Radiosensitive individuals with low spontaneous level of γH2AX foci (n=3) and 2) radiosensitive individuals with high spontaneous level of γH2AX foci (n=3).

Results: An inverse correlation was found between the spontaneous level of γH2AX foci and the frequency of micronuclei after irradiation (R=0.37, p=0.025). After gene expression analysis with microarrays, several genes were identified whose differential expression could be associated with an efficiency of DNA repair and radiation sensitivity. XRRA1 gene with unknown functions, recently associated with radiosensitivity in tumor lines, was down-regulated both before and after irradiation in radiosensitive group. Furthermore, in unirradiated samples of radiosensitive individuals thrombospondin gene (THBS1), well-known radiosensitizer, was down-regulated. However, several genes were significantly up-regulated, including HERC2, important player in the assembly of DNA repair foci, and histone genes (H1, H2A, H4). After irradiation, several DNA repair genes (WHSC1, POLN, ERCC5, DCLRE1C) were significantly up-regulated, but EIF2A and PNPLA5 genes, involved in apoptosis and autophagy, were down-regulated in radiosensitive group. This is consistent with low levels of apoptosis and increased proliferation in lymphocytes of these individuals.

Conclusion: The obtained results indicate that spontaneous γH2AX foci activate DNA damage response in human somatic cells and provide opportunities to clarify the role of the expression of identified genes in the formation of chromosomal aberrations in human cells after exposure to radiation.

EP-2066

Phospholipase Cε as a biomarker of prostate cancer radioresistance

A. Tyutyunnykova1, G. Telegeev2, A. Dubrovskaya3,4,5

1Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf; 2Oncoray-National Center for Radiation Research in Oncology- Faculty of Medicine and University Hospital Carl Gustav Carus-, Dresden, Germany

2The Institute of Molecular Biology and Genetics of NASU, Molecular Genetics, Kyiv, Ukraine

3Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Oncoray-National Center for Radiation Research in Oncology- Faculty of Medicine and University Hospital Carl Gustav Carus-, Dresden, Germany

4Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiation Oncology, Dresden, Germany

5German Cancer Consortium DKTK, DKTK, Dresden, Germany

Purpose or Objective: Radiotherapy is a curative treatment option in prostate cancer. Nevertheless, many men with prostate cancer develop recurrence of their disease. Identification of the predictive biomarkers and signaling mechanisms indicative of tumor cell radioresistance bears promise to improve cancer treatment. In our study we show that Phospholipase Cε (PLCε) might contribute to prostate cancer radioresistance.

Material and Methods: Gene expression profiling of prostate cancer cells and their radioresistant derivatives, western blot analysis to assess PLCε expression in the parental and radioresistant cells and in cell cultures after irradiation, radiobiological cell survival analysis of the cells with genetic modulation of PLCε expression by siRNA or cDNA transfection as well as chemical inhibition of PLCε activity, fluorescent microscopy to analyze co-expression of PLCε with other markers of radioresistance. Normal 0 21 false false false EN-US X-NONE X-NONE

Results: The results of gene expression analysis, which were validated by western blotting revealed significant upregulation of PLCε in prostate cancer radioresistant cells that can also be seen after irradiation of the parental cells with a single dose of 4 Gy. Radiobiological survival assays demonstrated that siRNA induced PLCε knockdown and chemical inhibition of PLCε activity by Edelfosine leads to prostate cancer cell radiosensitization. In contrast, overexpression of PLCε in cells transfected with plasmid DNA results to an increase in cell radioresistance. Microscopical analysis revealed a highly expression level of β-catenin in prostate cancer cells overexpressing PLCε.

Conclusion: These results indicate that PLCε plays a role in prostate cancer radioresistance that can be mediated through activation of the WNT/β-catenin signaling pathway.

EP-2067

The adhesion of tumor cells to endothelial cells is increased by photon irradiation

H. Bühler1, P. Nguemgo-Kouam1, A. Kochanneck1, B. Priesch1, H. Hermani1, K. Fakhrian1, I.A. Adamietz1

1Marienhospital Herne- Ruhr-Univers., Klinik für Strahlentherapie und Radio-Onkologie, Herne 1, Germany

Purpose or Objective: In general the prognosis for cancer patients is poor even though only 10% die from the primary tumor. The majority of the deceases are due to metastasis. Given the fact, that more than 70% of cancer patients receive radiotherapy it seems important to clarify if radiation is involved in initial steps of the metastatic cascade - despite of innumerable clinical studies that confirm no enhanced risk of metastasis after radiotherapy. In this project we investigated whether the irradiation with photons increases the adhesion of cultured tumor cells (TC) to a layer of endothelial cells (EC) macropscopically and whether this might be caused by the induction of adhesion proteins.

Material and Methods: The experiments were performed with glioblastoma (U87.U373) and breast cancer cell lines (MDA-MB-231, MCF7), and with primary HUVEC cells. The cells were irradiated with 0, 0.5, 2, 4, or 8 Gy. Adhesion of TC to EC, both irradiated or not, was determined with 2 different methods: the VybrantTM cell adhesion assay and the ibidi pump system that allows to mimic the physiological blood stream in the vasculature. In addition, the expression of the adhesion-related proteins E-selectin, VCAM1, ICAM1, N-cadherin, integrin β1, and PECAM1, 4h after irradiation with 4 Gy, was analyzed by qRT-PCR and by Western blotting.

Results: Irradiation increased significantly the adhesion of TC to EC. With glioblastoma cells the highest increase of about 40% was observed when both cell types were irradiated. In contrast, with breast cancer cells the highest effect of about 25% was found for irradiated TC in combination with non-irradiated EC. Analysis of the expression patterns in all cell types revealed an significant increase of adhesion proteins after irradiation in more than 80% of the experimental data sets.

Conclusion: We assume that the irradiation of tumor cells as well as of endothelial cells with photons might enhance adhesive interactions of these cells and thereby might promote the first steps of metastasis. Since clinical studies reveal no enhanced risk of metastasis due to irradiation we speculate that the therapeutic effect of radiotherapy might be additionally enhanced when the induced stickiness could be blocked effectively.

EP-2068

Effect of a 0.2 T magnetic field during radiation on DNA damage and repair in prostate cancer cells

S. Baker1, Z. Jin1, A. Ghila1, B. Warkentin1, M. Hendzel2, G. Fallone3, R. Pearcey3

1Cross Cancer Institute and University of Alberta, Radiation Oncology, Edmonton, Canada

2Cross Cancer Institute and University of Alberta, Experimental Oncology, Edmonton, Canada

3Cross Cancer Institute and University of Alberta, Medical Physics, Edmonton, Canada

Purpose or Objective: The results of gene expression analysis, which were validated by western blotting revealed significant upregulation of PLCε in prostate cancer radioresistant cells that can also be seen after irradiation of the parental cells with a single dose of 4 Gy. Radiobiological survival assays demonstrated that siRNA induced PLCε knockdown and chemical inhibition of PLCε activity by Edelfosine leads to prostate cancer cell radiosensitization. In contrast, overexpression of PLCε in cells transfected with plasmid DNA results to an increase in cell radioresistance. Microscopical analysis revealed a high expression level of β-catenin in prostate cancer cells overexpressing PLCε.

Conclusion: These results indicate that PLCε plays a role in prostate cancer radioresistance that can be mediated through activation of the WNT/β-catenin signaling pathway.