the two-body density of the system, defined
as

ρ(2)(r1, r2) = A(A − 1)

∫ A∏
i=3

dri
∣∣Ψ (r1, . . . , rA)

∣∣2
, (3)

such as the two-body momentum distributions. In many theoreti-
cal studies, Eq. (3) is approximated as follows

ρ(2)(r1, r2) = A − 1

A
ρ(1)(r1)ρ

(1)(r2)
[
1 − C(r1, r2)

]
, (4)

where C(r1, r2) vanishes if NN and statistical correlations are dis-
regarded. We can compare the realistic results [7,12] for the radial
two-body density, defined as the integral of Eq. (4) over the pair
center of mass, R:

ρ(2)(r) =
∫

dRρ(2)

(
r1 = R + 1

2
r, r2 = R − 1

2
r
)

(5)

and the results from our MC generator for the same quantity. If we
assume that C(r1, r2) depends only on the relative coordinate r =
|r1 − r2| (which holds true exactly for infinite nuclear matter and
which is a good approximation in finite nuclei, far enough from
the edge of the nucleus), the pair distribution function C(r) can
be obtained from the correlated ρ

(2)
C (r) and uncorrelated ρ

(2)
U (r)

two-body radial densities:

C(r) = 1 − ρ
(2)
C (r)/ρ(2)

U (r). (6)

The quantities defined in Eqs. (5) and (6) were calculated us-
ing the MC code using several approximations for the correlation
function f (r) (see Eq. (1)). They are shown in Fig. 1; the re-
sults of Ref. [7] are also shown. Our procedure was to start with
a central correlation function f (r) taken as a step function, i.e.
vanishing wave function for r < 1 fm; we then used a Gaussian
f (r) = 1 − exp(−βr2) in order to match better the realistic re-
sult. It is known that the realistic central correlations has a small
overshooting over unity, and it is in general different from our
Gaussian correlation; however, in realistic calculations of finite nu-
clei [7,12] the peak in the radial two-body density is mainly due
to the existence of state-dependent, mainly tensor correlations, and
three-body diagrams. For this reason we prefer not to introduce an
unrealistic central correlation to reproduce such a peak and use a
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Fig. 1. The quantity of Eq. (6), calculated for 16O. Dashed histogram: step function
(excluded volume) correlation; solid histogram: Gaussian correlation; solid curve: the
realistic calculation of Ref. [7].

parameter β = 0.9 fm−2 in the Gaussian correlation which gives a
healing distance similar to the one exhibited by the realistic ap-
proach. This amounts to calculate the wave function with a central
correlation operator; the fully realistic implementation of the op-
erator of Eq. (1), involving spin and isospin degrees of freedom,
extremely computationally intensive, is thus beyond the aim of
the present contribution and will be performed elsewhere. In the
present work we randomly assigned isospin degrees of freedom
for A nucleons, so that each generated configuration consists of A
quads of numbers, containing three spatial coordinates and one,
randomly assigned, isospin variable; the correlated nuclear config-
urations are downloadable from the PSU physics department web
server at the address [13].

3. Probability distribution functions for hadron–nucleus
collisions

In order to illustrate the present implementation of correla-
tions, we have focused on the 16O, 40Ca and 208Pb nuclei.

For a given configuration of nucleons, the probability of interac-
tion with the i-th nucleon for an incoming projectile with impact
parameter b is given by

P (b,bi) = 1 − [
1 − Γ (b − bi)

]2
, (7)

the corresponding probability of no interaction being 1 − P (b,bi).
The Γ function in Eq. (7) for high energy incident nucleons can be
parameterized as

Γ (s) = σ tot
NN

4π B
e−s2/2B , (8)

where σ tot
NN is the total cross section of NN scattering and the t

dependence of the cross section dσ/dt ∝ exp(Bt), neglecting small
corrections due to the real part of the amplitude. Let us define
the probability of interaction with N nucleons as a function of the
impact parameter as

P N(b)

=
N∑

i1,...,iN

P (b,bi1) · · · · · P (b,biN )

A−N∏
j �=i1,...,iN

[
1 − P (b,b j)

]
. (9)

The inelastic cross section due to collisions with N nucleons is then
given by
Fig. 2. The probabilities P N , N = 1,2,3, as a function of the impact parameter b
(see text), calculated for

√
s = 42 GeV (top panels) and for

√
s = 5500 GeV (LHC

energies; lower panels) on the 16O nucleus. Squares: analytic results obtained with
the approximation of Eq. (12), the Glauber approach with zero-range interaction of
Bertocchi and Treleani, Ref. [15]; dashes: uncorrelated result; solid lines: Gaussian
correlations.

Fig. 3. The probabilities P N , N = 1,3,6,9,12, as a function of the impact param-
eter b, calculated for

√
s = 5500 GeV, corresponding LHC energies, on the 208Pb

nucleus, using (Gaussian) correlated configurations.

σ in
N =

∫
db P N(b), (10)

and the total inelastic cross section is σ in
N A = ∑A

i σ in
i , and it can

also be calculated as

σ in
N A = σ tot

N A − σ el
N A − σ

qe
N A, (11)

σ el
N A and σ

qe
N A being the elastic and quasi-elastic cross section, re-

spectively; this calculation is being performed with realistic wave
functions (Ref. [14]) and a comparison with the present approach
will be presented elsewhere.

We can evaluate the probabilities given by Eq. (9) to any or-
der in N � A as a function of b = |b|. The results for A = 16,208
are shown in Figs. 2, 3. The number of configurations used in
all the calculations is large enough to produce negligible statisti-
cal errors in the results, typically over 100 thousands configura-
tions. All the results have been obtained using parameters of the
NN amplitude corresponding to

√
s = 42 GeV/c (σtot = 41.6 mb,

B = 12.6 GeV−2), except the lower panel of Fig. 2 for 16O, where
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√
s = 5500 GeV/c (σtot = 94.8 mb, B = 17.3 GeV−2) is chosen, cor-

responding to LHC energies, to be compared with the top panel of
the same figure, and in Fig. 3 for 208Pb where

√
s = 5500 GeV/c as

well.
We have checked the independent particle model results with

the analytic approximation of Ref. [15], where the probability dis-
tributions are given by:

P N(b) = A!
(A − N)!N!

(
σ inT (b)

)N[
1 − σ inT (b)

](A−N)
, (12)

where T (b) = ∫ ∞
−∞ dz ρ(b, z), which neglects the finite radius of

NN interaction. The comparison is made for the 16O nucleus in
Fig. 2, showing a more narrow distribution if the approximation
of Eq. (12) is used; the same holds true for the other considered
nuclei. The quantities 〈N〉 and 〈N(N − 1)〉, can be written as fol-
lows [6]:

〈N〉 =
∫

dr1 ρ(r1)
dσ in

db
(b − b1), (13)

〈
N(N − 1)

〉

=
∫

dr1 dr2 ρ(2)(r1, r2)
dσ in

db
(b − b1)

dσ in

db
(b − b2), (14)

which can be calculated in the present framework using

dσ in

db
(b − bi) = 1 − (

1 − Γ (b − bi)
)2

. (15)

Alternatively we can calculate 〈N〉, 〈N(N − 1)〉 using Eqs. (13), (14)
as

〈N〉 =
∑

N

N P N(b), (16)

〈
N(N − 1)

〉 = ∑
N

(
N2 − N

)
P N(b). (17)

As a result we can write the variance of the mean number of
collisions as a function of the impact parameter b, as follows

D(b) = 〈N2〉 − [〈N〉]2

〈N〉
=

∑
N N2 P N(b) − [∑N N P N(b)]2∑

N N P N(b)
. (18)

In order to check the accuracy of our method, D(b) was calcu-
lated both using Eqs. (13), (14) and Eq. (18) using analytical one-
body densities and C(r) extracted from the MC calculation; we
then used Eqs. (16), (17), calculated with the P N (b) functions ob-
tained with the MC. The results are compared in Fig. 4 for 16O,
40Ca and 208Pb; a small discrepancy is exhibited, between the cal-
culation with C(r) (shown with symbols) and the corresponding
Gaussian correlated result, but the overall agreement is satisfac-
tory. The small difference between the results of the two methods,
especially for lead, is to be ascribed to the fact that the quantity
C(r) has been extracted from the MC configurations using Eq. (6),
assuming the function C(r1, r2) to be a function of the relative
distance only, and not to depend on the particular region of the
nucleus considered, while surface effects should be present on the
level of few %. We have compared the performance of the Glauber
type interaction with the approach of Ref. [16], where the proba-
bility of interaction in Eq. (9) was taken as a step function, which
vanishes for nucleons sitting outside the cylinder centered at the
given |b| from the center of the nucleus. We took for the cylinder
the value which gives an area corresponding to the one given by
Fig. 4. The dispersion D(b), as a function of the impact parameter b, defined in
Eq. (18) calculated for 16O, 40Ca and 208Pb nuclei, and for a 920 GeV incident nu-
cleon. Dashed curves correspond to uncorrelated configurations; solid lines to the
Gaussian correlations. The results obtained using eikonal model expression of B&T
(Ref. [15]) for the zero-range NN interactions are given by dotted lines; for large A
they coincide with the uncorrelated MC calculations. Symbols: direct calculation us-
ing Eqs. (13), (14), from Ref. [6], with C(r) extracted from the MC configurations
and shown in Fig. 1.

σin =
∫

dbσin(b) =
∫

db
[
1 − (

1 − Γ (b − bi)
)2]

, (19)

where Γ is calculated with the Glauber parameters we have used
in the present work. The results, as compared with our Glauber
approach showed to differ substantially from both the uncorrelated
and correlated MC results.

4. Lower limit on the parton nuclear shadowing

In this section we present application of our MC code to the
study of maximal possible nuclear shadowing in nuclei. We use
the well known observation that shadowing in the scattering off
the deuteron cannot reduce the cross section to the value smaller
than cross section of scattering off one nucleon. Basically it is due
to one nucleon screening another one but not itself.

Similarly, it is natural to expect that in any dynamics of parton
interactions the gluon (quark) density at a given impact parameter
in a particular configuration cannot be less than the maximum of
individual transverse gluon densities, gN(x,ρ) in the nucleons at
given b. Here gN(x,ρ) = gN(x)F g(ρ) is the generalized diagonal
gluon density in the nucleon

g A(x,b)conf � max
i=1,A

(
gi

N(x, rt − b)
)
, (20)

leading to

g A(x,b)min �
〈
g A(x,b)conf

〉
. (21)
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Fig. 5. The probability density P (x) for the quantity x defined in Eq. (24) calculated
as a function of the impact parameter b, for m2

g = 0.6 GeV2 and for 208Pb. We have
used the dipole (top) and Gaussian (left) gluon density distributions of Ref. [17] and
correlated configurations.

In the limit of A → ∞ this leads to

g A(x,b) � gN(ρ = 0). (22)

The onset of the limiting behavior depends on the transverse
shape of the gluon GPD. For the same gN(x) a shape more peaked
at small ρ will asymptotically lead to larger value of g A(x,b)min

though the approach to the asymptotic value will require larger
values of A as chances that there is a nucleon with ρ small
enough that gN(x,ρ) is close to gN(x,0) is smaller in this case.
In Ref. [17], two parameterizations for the two-gluon form fac-
tor were discussed, fitted to the J/ψ photoproduction data [18];
they were taken in the forms of an exponential and a dipole. The
corresponding transverse spatial distributions of gluon GPDs are
thus

F 1
g(ρ) = 1

2π B g
e−ρ2/(2B g),

F 2
g(ρ) = m2

g

2π

mgρ

2
K1(mgρ), (23)

where K1 is the modified Bessel function, m2
g = 0.6 GeV2 for

x ∼ 10−4 and B g = 3.24/m2
g . Using the configurations described

in the previous sections, we have calculated for given impact pa-
rameter b the maximum transverse gluon density normalized to
its peak value, i.e. the maximum value of the probability density
P (x,b) of the quantity

x = F g(ρ j)/F g(0), (24)

as a function of ρ j = b − b j , with b j the j-th nucleon transverse
coordinate; here P (x,b) is normalized according to

∫
dx P (b, x)= 1,

for given b. The results of the calculation for 208Pb are shown in
Fig. 6. The ratio R g (b) defined in Eq. (25) for 16O and 208Pb, calculated using
the Gaussian (dots) and dipole (solid) gluon density distributions of Ref. [17] and
correlated configurations as a function of the impact parameter b, plotted for
m2

g = 0.6 GeV2 and for those values of b for which there is enough statistics for
the normalization

∫
dx P (x) not to deviate from unity for more than 5%.

Fig. 7. The same quantity of Fig. 6 but plotted at b = 0 and as a function of m2
g ,

which is a parameter in Eq. (25).

Fig. 5. It can be seen that the two densities of Eq. (23) produce
very similar results.

We next apply these results to determine minimal value
of the gluon shadowing at given b defined as the ratio of
lower limit on g A(x,b) and its value in the impulse approx-
imation, g A(x,b) = gN(x)T A(b); to this end, we take the ra-
tio

R g(b) = gN(x,ρ = 0)
∫

dx xP (x,b)

gN(x)T A(b)

= F g(0)
∫

dx xP (x,b)

T A(b)
. (25)

Results are presented for the two used models of the gluon GPDs
of Eq. (23) in Figs. 6 and 7. For A → ∞ the limits using the two
different fits differ by F (1)

g (0)/F (2)
g (0) = 2/3.24 = 0.62; however,

this limit is reached at extremely large A, as shown in Fig. 8. This
is due to a rather small radius of the transverse gluon density
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Fig. 8. The quantity 〈x〉 as a function of A, calculated with the densities of Eq. (23)
and large values of A. The values of m2

g are given in GeV2.

rtr
g � 0.5 fm and low nuclear density, leading to a small proba-

bility for more than three nucleons to significantly screen each
other up to very large A. To investigate the onset of asymptotic,
we evaluated the A dependence of the quantity 〈x〉 = ∫

dx P (x)
at zero impact parameter for the two considered gluon GPDs for
two values of m2

g corresponding to x ∼ 0.01 and 0.6 GeV2 cor-

responding to x ∼ 10−4. We modeled nuclei with very large A by
generating random nucleons with constant density ρ0 = 0.17 fm−3

in a cylinder centered at b = 0, with height 2R A , where R A =
1.25A1/3; the results, shown in Fig. 8, are independent from the
radius of the cylinder, provided it is larger than about 0.8 fm. It
can be seen that, the GPDs being very peaked at ρ = 0, the in-
crease of 〈x〉 is very slow and the maximum value is not reached
even with A as large as 105. Onset of asymptotic is somewhat
faster for smaller mg due to a smoother behavior of GPDs at
ρ � 0.
5. Conclusions

We developed a MC event generator for nucleon configurations
in nuclei which correctly reproduces single nucleon densities and
central NN correlations in nuclei. The generator can be used in
modeling a wide range of processes. In particular, it would be in-
teresting to explore how it would modify effects of fluctuations of
the number of wounded nucleons in the heavy ion collisions.
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