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SUMMARY

We report a scalable method to monolithically inte-
grate microscopic light emitting diodes (mLEDs)
and recording sites onto silicon neural probes for op-
togenetic applications in neuroscience. Each mLED
and recording site has dimensions similar to a pyra-
midal neuron soma, providing confined emission
and electrophysiological recording of action poten-
tials and local field activity. We fabricated and im-
planted the four-shank probes, each integrated
with 12 mLEDs and 32 recording sites, into the CA1
pyramidal layer of anesthetized and freely moving
mice. Spikes were robustly induced by 60 nW
light power, and fast population oscillations were
induced at the microwatt range. To demonstrate
the spatiotemporal precision of parallel stimulation
and recording, we achieved independent control of
distinct cells �50 mm apart and of differential
somato-dendritic compartments of single neurons.
The scalability and spatiotemporal resolution of this
monolithic optogenetic tool provides versatility and
precision for cellular-level circuit analysis in deep
structures of intact, freely moving animals.

INTRODUCTION

During the past few decades, electrical stimulation of the brain

has brought tremendous insight on its functions (Tehovnik,

1996). To further advance neuroscience and study how large

families of neurons interact with each other in complex networks,

selective activation and silencing of single neurons of specific

types is required. Currently, neither specific activation nor

silencing of neurons can be achieved effectively by electrical

stimulation (Butovas and Schwarz, 2003).

Recently, optogeneticshas revolutionizedneural circuit analysis

by introducing photosensitive proteins (opsins) into specific cell

types, so that these cells can respond to an optical stimulus with
1136 Neuron 88, 1136–1148, December 16, 2015 ª2015 Elsevier Inc
well-defined action potential patterns (Boyden et al., 2005; Dei-

sseroth, 2011; Nagel et al., 2003). Using appropriate wavelengths

to target a particular opsin, cell-type specificity can be achieved

with well-controlled temporal resolution. For example, channelr-

hodopsin-2 (ChR2) and halorhodopsin can be co-expressed in

the same cells, allowing depolarization and hyperpolarization of

the target neurons using blue (�473 nm) or yellow (�590 nm) light,

respectively (Gradinaru et al., 2010; Han and Boyden, 2007). In

principle, this type of combinatorial cell-specific targeting allows

sophisticated manipulations of neural activity. Assuming that sin-

gle neurons can be addressed selectively, one could test spike

timing during specific neural computations and behaviors at the

temporal resolution of a few milliseconds in the intact brain.

Despite the rapid advancement of optogenetics in recent

years, supporting technology to reliably deliver light to and record

electrical signals from deep brain structures in freely moving an-

imals is not readily available. Early work involving in vivo optoge-

netics relied on manual assembly of commercially available

recording components such as metal electrodes (Anikeeva

et al., 2012; Gradinaru et al., 2007) or passive high-density probes

(Stark et al., 2012) with optical fibers, which are bulky and may

suffer from misalignment errors. Moreover, the spatial resolution

of fiber-based optogenetic devices is limited by the bulk of the im-

planted fibers. More recently, an engineering effort has evolved

toward micro electro mechanical systems (MEMS) technologies

for miniaturization, high-density integration, and patterning at

the lithographic resolution. Planar probe architecture is an ideal

platform for the integration of optics, because of the versatility

of surface micromachining processes to form multiple layers of

high-density active components. As the first step toward

confining light output, our previous work has demonstrated a

neural probe with integrated optical waveguide to couple light

from an external optical fiber to a microscopic stimulation site

(Wu et al., 2013). However, this approach is difficult to scale,

due to the tethering optical fibers that can restrict animal move-

ments and may cause mechanical damage to the implanted

probe during behavioral experiments. To avoid using bulky fibers,

another group has demonstrated the feasibility of coupling a bare

laser diode chip (emission centered at 650 nm) to an integrated

waveguide (Schwaerzle et al., 2013). Semiconductor diodes

require only thin, flexible cables to power, which can alleviate
.
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constraints on behaving animals. While LEDs are available at

much lower cost and in various wavelengths as compared to

laser diodes, the coupling efficiency between an integratedwave-

guide to the Lambertian emission profile of LEDs is severely

limited by the principle of etendue (Wilm, 2008).

This work describes an innovative solution to enhance both

spatial resolution and scalability of optogenetic stimulation and

recording probes. Instead of coupling extra-cranial light sources

to waveguides, the light sources can be miniaturized and directly

integrated at the stimulation sites. InGaN LEDs are potentially

attractive for optogenetic applications because their emission

wavelength can be tuned across the visible spectrum to target

a range of opsins (Zhang et al., 2003). However, GaN-based ma-

terials have very limited substrate choices and are conventionally

fabricated on either sapphire or SiCwafers forminimal dislocation

density (Kukushkin et al., 2008). Indeed, microscopic LEDs

(mLEDs) fabricatedon a sapphirewafer were predicted toproduce

sufficient optical power to activate ChR2 without overheating the

surrounding tissue (McAlinden et al., 2013) and demonstrated

in vivo activation of cortical neurons in anesthetizedmice (McAlin-

den et al., 2015). However, light scattering from the transparent

sapphire substrate and having the recording sites on a separate

silicon probe can limit the spatial resolution of the stimulation

and recording. In addition, sapphire wafers cannot be microma-

chined accurately to formneedle-like probe structures forminimal

insertion damage. In principle, this limitation may be circum-

vented by transferring microfabricated LEDs from the sapphire

wafer to another polymer substrate using the laser lift-off tech-

nique, which can provide injectable mLEDs (Jeong et al., 2015;

Kim et al., 2013). Although the flexibility from the polymer sub-

strate can alleviate micro-motion-induced tissue damage, the

overall size of the injected components is several hundreds of mi-

crons in width (affecting large neuronal groups or entire regions)

and is difficult to mount onto micro-drives for post-implantation

fine-tuning of the insertion depth. In this work, we strive to push

the limits of scaling, both in terms of the number of optical stimu-

lation sites and component (mLED) size, with the goal of increasing

the spatial resolution. In contrast to previous efforts (Kim et al.,

2013; McAlinden et al., 2013), we monolithically integrated the

mLEDs and recording electrodes on silicon probe shanks, with

all dimensions defined with a resolution of < 1 mm. Unlike flexible

probes, the rigid shanks and their integrated components remain

intact after implantation to provide precise geometry of stimula-

tion and recording sites for circuit mapping; the entire device is

mounted on a movable micro-drive, enabling depth optimization.

We demonstrate that these ‘‘mLED probes’’ enable control of

spiking of single neurons and induce field oscillations of neuronal

activity in the intact brain of freely moving mice with unprece-

dented resolution, so that optical stimulation of a very specific

neural circuit is no longer limited by the light delivery methodol-

ogy, but rather is rather bottleneckedby the expression specificity

of current opsin technologies.

RESULTS

Design: Scalable and High-Precision Optogenetic Probe
We have developed a multi-shank optogenetic neural probe that

can provide spatially confined optical stimulation of simulta-
Ne
neously monitored neurons in behaving animals. A four-shank

probe has a total of 12 mLEDs and 32 recording electrodes, all

monolithically integrated on the probe tips to cover a 200 mmver-

tical span (Figure 1A). The electrodes have a vertical pitch of

20 mm, arranged in a high-density cluster designed to identify

single units from a highly populated brain structure such as the

CA1 pyramidal layer. At the center of each octo-electrode clus-

ter, a linear array of three mLEDs with a 60-mmpitch is integrated.

Each mLED has an emission area of 150 mm2 (10 mm 3 15 mm),

comparable to the cross-section of a soma of a typical pyramidal

neuron. The mLED is less than 0.5 mm thick, which is at least an

order of magnitude thinner than optical fibers or integrated

waveguides for reduced insertion damage. The fabricated probe

is shown in Figure 1Bwith either a single ormultiple mLEDs driven

simultaneously. The relative intensity from a mLED as projected

onto a CCD camera is mapped in Figure 1C. The light output fol-

lows a Lambertian profile and is attenuated when propagating

through the brain ambient (Figure 1D). Depending on the mLED

output power and the threshold of cell activation, the effective

stimulation resolution can be confined to the range of several

tens of microns or less (Figure 3D). Because the mLED intercon-

nection traces were lithographically patterned to have 4-mm

width and 2-mm spacing, we could integrate three light sources

per shank in this first-generation device, while maintaining the

same 70-mm shank width that could only carry a single wave-

guide in previous designs (Wu et al., 2013). The mLED intercon-

nectionwidth of 4 mmwas designed conservatively to avoid elec-

tromigration and Joule heating-induced defects in cases where

current injection of more than 10 mA is needed (less than

10 mA is required for photostimulation of nearby neurons, see

below). Connections to external electronics were made using

flexible, lightweight cables, which enable free animal move-

ments. Figure 1E demonstrates the recording of multiple cells

from the hippocampal CA1 pyramidal layer and the optically

induced, localized spiking during illumination by a particular

mLED. With 12 mLEDs distributed across four probe shanks

(250 mm pitch), there are 4,096 (212) possible combinations at

any time that can be programmed to manipulate multi-neuronal

spike timing across a neuronal network. This will allow versatile

manipulation of neural circuits in deep structures of behaving

animals at an unprecedented spatiotemporal resolution.

Monolithic Integration of mLEDs on Silicon: Fabrication
Process
In contrast to previous approaches using sapphire as the LEDmi-

crofabrication substrate (Kim et al., 2013; McAlinden et al., 2013;

Zhang et al., 2003), we have designed a process that can mono-

lithically integrate InGaN mLEDs onto silicon substrate to achieve

minimally invasive, needle-like shank structures using precise sil-

icon micromachining techniques. Silicon also has approximately

five times higher thermal conductivity than sapphire, allowing

more effective dissipation of heat generated by the mLEDs

(Mion et al., 2003). In addition, having an opaque silicon substrate

confines light emission to the topside of the mLEDs, whereas the

on-sapphire LEDs can emit light through the transparent probe

shanks, leading to poor illumination resolution.

Fabrication steps are shown as schematics (Figure 2A)

through the A-A’ cross-section (indicated in Figure 2B). Briefly,
uron 88, 1136–1148, December 16, 2015 ª2015 Elsevier Inc. 1137



Figure 1. mLED Probe Drives Localized Spiking in Freely Moving Mice

(A) 3D schematic of the mLED probe. Probe consists of four shanks, and each shank is integrated with eight Ti/Ir recording sites (11 mm 3 13 mm) and three

interspersed mLEDs (10 mm 3 15 mm).

(B) Photograph of an implantation-ready probe on a penny and high-magnification images of the illuminated mLEDs (inset, scale bar, 15 mm).

(C) The intensity map of a mLED as captured by a CCD camera.

(D) Estimated spread of light in brain during mLED illumination.

(E) Snapshot of 600 ms of continuous recording from the CA1 pyramidal cell layer of a freely moving CaMKII::ChR2mouse. Wide-band (0.3–10,000 Hz) and high-

pass filtered (800 Hz) traces are shown for three sites, one from each shank (S2, S3, S4), during illumination (peak power, 700 nW) of the central mLED on shank 4

(S4). Raster plots at bottom show spike times of pyramidal cells (PYR, red) and interneurons (INT, blue). Note time-locked spiking of multiple PYR on the illu-

minated (S4) but not other shanks.
the process begins with a commercially available Si (111) wafer

with quantum-well epitaxial layers grown to have a centered

emission at 460 nm (Figure 2A1; NOVAGAN). The mLED mesa

structures are defined by plasma etching. A Ni/Au (5/5 nm) layer

spreads the injected current uniformly across the top surface of

the mLED (Figure 2A2). The current spreading layer also forms an

ohmic contact to the p-GaN layer with contact resistance of 10�5

U-cm and gives 75% transparency to blue light (460 nm). Depo-

sition of a 500-nm-thick SiO2 insulates the mesa sidewalls and

n-GaN, with the contacts to the n-GaN layer opened by wet
1138 Neuron 88, 1136–1148, December 16, 2015 ª2015 Elsevier Inc
etching. A Ti/Al/Ti/Au (50/250/50/100 nm) layer is patterned to

form parallel electrical interconnection lines to carry the signals

from recording channels and to deliver power to the mLEDs (Fig-

ure 2A3). GaN is etched completely outside of the probe shanks

to expose the underlying silicon (Figure 2A4). Next, Ti/Pt/Ir (10/

50/50 nm) is sputtered and patterned to form the recording elec-

trodes (11 mm3 13 mm; Figure 2A5). The electrode impedance is

approximately 1 MU at 1 kHz. Finally, the silicon substrate is

etched from the top (Figure 2A6) and the bottom (Figure 2A7)

to release the 30-mm-thick probes from the wafer. The fabricated
.



Figure 2. mLED Fabrication

(A) Fabrication process of the mLED probe shown across A-A’ (B): (1) epitaxial layers grown on a (111) silicon wafer; (2) formation of LED mesa and opening of

n-GaN contact; (3) patterning of Ti/Al/Ti/Au for interconnection lines; (4) plasma etching of field GaN; (5) deposition of oxide dual layer and patterning of Ti/Ir

recording electrodes; (6) frontside DRIE to define the probe shank dimensions; (7) backside thinning to release the probes from wafer.

(B) Microscope and SEM (inset) images of the released probe. Scale bars: 70 mm and 6 mm (inset).

See also Movie S1.
mLEDs can be controlled independently (Figure 2B and Movie

S1). High-magnification SEM image of a mLED with the nearby

interconnects and contacts (Figure 2B, inset) illustrates the

high-precision alignment and integration density achieved by

taking the monolithic approach.

mLEDsDriven by mAmpCurrents Provide Sufficient Light
for ChR2 Activation without Excessive Heating
Electro-Optical Characterization of mLEDs

Comparedwithmacro LEDs, the reduction of mLED size can help

to distribute current evenly through the Ni/Au layer, leading to

uniform light emission (Figure 1C). However, micro-features are

potentially more sensitive to fabrication defects. In our design,

multiple mLEDs biased under the same voltage show uniform

emission, indicating consistent fabrication quality in terms of

contact resistance, interconnect resistance, etc. (Figure 1B

and Movie S1). Any variation would be observable as non-uni-

form illumination, since the optical power is an exponential func-

tion of the voltage across the mLED junction.

The detailed characterization of the mLEDs is summarized in

Figure 3. Figure 3A shows the I/V curve of a representative

mLED. The differential resistance increases as the mLED mesa

area is reduced (Figure S1A). Figures 3B and 3C illustrate the

operation consistency measured from five randomly selected

mLEDs. As a reference, 0.15 mW light output corresponds to 1

mWmm�2 intensity at the mLED surface (150 mm2). This intensity

is sufficient to activate ChR2 (Stark et al., 2012) and can be

achieved by applying less than 8 mA (Figure 3B). At high injection

(�13 mA), the optical output saturates around 53 mW (353 mW

mm�2), which offers the option to stimulate a larger cell popula-
Ne
tion (Figure S1B). The measured peak plug efficiency is around

0.87% (Figure 3C). The attenuation of light intensity across the

brain media is shown in Figure 3D, which further confines the

stimulation towards a small group of neurons.

Thermal Modeling

The mechanism responsible for the generation of a neural action

potential can be affected by temperature. Even during normal

animal behavior, brain temperature change can be as much as

3�C between active and resting states, affecting the action

potential waveform on the cellular and population scale in a

complex manner (Andersen and Moser, 1995). We have devel-

oped a bio-heat transfer model using COMSOL Multiphysics

(COMSOL Inc.) to simulate the temperature change during

various mLED operation conditions. As there is no accepted

threshold temperature for the safe operation of implantable neu-

ral devices (Elwassif et al., 2006), we loosely define the

‘‘threshold’’ as 1�C temperature rise in our analysis. To build a

conservative model, we assumed that all electrical input power

is converted into heat. In addition, we only analyzed the temper-

ature increase caused by the most distal mLED (LED1 in Fig-

ure S2A). As illustrated in Figure S2B, the thermal energy gener-

ated at the mLED is most effectively dissipated through the

thermally conductive silicon probe shank toward the proximal

end. Therefore, LED1 generates the greatest temperature rise

at any given input power, because the probe tip has the largest

thermal resistance to the ‘‘heat sink.’’

The induced temperature change is strongly dependent on the

mLED input power waveform. With the initial temperature set to

37�C, Figure 3E shows the temperature rise at the surface of

the mLED using the worst case: DC-bias at various input voltages.
uron 88, 1136–1148, December 16, 2015 ª2015 Elsevier Inc. 1139



Figure 3. Characterization of the mLEDs

(A) Current versus voltage.

(B and C) Optical power and plug efficiency versus current, respectively (mean and SEM, n = 5).

(D) Light intensity modeling in the brain along the main axis of the mLED (perpendicular to the probe surface) at a logarithmically spaced array of light power. At

4 mW (at which iHFOs are consistently generated, Figure 6), intensity falls below 1 mW mm�2 by 37 mm from the mLED; at 40 nW (at which local spiking is

consistently induced, Figure 4), intensity falls below 0.1 mW mm�2 by 6 mm.

(E and F) Thermal modeling of mLED during continuous operation at various bias voltages: (E) mLED surface temperature rise over 10 s; (F) time required to elevate

the brain temperature to 38�C at various distances away from the mLED surface.

(G) Thermal modeling of mLED using 5-Hz sinusoid voltage bias waveforms: the temperature rise follows the light power waveform (blue dash, normalized) rather

than the voltage command (black dash, normalized), with minimal heat accumulation after five cycles. See also Figures S1 and S2.
The results indicate that all operating conditions shown in Figures

3A–3C, which are below 3.4 V, are safe even when the mLED is

driven continuously for 10 s. In addition to the thermal conduction
1140 Neuron 88, 1136–1148, December 16, 2015 ª2015 Elsevier Inc
through the silicon probe shank, the brain ambient also helps to

dissipate heat via conduction and blood perfusion. Also, because

of the large thermal capacitance of the brain, we expect the
.



temperature rise of the brain to be slower than on the mLED sur-

face. Figure 3F shows the time required to elevate the local brain

temperature to 38�C for the higher-bias voltages (> 3.65 V), which

increases exponentially as a function of the distance away from

the mLED top surface. In vivo studies often use pulsed light output

with duration under 100 ms. To achieve this light duration with

minimal cross-talk onto the recording channels, we used low-fre-

quency sinusoidal voltage waveforms in our in vivo experiments

(Figure S3) to drive the mLEDs. Because the mLEDs emit light

only above�2.5 V, a 5-Hz voltage sinusoid (with a parametrically

swept peak amplitude between 2.5 and 4 V; dashed black trace,

Figure 3G) generates short light transients, which are essentially

‘‘rounded pulses’’ with a duration that varies linearly with the

voltage command (44 ms with a 3 V peak; 74 ms with a 4 V

peak, dashed blue trace, Figure 3G). Because of the small duty

cycle (mean, 26%; range, 16%–37%), heat accumulation is min-

imal, with less than 0.1�C difference between the peak tempera-

ture of the first and the fifth cycle. Beyond 3.85 V input, the peak

temperature can transiently reach 38�C; however, whether a few

milliseconds of heating beyond 38�C has adverse effect on the

adjacent neural network is unknown.

As an indirect assessment of the heating effect on neuronal

activity, we compared the spike waveforms of CA1 pyramidal

cells (PYR) during spontaneous activity and during same-shank

illumination (Figure S4). At low bias voltages (%3.1 V), wave-

forms during light were unmodified (p = 0.3, exact Binomial

test; Figure S4A). Increasing light power caused increased

distortion (rank correlation between voltage bias and wave-

form consistency, �0.2; p = 0.02, permutation test; Figures

S4B–S4D). However, high-power illumination was occasionally

accompanied by high-frequency (2 kHz) oscillations, limiting

the interpretational power of these observations. A direct

assessment of the heating effect was performed in control

mice (without ChR2). No changes of action potential waveform

were detected (Figures S4E–S4G), demonstrating that heating

during brief mLED stimulation has negligible effect.

Spatial Control of Spiking with Sub-microwatt Power
Light
To test the in vivo performance of the mLED probes, we im-

planted them in the CA1 pyramidal cell layer (n = 6 mice). In

CaMKII::ChR2 animals (n = 4; Figure 4) but not in control (wild-

type, n = 2; Figure S3) animals, focal illumination via a single

mLED induced spiking of nearby neurons in an intensity-depen-

dentmanner. Sub-microwatt (60–120 nW; ‘‘low power’’) illumina-

tion induced time-locked spiking of one or more neurons in the

immediate vicinity of the mLED (Figure 4A); assuming a neuron-

mLED distance of 10 mm, this activation threshold translates to

0.1–0.2 mW mm�2, values comparable to those observed using

manually fabricated diode-probes (Stark et al., 2012, 2013).

More cells were induced to spike upon ‘‘higher-power’’ illumina-

tion (0.8–1.2 mW; Figure 4B). Using ‘‘low-power’’ illumination

from one of two mLEDs positioned 60 mm apart and thus strad-

dling the CA1 pyramidal cell layer from above and below, distinct

neurons could be controlled independently in the intact brain of

freely moving mice (Figure 4A).

To quantify the dependence of the magnitude of the induced

spiking on mLED-neuron distance and light power, we estimated
Ne
the location of the soma of each neuron according to the spike

amplitude distribution (Figure 4Ac) and defined spiking ‘‘gain’’

as the spiking rate during light divided by the rate of the same

neuron in the lack of illumination. Even during ‘‘high-power’’ illu-

mination, when multiple neurons are typically driven, the effect

on spiking was strongly dependent on the mLED position (Fig-

ure 4B). To distinguish between direct (light) and indirect (circuit)

effects, we classified the recorded cells into PYR (directly acti-

vated in CaMKII::ChR2 mice due to the paucity of recurrent con-

nections between PYR in CA1; Thomson and Radpour, 1991)

and interneurons (INT; indirectly activated) using a Gaussian

Mixture Model (Stark et al., 2013). Consistent with the examples

(Figures 4A and 4B), the spiking gain of directly activated PYR

depended on both light power (rank correlation: 0.24, p <

0.001, permutation test; 38 PYR yielding 690 cell/power/mLED

combinations; Figure 4C) and mLED-soma distance (rank corre-

lation: �0.27, p < 0.001; Figure S5B). A similar pattern was

observed for indirectly driven interneurons (INT; rank correlation

with light power: 0.32, p < 0.001; with mLED-soma distance:

�0.19, p < 0.001; 11 INT, 235 cell/power/mLED combinations;

Figure S5). Moreover, gain was consistently higher when the

mLED was in stratum pyramidale or below the cell body (i.e., in

stratum radiatum) thanwhen the mLEDwas above (i.e., in stratum

oriens; rank correlation: �0.23, p < 0.001; Figure 4C). Thus, the

mLED probes enable independent control of distinct cell popula-

tions within the densely packed CA1 pyramidal cell layer.

Temporal and Multilayered Control
Neither the gain-intensity curve nor the gain-distance curve ex-

hibited a step-function profile (Figure 4C). For the gain-intensity

curve, this may be explained by some ChR2 activation even at

very low power and subsequent gradual recruitment of ChR2

channels, and a similar explanation might account for distant

somata. Yet the soma of a single neuron located close to the

probe shank is expected to receive very different illumination

by distinct neuron-size mLEDs, suggesting that the graded profile

of the gain-distance curves (Figures 4C and S5) is due to activa-

tion of non-somatic ChR2. Consistent with this possibility, we

occasionally observed more robust driving of spiking during

stratum oriens (putatively basal dendritic; Figure 5A, mLED2)

compared to direct somatic illumination (mLED1). A similar profile

was observed for simultaneously recorded indirectly activated

INT (Figure 5A).

To quantify the dependence of spike timing on mLED-neuron

distance during periodically applied light, we assigned a ‘‘phase’’

for each spike: phase 0 corresponds to the time of peak light po-

wer, whereas phasep (or�p) corresponds to an offset of 100ms

from the peak. The mean of all spike phases defines the offset of

spiking from time of peak light, and their standard deviation de-

fines the temporal jitter in the induced spiking. Jitter consistently

depended on light power (rank correlations: PYR: �0.37, p <

0.001; INT: �0.44, p < 0.001) but inconsistently on mLED-neuron

distance (PYR: 0.05, p = 0.19; INT: �0.15, p = 0.03; Figure 5B;

see also Figure S5). However, PYR jitter was always lower than

the jitter of the indirectly activated INT, both overall (medians:

PYR: 29 ms; INT: 46 ms; p < 0.001, Mann-Whitney U test) and

for every distance bin (p < 0.01 for all eight bins). Spiking

occurred consistently earlier for smaller mLED-neuron distances
uron 88, 1136–1148, December 16, 2015 ª2015 Elsevier Inc. 1141



Figure 4. mLED Illumination Induces Local Spiking

(A) Focal control of pyramidal cells (PYR) in distinct parts of the CA1 pyramidal cell layer (freely moving CaMKII::ChR2 mouse). a. Snapshots show wide-band

traces from eight recording sites during brief illumination by two mLEDs. Pink/red traces depict spikes of two PYR responding to focal illumination. b. Same data,

high-pass filtered (800 Hz) to emphasize spike timing and localization. c. Spike raster plots, showing all spikes that occurred during 90 periodic stimulation cycles

at 330 nW. Insets show spikes binned according to time (light peak, phase zero; 100 ms offset, phase p). Note consistent spike waveforms during light and

spontaneous (Spont) activity and time locking of pink (bottom) PYR to mLED1 and red PYR to mLED2.

(B) Spatial biasing of PYR spiking within CA1: (left) same recording sites as in (A) during light of ten times higher power, driving the red PYR and recruiting

additional units; (right) illustration of spatial biasing by distinct same-shank mLEDs (peak power, 1.2 mW). Gain is defined as spiking rate during light divided by the

baseline rate. Pink/red circles depict the same units shown in (A).

(C) Dependence of PYR (n = 38) gain on light power (abscissa) and mLED-soma distance, estimated by waveform amplitude distributions. Error bars, SEM;

numbers, rank correlation coefficients; ***p < 0.005, permutation test. Gain is higher when light power is higher and when the mLED is very close or just below PYR

somata.

See also Figures S3, S4, and S5.
(PYR rank correlation: 0.21, p < 0.001; INT: 0.52, p < 0.001;

Figures 5B and S5). Together, these observations indicate

that multilayered control may be achieved using multiple mLEDs

and emphasize the potential usefulness of confinement of opsin

expression to restricted domains of neurons.

mLED Illumination Generates Synthetic Ripples
Upon recording from the CA1 pyramidal cell layer of freely

moving mice, spontaneously occurring high-frequency ‘‘ripple’’

oscillations (Buzsáki et al., 1992) are readily observed. Since

high-frequency oscillations (HFOs) can be induced synthetically

by fiber illumination above the layer in intact rodents (Stark et al.,

2014), we hypothesized that induced HFOs (iHFOs) could also

be generated by more focal illumination. In contrast to single-

cell activation, which could be driven non-somatically, the depth

profile of the iHFOsmay serve as a proxy to somatically confined
1142 Neuron 88, 1136–1148, December 16, 2015 ª2015 Elsevier Inc
opsin activation because of the synchronized somatic output of

several cells, which can average out the effects of non-somatic

opsin drive.

The center of the CA1 pyramidal cell layer was defined as the

recording site with the peak ripple amplitude (Figure 6A). Intra-

cortical illumination using a mLED close (%20 mm) to the center

of the layer generated iHFOs (frequency range, 85–155 Hz)

with power increasing in an intensity-dependent manner (Fig-

ure 6B). While low-power illumination only induced spiking

(Figures 1E, 4A, and 6B, top), illumination with higher power

organized spiking into ripple-range oscillations of monotonically

increasing amplitude (rank correlation between peak light power

P0 and peak oscillation power Z0: 0.71; p < 0.001, permutation

test; n = 56 recording sites; Figure 6C). These observations indi-

cate that intra-layer illumination of pyramidal cells is sufficient to

induce synthetic ripples.
.



Figure 5. Multilayered Control of Spiking

(A) Spiking of a PYR (red triangle) and an inter-

neuron (blue circle) recorded from the CA1 pyra-

midal cell layer of a freely moving CaMKII::ChR2

mouse during illumination (4.2 mW, 30 cycles)

within the layer (mLED1) and at a more distant

locus. Stratum oriens (mLED2) illumination induced

more robust spiking than putative somatic illumi-

nation (mLED1).

(B) Dependence of spike timing on light power

(abscissa) and mLED-soma distance. Left: PYR

spiking offset (relative to time of peak light power)

depends on mLED-soma distance. Numbers show

circular-linear correlation coefficients; error bars,

SEM; */***p < 0.05/0.005, permutation test; n = 38

PYR. Right: temporal jitter (SD of spike timing)

consistently depends on light power but incon-

sistently on mLED-soma distance. Only distance-

power bins in which the number of time-locked

units exceeded chance (p < 0.05, Binomial test)

are shown. Numbers, rank correlation coefficients.

See also Figure S5.
Induced Ripple Properties Differ during Superficial and
Deep Illumination
To determine the effect of input site (infra-layer, intra-layer, and

supra-layer) on ripple frequency and spatial extent, we compared

iHFOs recorded at the same sites by activating distinct same-

shank mLEDs. When a mLED illuminated a region above the layer

(closer to the ‘‘deep’’ sub-layers of CA1;Mizuseki et al., 2011), the

locus ofmaximal iHFOpower appeared to shift slightly above and

iHFO frequency decreased, as compared with intra- or infra-layer

illumination (‘‘superficial’’ sub-layer; Figures 6D and S6). We

quantified the influence of light source position relative to the

layer center, DS, on the shift of the iHFO center relative to the

same reference, Dm (Figure 6E). Regardless of light power,

the locus of maximal iHFO power depended on mLED position

(rank correlation between Dm and DS: 0.4; p = 0.005; since Dm

could depend on P0, we also computed partial rank correlation

betweenDm andDS, accounting forP0: 0.43, p = 0.001; Figure 6F,

left). These observations are consistent with the sublayer organi-

zation of the CA1 pyramidal layer (Mizuseki et al., 2011).

The spatial spread of the iHFOs was also influenced by mLED

location: light sources above the layer induced a larger spread
Neuron 88, 1136–1148, De
than intra-layer or infra-layer illumination

(rank correlation between s and DS:

0.32, p = 0.01; partial rank correlation

between s and DS, accounting for P0:

0.3, p = 0.03; Figure 6G). Moreover,

iHFO frequency depended on mLED

location: intra-layer illumination induced

higher-frequency oscillations than basal

dendrite (stratum oriens) illumination

(rank correlation between f0 and DS:

�0.35, p = 0.01; Figure 6H). In contrast,

oscillation power was not consistently

correlatedwith mLED location (rank corre-

lation: 0.04, p = 0.78; Figure 6I). These

observations are consistent with prior ob-
servations indicating that superficial and deep sublayers of the

CA1 pyramidal layer express different biophysical properties

(Mizuseki et al., 2011) and suggest that excitatory input at the

stratum radiatum (arriving mainly from the CA3) can recruit a

faster, more confined network than input to stratum oriens

(from entorhinal cortex/amygdala; Nakashiba et al., 2009).

DISCUSSION

Understanding the operations of local circuits is a major goal in

neuroscience, which requires both large-scale monitoring of

neuronal activity and targeted perturbation of identified circuit

elements (Buzsáki et al., 2015). The monolithically integrated

mLED probes described in this work are expected to bridge the

gap between the technological advances in semiconductors

and advanced applications in systems neuroscience.

Novel Results
Taking advantage of the unprecedented spatial and temporal

resolution of spike recording and control provided by the mLED

probes, we have made two novel observations. First, we found
cember 16, 2015 ª2015 Elsevier Inc. 1143



Figure 6. Stimulation of Pyramidal Cell Dendrites Induces More Widespread and Slower Oscillations Than Somatic Stimulation

(A) Snapshot of wide-band traces from eight recording sites of a shank implanted in CA1 of a freely movingmouse during a single CA1 ripple; gray trace indicates

the estimated center of the CA1 pyramidal cell layer; pyr, stratum pyramidale; oriens, stratum oriens; rad, stratum radiatum.

(B) In CaMKII::ChR2mice, focal illumination generates spiking and induced high-frequency oscillations (iHFOs) in an intensity-dependentmanner. Example wide-

band traces at left, time-frequency decompositions at right (continuous wavelet transform; averages of 30 same-site stimuli).

(C) iHFO frequency and peak power depend on the applied light power. Data are from n = 56 sites in which iHFO amplitude exceeded chance andwas time locked

to light (p < 0.05, permutation test). Numbers: rank correlations; */**/***p < 0.05/0.01/0.005, permutation test. Numbers in parentheses: partial rank correlations

(between the dependent variable and P0, accounting for DS).

(D) Illumination below and above the layer (light power, 4.2 mW) generates distinct iHFO patterns. Left: example wide-band traces; right: averages.

(E)Method for determining the locationof peak iHFOpower (m), spatial spread (s), and iHFOandmLED location relative toCA1pyramidal cell layer center (DmandDS).

(F–I) iHFO location (F), spatial density (G), and frequency (H), but not iHFO power (I) depend on mLED location relative to the layer. Data and conventions are the

same as in (C) (here, partial rank correlations are between the dependent variable and DS, accounting for P0). See also Figure S6.
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that illumination of the cell bodies and apical dendrites in the

stratum radiatum is more efficient in driving pyramidal cell

spiking than stratum oriens illumination (Figure 4C). This may

be due to a bias in opsin expression and/or to distinct biophys-

ical properties of the large and thick apical (radiatum) and thin

basal (oriens) dendrites of the ChR2-expressing pyramidal

cells, the former being straight and the latter oblique (Pyapali

et al., 1998).

Second, we found that focal illumination can generate syn-

thetic CA1 ripples whose properties depend on the locus of

the input, extending previous observations during fiber illumina-

tion (Stark et al., 2014). Infra-/intra-layer illumination induced rip-

ples of the highest frequency, which were also most compact in

the vertical dimension, while supra-layer (stratum oriens) illumi-

nation generated slower and more widespread oscillations

(Figure 6). These observations indicate that despite the

compactness of the CA1 pyramidal cell layer (�50 mm), multiple

ripple generators can reside within the sublayers (Lee et al.,

2014; Mizuseki et al., 2011).

Alternative Methods
By monolithically integrating mLEDs onto silicon probe shanks,

we aimed to provide optical stimulation capability with high

spatial resolution in addition to electrical recording at multiple

locations. The mLEDs provide tunable illumination such that the

tissue volume receiving sufficient power to activate ChR2 can

match the tissue volume within the recording range of certain

electrodes (Figures 1D and 3D). Such high spatial resolution con-

trol over spiking has been previously possible only by intra-

cellular current injection or by two-photonmicroscopy combined

with optogenetics (Packer et al., 2015; Rickgauer et al., 2014).

Intracellular methods are not yet scalable in freely moving ani-

mals, while the all-optical approach is not applicable to deep

structures in freely moving animals without the destruction of

overlying brain tissue. Compared to these alternatives, the

mLED probe approach is limited in that it only provides informa-

tion about spiking (and not about intracellular calcium, Vm, or

transmembrane currents) and should therefore be viewed as a

complementary method.

Limitations and Potential Solutions
Despite recent advances introducing buffer layers between GaN

and silicon, the interface defect density between GaN and sili-

con is still roughly ten times greater than that between GaN

and sapphire. As a result, the internal quantum efficiency (IQE)

of the mLED is limited: only approximately 33% of the injected

carriers can produce photons (Zhu et al., 2011). These photons

generated at the active region are emitted in all directions.

Approximately 50% of the photons are emitted toward the sub-

strate and are absorbed at the GaN/silicon interface. Of the re-

maining photons, only 8.8% can escape from total internal

reflection (TIR) at the GaN/brain interface, which has a high in-

dex of refraction contrast (nGaN = 2.45 and nbrain = 1.36). Addi-

tionally, the Ni/Au current spreading layer has 75% measured

transparency to blue light. The photon extraction efficiency is

therefore only 3.33%, which is similar to results from a previous

report (Zhu et al., 2011). Therefore, the theoretical plug effi-

ciency (Pout/Pin) for the mLED is limited to roughly 1.1% by
Ne
IQE (33%) and extraction efficiency (3.33%) alone. Despite the

seemingly low efficiency, it is shown that the mLEDs could oper-

ate at their steady state as well as transient, pulsed conditions

to emit light at an intensity high enough to activate ChR2 without

heating the ambient tissue by more than 1�C. Heat dissipation in

neuronal tissue is likely more effective than bench measure-

ments, since local brain tissue is constantly perfused by fluid.

Our experiments in control (opsin-free) mice explicitly demon-

strate that a possible temperature effect does not induce or alter

spiking activity.

A limitation of the current version of mLED probes is the low-

frequency artifacts induced during periodic activation. These ar-

tifacts were also observed in opsin-free (wild-type) animals and

were removed using offline adaptive filtering (Figure S3). As a

result, they did not hinder the analysis of spiking or LFP effects

(Figures 4, 5, and 6), but limited the range of stimulus waveforms

that could be applied. A closer analysis of the interference wave-

form revealed that the coupled signal has two components.

First, the sinusoid input voltage is coupled to nearby recording

channels (see Figure S3A, waveform from Shank 1; and Fig-

ure S3Ca, waveform at near-threshold input). We attribute this

effect to the mLED interconnects that are routed directly below

the recording interconnects on the PCB. Direct voltage coupling

between parallel interconnects on the probe shank is not likely

because the mLED anode (positive) interconnects are always

shielded by the mLED cathode (grounded) interconnects. A nat-

ural solution to this limitation is to use multiple metal layer

PCBs with a shielded metal plane completely separating the

recording channels and mLED channels. The second interference

component is a rectified waveform that is coupled to all

recording channels regardless of which mLED is driven. Because

this effect only occurs when there is significant current flowing

through the mLED (Figure S3C), we attribute this effect to capac-

itive coupling from the mLED n-GaN layer to the recording inter-

connects above: the mLED cathode will experience a finite

voltage increase only when there is current. This hypothesis is

also supported by the observation that the rectified signal is

coupled to all recording channels (Figures S3A and S3C), as

the n-GaN is a continuous layer underneath all recording chan-

nels (Figure 2A). One possible solution to minimize the coupling

from n-GaN is to modify the fabrication process with the same

strategy as the PCB design, by depositing additional metal

layers between the recording and stimulation channels as a

shield.

The final limitation to the current utility of the mLED probes re-

lates to the available opsin technologies. Non-somatic opsin

expression facilitated multilayered control (Figures 5 and 6),

but also reduced the spatial resolution of spiking control, result-

ing in a graded gain-versus-distance profile (Figure 4D). Thus,

the mLED probe can yield a better spatial resolution than it is

currently possible with simple light activation of opsin-express-

ing neurons. The full advantage of our multi-site mLED probe

technique will be achieved by confining opsin expression specif-

ically to the axon initial segment, soma, or dendritic compart-

ment. These spatially improved methods are within reach, and

we expect that the mLED probes will enable true multiple

single-neuron spatial control in the fully intact brain of freely

moving animals in the near future.
uron 88, 1136–1148, December 16, 2015 ª2015 Elsevier Inc. 1145



Novel Applications
Far-reaching experiments will be possible by mLED probes. For

instance, one could independently control superficial versus

deep pyramidal cells in the CA1 pyramidal cell layer (Figure 6)

and examine the behavioral context of ripples duringwhich these

distinct cells participate (Buzsáki et al., 1992; Girardeau et al.,

2009) or their contribution to sequence generation (Foster and

Wilson, 2006; Stark et al., 2015). Second, one could compare,

in freely moving animals, the predictions of various models of

phase precession generation (e.g., somato-dendritic interfer-

ence, dual oscillators, and network models; Harvey et al., 2009;

O’Keefe and Recce, 1993) by controlling the input to distinct

compartments of the same cell (Figure 5). These examples illus-

trate classes of experiments that were previously impossible to

carry out: independent control of nearby neurons, and indepen-

dent control of distinct inputs to a given neuron, both in deep

structures of the intact brain of freely moving animals.

Future Directions
There are several possible extensions of the mLED probe

approach, the most evident of which is its scalability. It is

straightforward to produce probes with more shanks or sites

and mLEDs per shank without changing mLED size or the ratio be-

tween the number of mLEDs and recording sites or overall probe

geometry. To further increase the integration density of mLEDs

and recording sites, the best strategies are to reduce the mLED

mesa size (Figure S1A) and/or to decrease the recording inter-

connection width from 2 mm by at least an order of magnitude

using electron-beam lithography techniques. Such modifica-

tions will enable increasing the mLED to recording site ratio,

placing yet more recording sites within a given probe area, and

produce probes with narrower shanks—while keeping light po-

wer sufficient for inducing spikes/iHFOs. Such multiple-site

mLEDs probes will be especially useful in structures where cell

bodies are present in the entire volume, such as neocortex or

striatum. Second, variations in fabrication materials and pro-

cessing steps may enable fabricating non-blue mLEDs and thus

enable the control of multiple opsin types. Finally, modifications

in probe packaging and combination with existing commercial

devices may enable wireless control, on-probe digitization, and

on-probe LED driving, among other options.

EXPERIMENTAL PROCEDURES

mLED Fabrication Process

We first etch the epitaxial layers to expose n-GaN, forming isolated mLEDmesa

structures. Then, a 500-nm-thick PECVD oxide is deposited to insulate the

mesa sidewalls. Using the same photoresist mask, the oxide is wet etched

to open contacts to p-GaN, and a semi-transparent Ni/Au (5/5 nm) layer is

patterned by liftoff to form an ohmic contact to p-GaN. Later, a separate

mask is used to open contacts to the n-GaN layer. The n-contacts have

been defined close to the mesa to minimize series resistance through n-GaN

while taking into consideration the alignment margins and routing of the inter-

connects. Next, a Ti/Al/Ti/Au (50/250/50/100 nm) layer is patterned to form the

electrical interconnection lines for recording channels as well as for powering

the mLEDs. The bottom Ti layer serves as the adhesion layer with a proper work

function to form an ohmic contact with n-GaN. The line width and spacing are

both 2 mm for the recording channels, while the line width for the LED power

lines is 4 mm to reduce the resistance, which is roughly 125 U with the

5-mm-long metal interconnect.
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Post-LED Fabrication Process

Post-LED fabrication begins with etching of the GaN layer in the field region

(outside of the probe shank) completely to expose the GaN sidewalls and

the underlying silicon substrate. Etching through the alternating stacks of

GaN/AlN buffer layers shows distinctive colors, typically a mixture of red,

green, and blue. This observation helps to time the etching process so that

the gray silicon substrate would not be over etched to form a rough topology.

Next, we deposit a double layer of dielectrics (30-nm-thick Al2O3 by atomic

layer deposition (ALD) and 500 nm thick oxide by PECVD) to insulate the

GaN layers. We etch the oxide bilayer to open contacts at the recording sites

and pattern Ti/Pt/Ir (10/50/50 nm) over the contacts to form the recording elec-

trodes. Finally, we use a double-sided DRIE process to release the probes

from the wafer: from the front side, we etch a 30-mm-deep trench that defines

the probe thickness and shape; later, we thin down the wafer from the back-

side using plasma until only 30-mm-thick silicon remains to release each probe

from the wafer. By conservatively defining 30-mm-thick shanks, we are able to

release the probes with a high yield by thinning the starting silicon substrate

(500 mm thick) by 470 mm, which requires the etch non-uniformity to be less

than 5%.

Thermal Modeling

We build a realistic 3D model in COMSOL Multiphysics from the actual single-

shank layout used in the probe fabrication. Surrounding the probe shank is a

cylinder of brain tissue that extends 0.5 mm radially from the center of

the shank. For silicon, the thermal conductivity, heat capacity, and density

are 130 W m�1 �C�1, 700 J kg�1 �C�1, and 2,330 kg m�3, respectively. For

the brain tissue, the thermal conductivity, heat capacity, and density are

0.45 Wm�1 �C�1, 3,650 J kg�1 �C�1, and 1,040 kg m�3, respectively (Elwassif

et al., 2006). The 1-mm-thick silicon dioxide insulator on the top side of the

probe shank contributes negligibly toward heat capacity and is simply

modeled as a ‘‘thin thermally resistive layer’’ with a thermal conductivity

of 1.4 W m�1 �C�1. All GaN components are submicron in thickness and

are therefore neglected in the thermal model. Heat transfer physics in the

brain with consideration of the mLED heat source and dissipation due

to blood perfusion are governed by Penne’s equation rCpðvT=vtÞ=
VðkVTÞ � rbubCbðT � TbÞ+Q, where r is the brain density, Cp is the brain

heat capacity, k is the brain thermal conductivity, rb is the blood density

(1057 kg m�3), ub is the volumetric blood perfusion rate per unit volume

(0.012 ml s�1 cm�3), Cb is the blood heat capacity (3600 J kg�1 �C�1), Tb is

the body temperature (37�C), andQ is the mLED heat source (W m�3) (Elwassif

et al., 2006). The initial temperature of the system is set at 37�C. We have

assumed a conservative boundary condition where the outer boundaries of

the system are thermally insulated without any fixed temperatures. In reality,

heat dissipation such as air convection at the proximal end of the probe where

it is outside of the brain can help to further reduce the temperature rise. The

heat source Q is defined as the product of the mLED voltage and current, so

that 100% of input electrical power is assumed to be converted to thermal po-

wer. At any given voltage, the current is computed using the diode equation

I= Ise
V=nVt , where Is and nVt are 1.276 nA and 0.1989 V, respectively, and

were derived from our measured data shown in Figure S1. We report the stim-

ulation results in terms of temperature rise versus voltages because a voltage

source was used in our in vivo experiments to drive the mLEDs.

Electrophysiological Procedures

Sixmalemice (26–33 gr, 2–4months old) were used in this study: four CaMKII::

ChR2 (B6.Cg-Tg(Camk2a-cre)T29-1Stl female, Jackson Labs #005359; cross-

bred with B6; 129S-Gt(ROSA)26Sortm32(CAG-COP4*H134R/EYFP)Hze/J male, Jack-

son Labs #012569) and two wild-type (control; C57L/6J, Jackson Labs), as

previously described (Stark et al., 2014). The first two CaMKII::ChR2 mice

were used in an acute configuration under urethane anesthesia (1.5 g/kg; Stark

et al., 2013) whereas the other mice underwent chronic implantation surgeries.

In all animals, a craniotomy was made above the right hemisphere (PA �1.6

and ML 1.1 mm), and the mLED probe was lowered to an initial depth of

0.8 mm. Subsequent movements of the probe were made in 35–105 mm incre-

ments over 15 min (acute) or 12–24 hr (chronic) intervals until approaching the

CA1 pyramidal cell layer, recognized by the appearance of multiple high-

amplitude units and spontaneous ripple events. After the initial surgery,
.



chronically implanted animals were kept one to a cage on a reversed light/dark

cycle. All animal handling procedures were approved by the New York Univer-

sity Animal Care and Facilities committee.

The mLED probe was packaged with a PCB, to which two connectors were

soldered, a 36 pin male (for recording 32 neuronal channels, a ground, and a

reference; A79022-001, Omnetics) and an 18 pin male (for driving and

grounding 12 mLEDs; A79006-001, Omnetics), and mounted on a movable

micro-drive (full turn, 280 mm; accuracy, �20 mm). Lightweight multi-strand

Litz wires (36 AWG, AlphaWire) were used to connect the mLEDs to the voltage

source while permitting free animal movement. Before surgery, light power

from the mLEDs was measured using a power meter (1936-C, Newport) versus

voltage bias. During experiments, voltage bias was applied using a single

channel of a waveform generator (50 MHz, 3390, Keithley) or a programmable

DSP (25 kHz, RX8, Tucker-Davis Technologies), controlled by MATLAB

(MathWorks). Extracellular activity was filtered (0.3–10,000 Hz), amplified

(4003; RHA2132, Intan), digitized (14 bit, 20 kHz digitization; KJE-1001,

AmpliPex), and continuously stored on disk; the applied voltage waveforms

were recorded on 12 additional channels.

During experiments, neuronal activity was inspected for spontaneous

spiking activity, and if encountered, a baseline period of at least 15 min was

recorded followed by light stimulation. Photostimulation was performed at

each mLED separately (interleaved); voltage commands had the waveform of

5 Hz sine waves, with the amplitude scaled between zero and Vmax (Vmax

ranged between 2.5 V and 4 V at 0.1 V or 0.5 V increments). This translated

to applied light with ‘‘rounded pulse’’ waveforms, with pulse duration ranging

33–74 ms (mean, 54 ms) and duty cycle ranging 16%–37% (mean, 26%); 15

pulses were applied over 3 s. Photostimulation was then followed by another

period of baseline activity.

Data Analysis

For offline analysis, spike waveforms were extracted from the wide-band re-

corded signals. Waveformswere linearly detrended, projected onto a common

basis obtained by principal component analysis of the data, and sorted

automatically (Harris et al., 2000) followed by manual adjustment. Only well-

isolated units (amplitude > 50 mV; L-ratio [Schmitzer-Torbert et al., 2005] <

0.05; ISI index [Fee et al., 1996] < 0.2) were used. Subsequently each unit

was tagged as excitatory/inhibitory (based on peaks/troughs in the short-

time [±5 ms] pairwise cross-correlation; p < 0.001, convolution test; Stark

and Abeles, 2009) and/or classified as putative PYR or INT based on a

Gaussian-mixture model (Stark et al., 2013; p < 0.05). We recorded a total of

93 well-isolated cells from CA1 of four freely moving and two anesthetized

mice (one session per animal). Of these, 62 were PYR and 31 were INT.

For the analysis of spike timing relative to the periodic voltage input (period,

T = 200 ms; Figures 5 and S5), a phase was assigned to each spike: spikes

occurring at the peak of the voltage bias (peak of light power, Figure 3) were

assigned a phase of 0, and spikes occurring at the trough of the voltage bias

(100 ms offset from the peak of the light power) were assigned a phase of p

(or �p). We then computed, for each neuron, the circular resultant vector R

of all spike phases; the length of R (circular variance) defines the temporal jitter

J in the induced spiking ðJ= ðT=2pÞ, ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�2 logjR jp Þ, and its angle (mean phase)

defines the offset of spiking from time of peak light ððT=2pÞ,:RÞ, both in ms.

During application of a voltage bias to mLEDs, time-locked artifacts were

evident in the wide-band traces; these were observed even in saline (Fig-

ure S3A) and in wild-type animals (Figure S3C). At low voltages, sinusoidal

(voltage-like) artifacts were typically localized to channels recorded on the

same shank as the biased mLED (Figure S3) and became more widespread

at higher bias, where superimposed rectified (current-like) artifacts dominated

the low-frequency component of the extracellular signals (Figure S3C). Before

spectral analyses (Figures 6 and S6), artifacts were removed by triggering,

averaging, and subtracting, for each neuronal channel separately, resulting

in ‘‘cleaned’’ traces.

For a given effect size, the power of any statistical test depends on the

a level. To increase the sensitivity of detecting effects, results are reported

based on a significance threshold a = 0.05, and all groups included enough

samples to enable rejection of the null at that level. Resampling (one-sided per-

mutation) tests were used for the testing the significance of rank correlations,

and non-parametric testing was used in all other cases.
Ne
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