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1. Introduction

In order to integrate and locate the present article into the general program on patterns of embeddings (cf. [2,3]) we
commence with the central definition of structures of ordinals in which elementary patterns of resemblance arise.

Definition 1.1. Let Ry := (Ord; <) be the structure of all ordinals with the usual ordering <. Setting <q:=<, forn < w the
structure Ry is extended to

Ry = (0rd; (<i)i<n)
where the relations <; fori = 1, ..., n are defined simultaneously by the (in 8) inductive definition
a <i B e (a5 ()j=n) 25 (B ()j=n)
and <y, is the usual notion of X;-elementary substructure. Similarly,
Ry = (01d; (Zi)icw)
is defined by
a <i B (o5 (S)j<w) =5 (B5 (Sj<o) -

Note that we have a more liberal notion of structure in that we consider partial (possibly empty) class structures, identifying
an ordinal o with theset {y | y < a}.
Immediate consequences of the notion of Xj-elementary substructure are summarized in the following.
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Lemma 1.2. For the first four assertions below fix any of the R-structures introduced above.

1. <;jis a forest, i.e. a partial ordering in which the sets of <;-predecessors of an element are linearly ordered by <;.
2. <j;q respects <;:
o <i11 C <jand
ca < f<iy&as<iny = a<inB.
. {B | @ <1 B}isaclosed interval
. {B | @ <, B} is closed.
. Forn < m < w and the least B such that there exists an o with R, =« <, B we have

Ra NP = R [(<izn ng.
Proof. Straightforward. O

(2 BN OV)

Interpreting 0 and + as graphs of the ordinal 0 and ordinal addition restricted to the respective universe, the above
definition can be modified to extend the additive structure R, := (Ord; 0, +, <) to structures R;” and R where the
notion of X;-elementary substructure is based on the respective language including 0, +. The structure :Rf and variants
were first studied in [2] and later analyzed using familiar ordinal arithmetic in [9,11]. The general setting of underlying
Ehrenfeucht-Mostowski structures was introduced in [3] and taken as a basis to investigate a variant of REM, where EM
indicates the underlying Ehrenfeucht-Mostowski structure. The above lemma generalizes to R-structures with underlying
arithmetic structure.

This article is motivated by the ordinal arithmetical analysis of a special case of ordinal structures accommodating
elementary patterns of resemblance, namely R,. As will be shown elsewhere, many ideas applied in this article will
generalize to the higher levels. Unless explicitly stated otherwise, in this article we are going to specifically refer to the
structure R, = (0Ord; <, <1, <;). In the light of part 5 of the above lemma we will be able to naturally build upon the
approach and results of [1], however, we will obtain alternative proofs. Heuristics of the analysis of R, is exposed in [5],
however, in this article we directly deal with elementary substructurehood.

The article is organized as follows: In the preliminaries section we are going to introduce those basic arithmetical notions
that will be used throughout the entire paper. For the more sophisticated means of ordinal arithmetic used in this article the
reader is referred to [ 10,4]. In Section 3 we establish a structure on the additive principal numbers below the proof-theoretic
ordinal of KP¢y which will frequently be denoted by 1°°. The structure introduced in Section 3 will serve as the backbone for
the central Definition 4.4 in Section 4 which introduces functions on the ordinals below 1°° that will turn out to characterize
the enumeration of (suitably relativized) connectivity components of the relations <; and <, in Section 7, as can be read
off from Theorem 7.9 and its corollaries, on the basis of Section 6. Though specifically motivated by the analysis of R,, the
“facet” structure of ordinals that is introduced in Section 4 and revealed in Sections 5 and 6 is of interest in its own right. In
Section 7 we finally apply the apparatus built up in the earlier sections in order to analyze the structure &, up to the least
ordinal « such that any pure pattern of order 2 is covered below «; see Theorem 7.9 and Corollary 7.13. This ordinal « is
shown in this article to be 1°°; see Corollary 7.14. The present article provides the means for work in progress which will
show that 1% is equal to the core of R,, the union of all isominimal substructures of R,; see [3]. There we are going to show
that 1*° <; g forany 8 > 1°°. Moreover, the relations <; and <; will be arithmetically characterized within the entire R,,
and the isominimal substructures of &R, will be characterized arithmetically.

2. Preliminaries

We presume familiarity with basics of ordinal arithmetic (see e.g. [6] for a comprehensive introduction) and the ordinal
arithmetical tools developed in [10] and Section 5 of [4]. See the index at the end of [ 10] for quick access to its terminology,
which is not included in this article’s index.

For o with additive normal form a1 + - - - + ay,, according to the terminology in [ 10] also written as o =ans &1 + - - - + ap,
we define mc(«) := oq and end(«) := «,. We set end(0) := 0. As usual lete —~ S be 0if 8 > «, y if 8 < « and there exists
the minimal y s.t. « = y + B, and « otherwise.

While P, L, and E denote the classes of additive principal numbers, their limits, and epsilon numbers, respectively, let M
denote the class of multiplicative principal numbers, i.e. the positive ordinals which are closed under ordinal multiplication.
For any class X of ordinals and any ordinal « we sometimes use the abbreviation X~* for the class of ordinals in X which
are strictly greater than «. Expressions such as X=¢ are defined likewise. Note that

M = {1} U {0 | n € Ord}.
For o € Ord we denote the least multiplicative principal number greater than « by o™. Notice that if &« € P, ¢ > 1, say
o = ¥, we have o™ = a® = & .
For o € P we use the following notations for the notion of multiplicative normal form:
o o =y 1 -£ifandonlyif & = 0% € M (i.e.& € {0} UP)and either n = 1orn = @™+ M suchthat n; + - - - + 1, + &
is in additive normal form (i.e. 1, ..., ns, & € Pand ny > --- > n, > &).

o a =\ @1 - - - if and only if aq, . . ., o is the unique decreasing sequence of multiplicative principal numbers whose
product is equal to «.
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Fora € P, o =y 1 - - - a, we write If(«) for ay. Note that if « € P — M then If(¢) € M>! and @ =y @ - If(a) where
the definition of & given in [10] for limits of additive principal numbers is extended to ordinals « of a form a = 't by
& := w”'; see Section 5 of [4].

Given ordinals «, 8 with @ < 8 we write —« + $ for the unique y such thato 4+ y = B.Givena, 8 € Pwitha < S we
write (1/«) - B for the uniquely determined ordinal y < 8 such that« - y = . Note that with the representations o = w®
and B = wf we have

(1/a) - =aw @,

If o is of a form »* then we write log() for @’ and set log(0) := 0, so that for an arbitrary ordinal 8 we have logend(8) =
log(end(B)).

We denote the (strict) lexicographic ordering on sequences of objects (ordered by <) by < (<iex)-

Settings of relativization are given by ordinals from E, := {1} U E and frequently indicated by Greek letters, preferably
o or 1. Clearly, in this context t = 1 denotes the trivial setting of relativization. For a setting t of relativization we define
7% :=T" N £21. In order to avoid confusion, in the present article we will not use the notation 7y := 1%, 7z 1= r§°, and
7, 1= sup{t: |§ < A} for A € Lim as defined in [10]. Indeed, our considerations will mostly be confined to the segment 1°°.

As in [11], by Ih(«) we denote the maximum ordinal 8 > « such that @ <; g if that exists, and oo otherwise. We say
that « is 7-<;-minimal if there does not exist any 8 € (7, @) such that 8 <; «.

3. Tracking sequences

The notion of tracking sequence introduced in this section will provide us with a coarse-grained raster which operates
on the additive principal numbers below 1°°. It will turn out in the end that this already admits a rough orientation within
the structure R,. More precisely, it will be shown that any additive principal number « in the core of R; is the last element

of a finite increasing <;-chain a1, ..., «, that starts with a <;-minimal ordinal and continues (in case of n > 1) with
<,-connected ordinals «s>, ..., a, where o, is <;-minimal with lh(e;) = lh(ez) and «jq is aj-<;-minimal for i =
2,...,n — 1. The tracking sequence for « yields the indices of appropriate enumeration functions of (relativized) <;- and

<,-connectivity components that will be characterized in purely arithmetical terms in the next section. The semantical
correctness of this arithmetical characterization will be shown at the end of this article.

It will be shown that the indicator functions defined below are crucial in characterizing those (relativized)
<,-connectivity components which <;-connect back to the <;-component they started from (cf. also the comment
preceding Definition 4.4).

Definition 3.1. For t € E the indicator function x* : T* — {0, 1} is defined by

x* (&) := 0 for parameters & < 7

x (1) =1

xXT(n+E&):=x"(&)ifn+ & > 7 isin normal form

Leti < wand § = A + n € dom(¥;) where n < 2,11 | Awith& > Oin case ofi = 0.
- X" (Wi(§)) := x*(4) if n = sup, _, ¥i(A + o) or logend(n) = 0

- x*(9i()) := x" (&) otherwise.

Let x* : T* — {0, 1} be the dual indicator function,ie. x* := 1 — x".

Remark. An essential property of the y-indicator will be revealed in Corollary 5.6.

The next lemma shows an important uniformity property of the y-operator, namely that it commutes with respect to
base transformation. Recall the concept of base transformation from Section 5 of [ 10].

Lemma 3.2. Leta Tt €F o0 < 1,anda € T'lol. Then x° (7, . (@)) = x" (), i.e. the following diagram is commutative:

T o] —2— {0, 1}

NP

The analogue statement holds for x*.
Proof. Straightforward, cf. the proof of Lemma 5.6 in [10]. O

Recall the operator ¢; which indicates the degree of thinning out limit points as well as the cofinality operators ¢, , and
A from [10]. We show a crucial property of the indicator functions defined above.

Lemma3.3. lett e Eanda = ¥7 (A + 1) > 1.

(a) x* () is equal to each of the following: x* (B8 + «) forall B < t*°, x* (logend(x)), x* (@), x* (B - «) forall B € (0, ),
xT((1/B) - ) forall B € P<% and x*(A]).
(b) Ifa € E then forall§ € Tj such that x%(i; «(§)) = 1 we have x*(§) = 0.
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Proof. Part (a) follows once we show the claims concerning logend and A7. In order to verify the equality x * (logend()) =
x " () we use Lemma 4.10 of [10]. The equality concerning Aj, is clear if {; > 0 whence x*(1}) = x*(logend(x)). Let us
now assume that ¢; = 0 which implies that n = sup,_, #"(A + o) and hence x" (o) = x'(A). Since the case A = 0 is
trivial we may assume A > 0. We prove the following

Claim. Forevery & € Subg(A) we have

@ =X (1ea®).

The claim implies the desired equality since A € Subg(A) and is shown by induction on the buildup of T*-terms (cf. Lemma
7.9 of [10]). The interaesting cases are ﬁ—teﬂrms, in particular the case & = ¥1(p) wherep = & +v > Owithv < £, | &.
Setting v' := (; (V) and &’ := 1, (&) notice that

v=sup(Z +o0) vViogend(v) =0 <& VvV =supd (E' +o0)Vlogend(v') =0.

o<v o<V

Notice also that in case of v = sup, _, % (Z + o) we have the equality v’ = sup,_,, 97 (E' + « + o). We now have a closer
look at the term &’ := 1, o (£):
Case1: & = 0.

Then &' = V(@ + (10 (v0)%) where vy := —1 + v. If in this case v € E>%1 or v is a successor ordinal then we
obtain x*(§) = 0 = x"(&¢') using that @ € E since we assume A > 0. Otherwise we use the i.h. for v and obtain
XTE) =xTw) = x"() = x"¢E.

Case 2: =*1 > 2.
Then &’ = 97 (&’ + V'), and we apply the i.h. for £ and v using the equivalence from above.

Case 3: Otherwise.

Then & = 9°(E' + o + v'). In case of v > 0 we argue as in Case 2. Suppose finally that v = 0. We then have
XTE) = xTW(E' + a)) = x*(&') since ' < A due to the fact that &’ € («, ™), and the claim follows by an
application of the i.h. for &.

Part (b) is shown by induction on the buildup of & € Tj . The interesting case is where § = ¥;1(& + v) withv <
442 | E. Since the claim is clear if £ + v = 0 we may assume that & + v > 0.Setting &’ := 1, 4(§), &' := (; (&), and
V' = 1, 4(v) we again use the equivalence

v = sup %,1(& + o) Viogend(v) =0 & v’ = sup %1 (&' + o) Vvlogend(v') = 0.

o<y o<V

Now, if v = sup, _, %x+1(Z + o) Vv logend(v) = 0 then x*(¢’) = x*(&’) = 1 and hence by thei.h. x*(§) = x*(&) = 0.
Otherwise x*(§") = x*(v') = 1and hence by theih. x*(§) = x*(v) =0. O

We now define two additional operators n, and o], that will play an essential role in the definition of tracking sequences
and chains. As will be shown later, 1/, yields the index of the largest of those <,-connectivity components newly arising in
the «-th component (where « is an epsilon number greater than t) within a context locally indexed by 7. The set of contexts,
called reference points, is defined in 3.18 and shown in Corollary 4.11 to match the set of appropriate relativization points for
enumeration functions of connectivity components. Referring again to the context locally indexed by 7 from above, the a-th
component becomes a new context (within the outer context indicated by t) giving itself rise to new, larger <,-components.
In fact, reference points are exactly those ordinals whose tracking sequence consists of increasing epsilon numbers (cf. 3.18).

Staying with the same t and « as in the above explanation of i/, Qg (see Definition 3.9) where § < u; will be shown later
to yield the index of that ve-relativized <;-connectivity component which contains the largest <,-successor of v where v
is the £-th such newly arising <,-component in the «-th component.

Definition 3.4. lett € E;and o € (7, t™) NE,saya = 97 (A + n) where A = 21 - (A + k) such that A € {0} U Lim and
k < w. We define
/"L; = wlr.a()»)“‘)(a(lr,a()\))"'k'

The nextlemma will justify inductive proofs along ht, which was introduced in [ 10]. The more refined estimation will also
be used, especially when dealing with localizations. The subsequent algebraic lemmas concerning the notions of translation
and base transformation introduced in [10] will later be used without explicit mention.

Lemma 3.5. ht, (1l) < hty (X)) < ht,(«) and u7, (u3)* < o™

Proof. Immediate from the respective definitions, cf. Corollaries 7.3 and 7.6 of [10]. Note that we regard u? and (u5)"
elements of T% whereas ™ = 97 (A +n + 1) = 9%(A) as shown in [10]. O
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Lemma 3.6. Leta = U7 (A + n) € E™F. Then
Mg = Mg

forevery B =97 (I' + p) € (,a™) NE.

Proof. Immediate from the respective definitions, cf. Lemma 7.7 of [10]. O

Lemma3.7. leto, T € E o <t,anda = 9" (A+1n) e T'lelN (7, t*) NE. Then u}, € T'leland 7, . (1)) = p,;”(a), ie.

the following diagram is commutative:

.,
_I’Lﬁ

T'lo1N (7, T°) NE —— T7lo]

Mot l l”a,r

Tgm(U,O'oo)ﬂE?Ta

Proof. By Lemma 5.10 of [4] we have commutativity of " with 7, . It is then easy to see that 77, ; (A) = £21 - (775, (A) +k)
and

Xmﬂr(a) (La,na,r(a)(na,r(}‘))) =x" (tr=“()\'))

where A, k are as in the definition of u},. An application of Lemma 7.9 of [ 10] now yields the claim. See also 7.10 of [10] for
the corresponding lemma for A},. O

For the next lemma recall the ~-operator which was introduced in Section 8 of [10] and extended in Section 5 of [4].
Lemma3.8. lett €e Eyanda € EN(7,t>*) and y € EN (&, o). Then we have
7, (1}) < .

Proof. Notice that the claim is similar to the consequence of Lemma 8.2 of [ 10] which shows that T, 1 ()J) < A.Suppose
y =9"(I' +v)anda = 97(A + n).Since y € («,) wehave I' < A.Let u, A € Lim U {0} and k, [ < wbesuchthat
I'=21-(u+Dand A = £21- (A +k).Inthe case u = A we have | < k, and the claim follows since ﬂyya(L,,y(/L)) =1 4(X)
using Lemma 7.8 of [10] which thanks to Lemma 3.2 also yields x” (¢, (1)) = x*(t¢,«(1)). In the case . < A we obtain
77)/_31 (tr,y (M) = tr,o (1) < i o(A) by Lemma 7.2 of [10] which implies the claim since ¢, o (1) is a limit ordinal greater than
tra(u). O

Definition 3.9. Let t € E and o < t® where logend(«) = A + k such that A € {0} U Lim and k < w. We define
oL =T (k= x"(1).

Lemma 3.10. ¢} < 7 -logend(«) and ht;(o}) < max{1, ht;(«)}.

Proof. Immediate by definition. O

Lemma 3.11. Leto, T € E 0 < t,and o € T*lo1 N t*°. Then we have o} € T*lo] and
7o, (0g) = 0%, (@)

i.e. the following diagram is commutative:

T
Tl N 7®° —— T'lo]

ﬂo,rl lnﬂ,‘[

T"Noe® ———T°

Proof. Straightforward. O

The lemma below shows the interrelations between the operators from [10] and the new ones.
Lemma 3.12. Lett € By and o = 97 (A + n) € (r, t™) N E. Then we have
(@) tra(A) = Q : and hence A}, = Q +¢,.
(b) Qﬂ <A forevery,B < uy. For B < ,ua even Qﬁ +a <AL
(c) If ul, <awehave ul <o < A. < o, while otherwise

max ((ug + D NE) = max (AL + D NE).

(d) IfA, € E=% we have u}, = A} - win case of x*(A}) = 1and u; = A, otherwise.

Proof. Immediate from the respective definitions. O
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In order to see that the following central definition of (relativized) tracking sequences is sound one needs to verify the
subsequent lemma along the way.

Definition 3.13. Let 7 € E; and « € [7, t™) N P. The tracking sequence of « above 7, ts” («), is defined recursively in «

as follows.
o If « € M™T with t-localization t = «p, ..., @, = o we set
. max{j € {1,...,n—1}| ,u;j > «} ifthat exists
i:= .
n otherwise.

- Ifi = nthents™ () := (a).
- Ifi < nthents™(«) := ts"(«;) " («) is obtained from ts* («;) by appending «.
e M T and @ < t”: Then ts*(«) := (x).

e Otherwise. Then@ € [t, o) and o =y @ - B for some 8 € M™ . Let ts* (&) = (1, ..., &y) and set g := 7.1
- Ifay, € E7%-1and B < g, thents® (@) := (a1, ..., o, B).
- Otherwise. Fori € {1,...,n}let (8}, ..., B},) be ts* (B) provided B > «j, and set m; := 1, B} := o; - Bif B < a.
Define

io 1= max({l}u{je 2.0 §M;j_1}).

Then ts™ (o) := (@1, ... @iy—1, B ... B )-

Instead of ts(«) we also simply write ts(«).

Remark. For @ € EN (7, t™) the tracking sequence of « above t is exactly the 7-<1-localization of « as in Definition 5.8
of [11], as follows from Corollary 5.9 of [ 11], Lemma 3.12, part (c), and Lemma 3.14, part (a), below. Notice that according to
Lemma 4.9 of [11] there is convenient robustness of the above definition regarding the base to which the p-operator refers.

Lemma 3.14. Let T € E;and a € [t, ) N P. Let further (1, .. ., ay) be ts* (@), the tracking sequence of « above t.

(@) Ifa e M then oy = ¢ and ts™ (o)) = (atq, ..., ) fori=1,...,n

(b) fao =xn-& ¢ Mthena, € PN [&, a] and oy =y Oy - &.

(c) (g, ..., an_1) is either empty or a strictly increasing sequence of epsilon numbers in the interval (t, ).

(d) For1 <i<n—1wehavea;1 < u;i, and if ¢ < a1 then (aq, . . ., @j11) is a subsequence of the t-localization of o 1.

Proof. Immediate by induction on « along the definition of ts* (). O

The card provided by the following lemma, which establishes a <-<.,-order isomorphism of additive principal numbers
and their tracking sequences relative to t, will be played winningly in the next section when showing that tracking sequences
click into place with the system of enumeration functions for (relativized) connectivity components in the core of R,.

Lemma 3.15. Lett € Eyand @, y € [7, ) NP, a < y. Then we have

tsr (Ol) <lex tsz (J’)
Proof. The proof is by induction on the natural sum a#y where t may vary. We will make frequent use of Lemma 3.14.

Casel.y < t“:
Then ts* (o) = (@) <jex (¥) = ts°(¥).

Case2.y € M™":

Let y = (1, ..., ya) be the t-localization of y and ts*(y) = (¥4, - .., ¥;)- The claim is immediately verified if [ = 1.
Therefore suppose ! > 1andsety’ := y;,_,.Notethaty < ,u;,. Ifa <y’ bytheih.weobtaints® () <jex tS* (') <iex ts*(¥).
Otherwise we have y’ < @ < y whence by Lemma 5.3 of [4] the initial sequence (¥, ..., y’) of y is an initial sequence of
the t-localization of «. The subcase where o < t is trivial. Suppose next that @« € M~". Then ts* (y') is an initial sequence
of ts” (o) which implies the claim. If ¢ & M™" U (t® + 1), say @ =y & - B8, we have y’ < @ since ¥’ € M. By the i.h. we obtain

tsT(Y') <iex tST(&) <iex tsT(y) whence ts*(y’) is an initial sequence of ts* (). Let ts* (@) = (&1,...,&).1f§, € E>%-1
and 8 < //Lgp we are done. This is particularly the case if | — 1 = p. Otherwise we have | < p, i.e. ts*(y’) is a proper initial
sequence of ts” (). Let (/34, e /3,’”1) be according to the definition of ts” (). Since ﬂi <§-Ba< ,u;, we have iy > [

for ig according to the definition of ts” («). Thus the claim follows.

Case3.y ¢ M~T U (¢ 4+ 1):
Lety =n 7 -6.Let (1, ..., &) :=ts*(y). The subcase o < t¢ is again trivial. Ifo € M”" then o < y whence by the i.h.
tsT (o) <iex tsT(¥).Wehavets™ (y) < tsT(y) by definition. Iffinallyo & M~TU(7“+1),say @ =y @- S, we are again done if

1 As verified in part (b) of the lemma below we have 8 < «,.
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o < y.Suppose y < « and let the decompositions of & and y into products of descending multiplicative principal numbers

be given by a1 - - - @y and y; - - - y, respectively. We then see that in presence of our current assumptions (y4, ..., ) must
be an initial sequence of («y, ..., o, B). The case | = k+ 1 s clear since ts* () < ts* (y). We henceforth assume | < k. If
lq € E>%-1and § < /“Léq- itis easy to see that ts* (o) = (£1, ..., {g, Qg1+~ 0k - B) <iex (81, ..., &g, 8) = tsT(y). Otherwise
letjo € {1, ..., q} be according to the definition of ts*(y) so that

T0) = e Gt 8 80).

We give a uniform treatment of the cases where | < k in this situation. Suppose that for some a* € P N [y, y) (say,
a* =ap---a;forsomei e {l,..., k})withts"(a«*) = (1, ..., n,) we already know that n; = gjfor 1 <j <jo— 1,1 > jo,

Mo € Lo (SJ;O], and ts” (a*) <px ts*(y). Let some ¢ € M N (1, §) be given such that for o’ := o* - ¢ we have &’ =\; o* - ¢
(here we aim at ¢ = ;1 ifi < k or ¢ = B otherwise). We show that ts” («’) then again is of a form

; )
ts* (@) = 1y« -y Mig—1, €70 - -+ 8;3,,0)

where jo < ip, mj, > 1, that its jo-th component belongs to the interval [{j,, 8]10], and that we have ts™ (') < ts"(y). A
(k — I 4+ 1)-fold iteration of this argument then yields ts” () <iex ts*(y).

Incaseof n, € EZ-1 and ¢ < /,Lf]r we have ts” (a') = ts" (a*) " e < ts*(y) since & < n,. Note that this case applies
whenever ts* («*) is a proper initial sequence of ts* (y ).

Let us now suppose that ts* («*) is not a proper initial sequence of ts* (y ). Then there exists the leasts € {1, ..., r—jo+1}

such that n; < 89 setting j := jo — 1+ s. Note that we then have §° < ‘%71'

If ¢ < n; then 5J1 =n-€< 8 < ,uf)H and hence jo <j < ip and ts* (&) < ts*(y). Otherwise we first note that in the
situation wherezs’1 < 80 or e = §° we immediately obtainj, < j < ip and ts™ (o) <jex ts* (v).We now assume thata"1 > 8l
ande > §°.Thens > 82, ie.s < nj,. We take a closer look at ts" (¢) in comparison with ts‘ﬂo ) = (8&1, R 8{;‘;0). Note
thate € <8£°, (8£°)+) whence by Lemma 6.5 of [10] the n;-localization of ¢ is the concatenation of the n;-localization of 8£°

with the Sio -localization of ¢. The i.h. applied to ¢ < § yields ts‘Sio (&) <ix tsséo (8). The assumption 8’1 > 5]5"’ would imply
g <8, < i, and therefore contradict the fact that g) is the first element of ts"i (¢). Thus &) = &° < ;| and hence

Jo <j<ipaswellasts(e) = (.g’i)ﬁts‘Séo (&) <iex ((Sjs"’, cee 8{{;0) which then allows for the desired conclusion. O

The following definition will play an important role in the next section. It will turn out to provide refined upper bounds
for (relativized) connectivity components.

Definition 3.16. Let T € E; and @ € (7, T°°) N E. We define
o :=min{y € M™ | ts*(y) = (y) & g, < v}
Remark. Note that in the above context we have @ < a™. As is the case with a™ we suppress the base T in the notation &
assuming that it will always be well understood from the respective context.
Lemma 3.17. Let 7, « be as in the above definition. Then
35&‘ forany B eT' NEN (o, uyl.
We further have 1}, < @.

Proof. We show that & satisfies the conditions on B apart from minimality. We clearly have & € M>#. The assumption
@ < pg would imply 8 < @ < B and therefore contradict the property ts* (@) = (&), which also entails ts” (@) = (@).

In order to show that A’ < @ leta = 9°(A + ). 1f u? < o we have A < o? < a® < @ by Lemma 3.12. Now assume
UL > a.Since@ > (uf)® > a® wemayassume A}, > «®, whence A > £2¢. This shows that (u[)* > w‘T’“(A)—i-COf >A,. O

We are now able to describe the set of ordinals that comprises the essential starting points of relativized connectivity
components of Core(R,) for both relations <; and <,. The purely arithmetical relevance of these ordinals will become clear
during the following sections (cf. 4.11) while its semantical meaning concerning R, namely of being the origins of infinite
<;-chains along which new <,-components arise, will be proved at the end of this article.

Definition 3.18. The set RP of reference points below 1°° is defined by

RP := {0} U{x € P<'" | ts(a) = (a1, ..., a,) wherea; < --- < a, € E}.
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4. A facet structure of ordinals

In this section we introduce functions that will turn out to characterize the enumeration functions of (relativized)
connectivity components of the core of [R,. This characterization already takes crucial uniformity properties, particularly
of relativized <;-connectivity components, into account and restricts the enumeration of components up to their “critical
index” (cf. the remark preceding Definition 3.4), which in turn is necessary because of the nested occurrence of <;- and
<,-components. Our simultaneously recursive Definition 4.4 will make use of the ordering (ISeq, <) given below.

Lemma 4.1. Let ISeq comprise all nonempty finite sequences («1, . . ., &y) of ordinals below 1*° that satisfy o1, ..., a1 € E
and hty, (atiy1) < hty, (o) for 1 < i < n — 1where ay := 1. Then the lexicographic ordering

(lSEqa <lex)
is a well-ordering.

Proof. Suppose & := (o1, ..., a,) € ISeq. We set | := hty(«;) whencen <1+ 1.Any B8 := (B1, ..., Bm) € ISeq such that
B <. a satisfies ht{(81) < hty(c), since B < «y, and therefore underlies the restrictionm <[+ 1. O

We now define a set of ordinal sequences that will turn out to characterize the set of tracking sequences defined in
Section 3 via an evaluation procedure defined in 4.8. The evaluations of reference sequences defined subsequently comprises
RP as will be shown at the end of this section.

Definition 4.2. Let T € E;. A nonempty sequence («q, ..., &) of ordinals in the interval [t, 7°°) is called a r-tracking
sequence if

1. (aq, ..., an_1) is either empty or a strictly increasing sequence of epsilon numbers greater than 7.

2. ap €Pay > 1ifn > 1.

3. ajy1 < M;i foreveryie {1,...,n—1}.

By TS” we denote the set of all -tracking sequences. Instead of TS! we also write TS.

Remark. Note that {ts" () | @ € PN [r,t*)} C TS7, that TS is closed under nonempty initial sequences, and that
TS C ISeq. It will be shown that in fact TS = {ts(«) |« € PN 1°°}. Fori € {1, ..., n — 2} the initial sequence (a1, ..., ®j+1)
is a subsequence of the t-localization of «; 1. This also holds for i = n — 1 provided that o, < ap,.

Definition 4.3. Let t € E;. A sequence « of ordinals below T is a t-reference sequence if

e o= ()or
e o= (ay,...,a,) € TS? such that o, € E=%-1 (where ag := 7).

We denote the set of T-reference sequences by RS”. In case of T = 1 we simply write RS and call its elements reference
sequences.

Remark. Note that RS® is closed under initial sequences and that it contains the sequence («1, . .., a;_1) foranya € PN7™
such that ts” (@) = (aq, ..., ap).

We are now going to define those functions which arithmetically characterize the enumerations of suitably relativized
<4-and <,-components below the least & such that @ <; oo which in turn will eventually be proved to be equal to 1> and
comprise Core(R;). The soundness of this essential definition will be shown in the subsequent Lemma 4.5. Its semantical
correctness can only be proved at the end of this article. We will then see that

e «V enumerates those <;-minimal ordinals and Ih(x}) = «{ + dp, (), that

e v* (where the nonempty index sequence & = («1, ..., ®;) € RS codes the relativization point, say, «) enumerates the
o-<,-minimal ordinals vg‘ >a(l<é< ,ugﬁ‘l, setting ap := 1) up to the origin of the largest new? <,-connectivity
component which satisfy lh(vg) = Ih(e - 2) < Ih(), while v§ = « satisfies Ih(«) = Ih(« - 2) ifand only if n = 1 or
n > 1and either 1 (a;) = 10r @y = fa" > = Aql—2, and that, referring to the same & as above,

° vg + Kg is the B-th vg—fl—minimal ordinal for & < ug’;" and

of" +ay if& < pay ' and x(§) =0,
B < qeoi"+1 if§ < ey 'and xn(§) =1,
Aot 41 ifE = gt

2 By “new” we mean a connectivity component which cannot be obtained by translation of an isomorphic copy from below.
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Notice that the case in the middle addresses the situation where the <,-component starting from vg‘ non-trivially <i-
connects back to the main line starting from «, that is: the image of v* together with all ordinals y such that vg‘ <1y <1
vg‘ 1 for some & in the domain of v*. “Non-trivial” means that Qg" > 0, whence v;’j‘ has its greatest <,-successor in the
Q?”—th vg‘—relativized <;-component, and “<;-connects back to the main line” means that vg‘ + Kgan <1 vg‘ +1.3

It is crucial that the cofinality operator A falls into place in the third case. This shows another parallel to the situation
in Core(R); see [11].

dpy (B), where we now assume that B > 0, satisfies the equation Ih(vg' + k§) = V¥ + kg + dp,(B) only if the
vg‘—relativized <i-component starting at vg + Kg does not <;-connect back to any previously arising main line. If

it does, let vf]‘/ be the largest element of the largest such main line such that v,‘;‘/ < vg + /cg, whence we have
vg‘ + lcg +dp,(B) = v;‘]‘;]. Here, the case v,"]‘/ < vg‘ implies £ = ,uzﬁ‘l as will be shown later.
Definition 4.4. Forany« € RS,saya = (a4, ..., a;) wheren = Oincase ofa = (), we set &g := 1 and define the functions
1%° ifn=20
k® : dom(k®) — 1°° where dom(x%) :=
dar' +1 otherwise,
dp, : dom(x®) — 1%,
and for n > 0 only
v® : dom(v*) — 1%°,  where dom(v®) = pug"' + 1.
Along the way we use the following abbreviations
oo = (), oi = (g, ...,a) (i=1,...,n),

and set B’ := (1/B) - B whenever g € P.
The clauses defining «* are as follows.

o ki :=0,kf =1,

o kg = ky +dpy(y) + k5 for f = y +6,
o «f :=kg"'ifn>0and B € PN (1, ],
o Ky = I(g+1 - B for B € P>n,

dp, is defined by:

e dp,(0) :=0,dp,(1) := 0,and dp,(e) := 0in case of n > 0,

e dp,(B) :=dpy(8) if B =ne v + 6,

o dp,(B) :=dpy,_,(B) ifn > 0for B € PN (1, atp),

o forf e P> —Elety := (1/ay) - B and log(y) =axs ¥1 + - - + ym and set 4

APy (B) = k2 +dpy(y1) + - -+ + k2 + APy (Vin),
e forg e B lety := (a1, ..., ay, B),and set

dp(x(ﬂ) = U:gn + K)):Zn + dpy()\-g”)

Forn > 0 setting @ := «5""' we define v* by

eV, =0,

o Vg = +K§$n +dpy (™) + X" (y) - if p =y + 1,
° v}}‘ =y —|—/c;‘gn +dp, (0y") + vi if B =y ¥ 4+ 6 € Lim,
° vg =a-fforBePn(1,anl,

ng - B/ for B € P —E,

o vy =k for g € EZn.

Remark. Notice that TS comprises the sequences of a form ov™ 8 where @ € RSand 8 € PN 1% such that 8 € PN dom(x°)
ife = () and B € P! N dom(v®) otherwise.

3 We will use the term “main line” only in informal formulations, no proof will rely on this nevertheless intuitive and crucial notion.
4 This integrates the treatment of R from [1] into the setting of R, as will be shown later.
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We now verify the well-definedness of the functions introduced above and prove some basic properties and useful
estimations.

Lemma 4.5. Let ¢ € RS, say « = (1, ..., o) where n = 0 in case of « = (), and set oy := 1. The functions «%, dp,,, and (in
case of n > 0) v* are well-defined and satisfy the following properties.

(a) % is continuous, strictly increasing, and maps additive principal numbers to additive principal numbers.

(b) In case of n > 0 also v* is continuous, strictly increasing, and maps infinite additive principal numbers to additive principal
numbers greater than o := kg"".

(c) Ifn > 0 we have

n—1

K§ = Kg” whenever 8 < a,

and

dp,(B) = dpy,,_,(B) whenever f < a.

(d) For B € dom(x*) we have the following estimations on dp,(8):
1. dpy(B) <k if B ¢ E, B > O.

2. I(g cw < dpa(ﬂ) < Kg Elfﬂ c E>on,
3. dpy(B) < Kg : IL(;” ~wif B € E>% and Mgn <B.
(e) Ifn > Oand B € dom(v®) — E~*" we have 0" € dom(x®) and

me (xggn + dpa(gzw) < vf.
(f) If n > 0 we have

Im(x%), Im(v*) C o - ay.
Proof. The proof proceeds by induction along <\, on ISeq in the following way:
Claim 4.6. Given « as above and B such that ™ B € 1Seq we prove:

1. If Bisof aform y + 1 where y € dom(x®) then dp,(y) is well-defined and the claims concerning dp, stated in the Lemma,
including part (d), but excluding part (e), hold up to (and including) y.

2. If B € dom(x*) then Kg is well-defined and the claims concerning «® stated in the Lemma, excluding parts (d) and (e), hold
up to (and including) B.

3.Ifn> 0and Bisofaformoy - (v + 1) such that y € dom(v*) — E>“" then part (e) holds up to and including y.

4. Ifn > 0and B is of a form «,, - y such that y € dom(v*) then v)‘f is well-defined and the claims concerning v stated in the
Lemma, excluding part (e), hold up to (and including) y .

Ad 1. The well-definedness of dp, () follows using the i.h. Notice the crucial point that in the case y € E~*" we have

@i, .., Yy e) <iex (@1, ..., 00, B).

Part (c) concerning dp, follows by i.h. and definition of dp,,.

For part (d) we use that by the i.h. ¥® has already been shown to be strictly increasing up to (and including) y, and that
by definition «§’, ; = k' + dp,(8) + 1. The case y ¢ E is then easily verified using the i.h., showing part 1 of (d).

In order to see part 2 of (d) suppose y € E™*" and set y := a"y. It is easy to see that dp,(y) > v} = /c;‘ - w. The
estimation dp, (y) < 7 -y is verified as follows. By i.h. we have Im(x?), Im(v?) C Ky -y,and dp,(A5") < x:(;n if 15" ¢ E.
We have dp,, (A7) = 0if AJ" = y, and if AT € E Ny we obtain dp,(AJ") = dp,(A}") < /c;i;,,“ < «, using the i.h. If
finally )\;‘j“ € E~7 we have dpy(kf,") < K:an . ):‘;’,\" by the i.h. Since @1 < ¥ according to Lemmata 3.12 and 3.17, the latter
expression is less than or equal to K;f -y. Thus dp,(y) < K;f -y follows.

For part 3 of (d) assume that y € E~* and )" < y.By Lemma 3.12 we have uj" < y < AJ" < y2, moreover
§ :=mc(Aj") < y~,u;‘jﬂ,which using the i.h. and inspecting the definition of k¥ yields K; < K;‘-;L‘;‘," whence K;'(;” < K;‘-p@" .

By definition we have v”,, = k% - u®, and using the i.h. we have dp,(A%") < k... Thus dp, (y) < k& - u®" - w.
uy Y Y y\y 25 Y Y

Ad 2.Suppose 8 € dom(k®). Using the i.h. we immediately see that Kg is well-defined, that it is an additive principal number
if B is, and that Kg = Kg””’l <« ifn > 0and B < a,. We therefore immediately obtain the claim if 8§ < «, and may from
now on assume f > o,,. We employ a side induction on y < 8 to verify IC;‘ < /cg among the other remaining claims of 2.

Case1: 8 £ P.

Then the i.h. immediately implies that «® is strictly increasing and continuous up to and including 8. If n > 0 and
B =xr ¥ + 8 we obtain K;;‘ < a - @ using part d) (for ™ (y + 1)) which gives dp,(y) < K;‘ ify € E,anddp,(y) < K;‘ -y
if y € E. In this latter case Lemma 3.17 yields ¥ < &p, so that altogether we obtain Kg <o -y
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Case2: B €P. _
Setting B’ := (1/B) - B we have kg = ﬁ+1

ih.and ' < B8 < )\Zﬁ‘l < @, using Lemma 3.17. This shows I{ﬂ < o - @y ifn > 0. It remains to show that Kﬂ is the proper
supremum ofIm(K";j).

- B" according to the definition. In case of n > 0 we have KEj+ < a - @y, by the

Subcase 2.1: § = ﬂ w

3
We then have x dp,

(ie.p & L).
(k g +dp,(B)) - ® = sup{K | k < w).
Subcase 2.2: 8 € LL. _

From now on we may show K;f < /cg just for ordinals y € (8, B) NP =: G since g is the proper supremum of G. /cg will
then be shown to be the proper supremum of the /c;‘ for y € G. Since the case ¥ = B is trivial in showing K;j‘ < K;, in such
verifications we may assume that € (8, ), whence also 7+ < B.Let ' := (1/%) - y. We have Ky = (k3 +dpy(¥)) - y/,
and /c)‘-f < Kg by the i.h.

Subcase 2.2.1: 8 ¢ M. _

Then neither ¢ nor y can be multiplicative principal numbers. We then have § =y 8 - ﬂ aswellasy =y ¥ - ¢/, and
it follows that " < B’. We have the already established dp,(7) < «7,and so«) = «j -y’ < I{ﬂ_H B’ = kg.In order to
see that /cg‘ = sup{K; | ¥ € G} notice that the proper supremum of the ordinals y’ correspondmg with y € Gis B8 and that
KoV Skg v =k < g B =k

Subcase 2.2.2: 8 € M.

Then we have 8/ = B, and in the more interesting case of y € E we use the already established dp,(y) < K;—f . 57\

together with;'/\ < 7T < B to conclude Ky, < K— y y < Kﬂ+1 - B = ;c/‘;‘. If B € Lim(M) we now immediately
see that Kg = sup{/c)‘f | y € G}. Otherwise 8 has a form w® <! and by Lemma 5.10 of [4] we have B € E, (being the

predecessor of g inits t- localization) and setting yy 1= = 4D for k < o we have B = sup{yx | k < w} and by definition
obtain either «j;, = &%, - (& ?Yk+D namely when § ¢ E, or Ky = K5,y - (@7 ?)k+1) otherwise. This explicitly shows
kg = sup{ky | y € G}.
Ad 3. Suppose that n > 0 and g is of a form &, - (y + 1) such that y € dom(v*) — E~*". Note that Q‘;” < ay - logend(y) <
an -y < B,and that by part (b) of Lemma 3.12 we have oy = ng-l. Inspecting the definition and using the i.h. we can read
off the desired estimation.
Case1: y < «,.
Subcase 1.1: y € E=",

oy =oan-y, Vy=a-y=«g., and dpy(an-y) =k +dp.(y) < a.
Subcase 1.2: y < «,, y € E.

Let logend(y) =: 8 =uy 81 + -~ + 8. Then we have %" = ay - 6, V% > a - y, k2 5 = k& 5 + dPg(atn - 81) + -+ +
Kgn'5l—1 ~+ dpg(an - 61-1) —|—K;‘n,5l =« -§,and dp, (o - 8) = dpa(oz,, 1) < o.
Case2:y =\ 6+ & > ay.

Notice that o%" = Qg". The i.h. directly applies to &, if & ¢ E>%, By the i.h. (part 4 of the Claim) we have v;‘ > vg‘. If on

Y
the other hand § € E>*, then o%" = & whence v¥ > v, = «f - 2 + dp,(§) + «¢.

Case3:y e P"* — K,
By definition v’ = vZ , -y’ where y’ = (1/y) - y.Lety =cw @/ 7% Then @2 < oy - (1 + -+ + ) and
mC(Kgi;n + dpy(05")) = mc(ky, ., + dpg(an - ¥1)).

Subcase 3.1: y ¢ M, ie. k > 1.
Then y = o” ™ ™1and y =y y - y'. Hence mc(k, 5y T dpg(an - y1) = mc(/c 2 + dpa(g"")) SVEg <y

Subcase 3.2: y € M, i.e.k = 1.
Theny; € (an, y)NP—E,y’ = y,and € E=*", By i.h.we have the estimationdp,, (ay-y1) < K;‘n‘yl.Let Y1 =cNF WS
If §; = a, we have )7 =opandkl , =a-yp <a-op-y = v;‘. If otherwise §; > «, we have o, - 1 = y; and obtain

< K2 <
Ky SKSq V1 =V5g -y <V

any
v
Ad 4. Suppose thatn > 0 and g is of a form «,, - y such that y € dom(v®). That v € P”* incase of y € P> will follow
immediately once the well-definedness of v]‘j‘ is shown. We consider the following cases.
Casel:y =\ 6 1+ &.

Asin part 3 we note that 0" < a,-logend(8) < @,-8 < B and that by part (b) of Lemma 3.12 we have o§" < A"'. By the
i.h. and the already established parts 1 and 2 of Claim 4.6 we know that «* and dp,, are well-defined and satisfy the claimed
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properties up to and including o3". Thus v;‘ is well-defined. If ¢ = 1and x**(§) = 1 we easily verify that lcg"‘ot,1 +dp, (05™) is
8
greater than 0 since g;" > 0 in this case. In all other cases, using the i.h. we immediately see that v]‘f > v;‘, forany y’ < y,
and that v;‘ is the supremum ofIm(vf‘y) inthecase§ > 1.Inordertosee thatv} < o -@, we need to verify dp, (05™) < o @
If 05" & Eor 05" = o, we have dp,(0;") < /cgan, otherwise, i.e. ;" € E>1, we have 0" < o' ' by Lemma 3.12 and
8

therefore obtain Q?’ < @y by Lemma 3.17, which together with dp, (05") < Kgun . 5(‘;7" yields dp, (05") < o - @y.
8

Case2:y e PN (1, oyl
Then we have v}’ = « - y. All claims follow immediately from the ih.if y € L.If y =y § - o wehave v} =« -6 -0 =
sup{v§’, | k < o} since o ;) = 05" < &, - logend(8) < ay - 8 < a,? and dp,(05") < @, Kgan = « - logend(8), which can
8
be seen inspecting the definition and using the i.h.

Case3:ap <y =y - .
Then, again inspecting the definition and using the i.h., v;‘ = v;ifH “w = sup{v}‘i,‘,k | k < w}, and the claims concerning v;‘
follow by the i.h.

Cased4:y e L™ —E.

Then vy = v, -y’ where y’ = (1/y) - y. By side inductionon § € (y, y) NP =: D we show v§ < vJ. Notice that

(¥,y)NE = ¢.Let § € D whence v§ = vg‘ﬂ .8’ where 8’ = (1/8) -8 < y’.The case § = 7 is trivial, so assume § € D. Since

mc(fc;"an + dpm(gg")) < v{%" by the i.h., we also have v{‘{H < v;‘ by the i.h. This implies v§ < v;‘. In order to see continuity in
5

y notice that v, - 8 <v¥ -8 =vfandsup{s’+ 1|8 eD}=y"

541

Case5:y € E™%,

We then have v =k = k7, -y andsetD := (y, y) NM.Forany § € DNE we have v’ = «§' and thus obtain v’ < v}

from the already established part 2 of Claim 4.6. Let § € D — E whence v§ = vé"H .8.1f8 = 7 or 8 ¢ E>* we proceed as

in the previous case. Otherwise we have Qg‘” =5 and Kg‘ +dp,(d) < K;‘ by part 2 of the Claim, hence v§ < v;‘. Continuity

in y follows by part 2 of the Claim if y € Lim(E). Otherwise we again have DNE = @ and v§ = vg‘H -8 > k¥, . - §since

y+1
> K3

v;i,‘+1 1 Therefore sup{v{ | § € D} = v}",‘. This concludes the proof of Claim 4.6 and thus establishes Lemma 4.5. O

The following lemma reveals equations for k- and v-values referring to tracking sequences, thus providing a more
intuitive redefinition of the «- and v-functions. Notice that using this alternative definition involving tracking sequences
directly in 4.4 would have complicated the proof of Lemma 4.5 considerably.

Lemma4.7. Letx € RS, say « = (o1, ..., a,) wheren = 0in case of « = (), and set ap := 1. Let 8 € M~ *" and y be the
immediate predecessor of 8 in ts“"(f) if that exists and «,, otherwise. If 8 € dom(k®) then

Ky =Kyiq B
Ifn > 0and B € dom(v¥) then
vg =), B

For products § =g 81+ 86m > o, where m > 1 let y be the immediate predecessor of 81 in ts*"(81) if that exists and o,
otherwise. If § € dom(k®) we have

o Kyip- 6 if$; e M™* —E
P ke 8 bm i € EEO

Ifn > 0and § € dom(v®) we similarly have
e v]",‘ﬂ-é ifé e M~ — E
8 VE L8y B I8 € EX0,

Proof. The proof is by inspection of Definition 4.4 using Lemma 4.5, in particular part d) 2. Let o, = By, ..., B = B be the
t-fine-localization of 8. Since 8 € M”** we have 8 = B, € E**".Letk € {0, ..., m — 1} be such that §; = y. One easily
seesthat By,; < Bfori =1, ..., m—k—1(referring to base «,). Thus Kg = ng+i'ﬂ successively fori = m—k—1,...,i=1,

and «§ =«§ ., B.
B Br+1
The claim concerning vg (where n > 0 is assumed) is derived easily from the result for «* by inspecting the definition
of v§
5
The remaining claims are now straightforward, using parts (d) and (e) of Lemma 4.5. O
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Definition 4.8. o : TS — P N 1°°, the evaluation function for tracking sequences, is defined by setting fora™8 € TS

~ Ky ife=(
o(a pB):= o )
Vg otherwise.

We additionally define o (()) := 0 so that o is defined on all of RS.

The definition given next is crucial in the proof of the subsequent lemma. It will help us detect multiplicative normal
forms of ordinals given as multiples of (relativized) connectivity components. These multiplicative normal forms are
in turn necessary to find the tracking sequences of ordinals given as evaluations. We will thus be able to show that
tracking sequences perfectly reverse enumerations of those relativized components in the core of R, which are additively
indecomposable.

Definition 4.9. For § € M N 1°° and y € EN 1% let skg(y) be the maximal sequence 81, . . ., §; such that (setting §p := 1)

e §; =y and
eifiefl,....1—1} &8 € E>%1 & B < s, then §iy1 = s, - B.

Remark. Lemma 3.5 guarantees that the above definition terminates. We have (1, ...,8,_1) € RSand (61,...,6;) € TS.
Notice that 8 < §;fori=2,...,L

Lemma 4.10. For any y € TS we have

ts(o(y)) =».
Forany o € PN 1°° we have
o(ts(a)) = «.

In other words, the mapping ts is a <-<-order-isomorphism of P N 1°° onto TS with inverse o.

Proof. By Lemma 3.15 the second and third claim follow from the first. The first claim is shown by induction along the
ordering <., on TS. Let y = e~ 8 € TS, where @« = (a1, ...,a,;) € RS, and g := 1. We set 8/ := (1/8) - B, so that
B eM=f anda = ky"!. By Lemma 3.14 we have If(¢) = If(an) = ap.

Case 1: 8 < «,.
This is trivial if n = 0.If n > 0 we have o(y) =y « - B8, and the claim follows immediately from «, € E>“-1 and
B =< Mm"f]-
Case 2: 8 > .
We define

3 {,3,” if 8 € M where ts® (8) = (B1, ..., Bi) and By 1= an

B otherwise.

Case 2.1: f = ay,.

If n = 0, using Lemma 4.7 we obtain o(y) = g, and the claim follows immediately. Now suppose n > 0.If 8 ¢ M we
have o(y) =n¢ vy, - B, Vg = o - ap, and by the i.h. we have ts(vy ) = a”a,. The claim then follows, given that B < ay
and =a,-f' < ,ugﬁ‘l. Now assume 8 € M, whence 8’ = 8 and o(y) = « - 8. The case & < f is trivial, so let us assume
that 8 < a.Then @ ¢ M, implying that « =y & - «,,. Let § := « - 8, whence 8 < § < @ < § - 8. By Lemma 3.15 we have
8§ = (61,...,68) = t5(8) < ts(@) L o, hence o(ts(8)) = § by the i.h. Now, é cannot be a proper initial sequence of «
since on the one hand 8 < If(§) = 1f(§;) < §; according to Lemma 3.14 and on the other hand 8 > «; in case of [ < n.
Hence there exists the minimal I, € {1, ..., min{l — 1, n}} such that §,, < «;,. The sequence (81, ..., d;,) cannot be an
initial sequence of ts(§ - B) because ts(a) < ts(d - B) according to Lemma 3.15. Since 8, € (ay—1, @jy) and B € (§y,, ng
we have ts’o (B) = (ay, - .., ay, B) using Lemma 6.5 of [10] and Lemma 3.6, referring to base o,—1 = 8;,—1 where §; := 1
in case of [y = 1. Hence ts(§ - B) = p.

Case22:8 > o, & B €. ) . .
By Lemma 4.5 we have o(y) =y o(e™f) - 8. The claim is easily verified using that ts(o(e™8)) = a~ 8 by the i.h.
Case 2.3: B € E>on, i
Let§ = (81,...,8) :=skg(B), & := (81,...,8-1), 80 1= 1,and § := o(a™§). Since & ™8 <x ¥ we have ts(§) = a8

by i.h. By Lemma 3.14 we have If(8) = If(§;) > B’, noticing that in the case 8 = g’ > B we have 8 € M="# and therefore
I > 1. The desired ts(o(y)) = p is directly verified once we prove that

o(y) =ne 0 - :3/-
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The above equality is verified by inspection of Definition 4.4, making use of Lemma 3.12, part (a), Lemma 4.5, parts (d) and
(e), and Lemma 4.7. In case of §; € E*%-1 and s, < B’ we have s < §; and therefore (by part (d) of 4.5)
5 < dpy-y(8) <8y w<8-p.
which is then also used in showing the last equality of

o(y) =dp,(81) - B’
= dpy-5,(82) - B

dPe~(s5,.....5_5) G1-1) - B’
=5-p.
This concludes our proof. O
Corollary 4.11. We obtain the following correspondence between RP and RS:
RP =Im(ors) and RS = Im(ts;gp),
defining ts(0) := () for convenience. O

Using the set RP and its characterization in the above corollary we are now able to simplify the settings of relativization
in the definition of * and v*.

Definition 4.12. For o € RP we define «* := k"), dp, := dp,(,), and in case of &« > 0 we set v := v,

In order to formulate the assignment of tracking chains to ordinals in Section 6 we need to introduce a suitable notion of
tracking sequence relative to a given context. We first introduce an evaluation function for relativized tracking sequences.

Definition 4.13. Let « € RP — {0} with ts(«@) = (y, ..., op) =: a. We define
TS* :={y € TS™ | y1 < Aar '}
and for y~ 8 € TS*

" kg ify=0
)= V% Y otherwise
3 .

For convenience we identify o® with o.

Remark. Note that this is well-defined thanks to part (c) of Lemma 3.12. Notice also that TS® is a <,-initial segment of
TS, We have the following

Lemma 4.14. Let o and o be as in the above definition. Let A := mc(A4, ), and whenever ; is defined and A; € E>%-1 (setting
Ao 1= ap), let diyq 1= ;. If we denote the resulting vector by (A1, ..., Ax) =: A then TS® is the initial segment of TS*" with
<iex-Mmaximum A. We have

o%*(\) = mc(/cfan + dpy(Xe,))-
Proof. The proof is by evaluation of mc(;c/‘\"an + dpy(Ae,)) using parts (d) and (e) of Lemma 4.5. O

The analogue to Lemma 4.10 is as follows. Notice that we have to be careful regarding multiples of indices versus their
evaluations.

Lemma 4.15. Let o, o, and y~ B € TS* be as in the above definition. Then we have
ts* (o - ((1/a) - 0* (¥~ B)) =y~ B.

For 8 € PN [, a°) such that ts*» (8) € TS* we have
0% (ts*"(8)) = e - ((1/aty) - 9).

Setting A = o - ((1/c) - mc(/g‘\"an + dp, (Ae,))) we have
ts“" (L) = A € TS*

for A as defined in Lemma 4.14, and the mapping ts*" is a <-<-order isomorphism of
{8 € PN [ay, ) | ts*(8) € TS*} = [oty, AINP

with TS*.
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Proof. Once the first claim of the lemma is shown by induction along <, on TS%, the remaining claims follow using

Lemmas 3.15 and 4.14. In proving the first claim for y~8 € TS* say y = (v1,..., ¥m) Where m > 0, we proceed
in analogy with the course of proof of Lemma 4.10, replacing « with ™y, «, with y;, (setting yy := «y), and o with
y = oy - ((1/a) - o(y)) in the case m > 0, where by the i.h. we have ts**(y) =y. O
Definition 4.16. Let ¢ € RP — {0} and @ = (a1, ..., &y) := ts(®). Set g := 1 and let 8 € P N 1°°. The tracking sequence
of g relative to «, ts[«](B), is defined as follows. Let k € {0, ..., n} be maximal such that &, := o(ax) < B.
ts(B) ifk=0
tsle](B) :=

ts* (o - ((1/a) - B))  ifk > 0.
For technical reasons define ts[0](8) := ts(B).

Remark. ts[«] aims at a tracking sequence with starting point ¢y, instead of 0. In the above situation for ts[a](8) to make
sense, i.e. to be related to «, we should have 8; < ng-l in case of k > 0 where S, is the first element of ts[a](8). It is
easy to see (using 3.12, 3.15, and 4.15) that this holds if k € (0, n). However, in case of k = n this holds if and only if

B < K;:‘an + dp, (Aq,) as shown in 4.14 and 4.15.
Lemma 4.17. Let « be as in the above definition and 8, y < wan + dp, (Ae,) be additive principal numbers.
(a) With k as in the above definition and setting op11 1= Ay, + 1 we have

a < B1 < gy

where B is the first element of ts[a](8).
(b) If B < y then

ts[a](B) <iex ts[al(y).
Proof. The lemma is proved by straightforward application of Lemmas 3.15 and 4.15, using part (a) to show part (b). O

5. Tracking chains

The preparations made in the previous sections have set the grounds to introduce the concept of tracking chains. Tracking
chains will provide us with a grid on the segment of ordinals below 1°° whose resolution is sufficiently high to allow for a
characterization of the relations <; and <, within the core of R,. Here we will first explicitly define tracking chains and
then assign tracking chains to the ordinals below 1°°. This assignment will be shown to exhaust the set of tracking chains
in a one-one manner.

A tracking chain is a vector of index sequences whose first element always denotes a «-index (possibly relativized from
the second vector component on) and whose possible other elements denote v-indices. Conditions on the indices that occur
in a tracking chain will guarantee a unique and semantically correct representation of ordinals in the core by successively
approaching them through more and more refined (relativized) <;-components (the indices given by the first element in
each sequence) and (relativized) <,-components nested along the sequences, as was the case for tracking sequences which
indeed characterize single component tracking chains. Thus, moving along the index sequences from left to right and from
the upper sequence (vector component 1) downward to the lower sequences of the vector we obtain a unique “address”
for any ordinal in the core. A few normal form conditions are necessary, mainly that non-zero indices on main lines always
have priority over simple k-indices, while the index 0 may only occur in one case, namely representing O.

It might be very instructive for the reader to consider the restriction of tracking chains to vectors of single «“-indices
below &q: These characterize the elements of the core of R (see [1]) that is, the initial segment of the core of R, below &.
Within such a vector, the upper vector components down to the i-th represent the greatest <;-predecessor of the ordinal
represented by the upper vector components down to the i + 1-st.

The approach of tracking chains can be generalized to a treatment of R, (or even R,), rearranging the indices of
relativized <;-components so that <;-connected components are listed downward along the i-th column while refinements
to <;-components (where j < i) start with a new line with an entry in the j-th column, thus leaving many entries in the
resulting < w x n-matrix possibly empty. Further considerations into this direction, however, would exceed the topic of the
present paper.

The following two central definitions of this article, tracking chains and their maximal extension, should formally be
considered one simultaneous definition.

Definition 5.1. We define a tracking chain to be a vector « = (otq,...,a,) where n > 1, consisting of sequences
a; = (1, ..., my) of ordinals below 1% with m; > 1for 1 < i < n, that satisfies certain conditions. We proceed by
induction along the lexicographic ordering of the index pairs (n, m,).

The initial chains «ij of « where 1 <i<nand1 <j < m;are

aiip i= (01,15 ooy Q1my)s o v ey (@it 1s e s Oictm_ ) (@1 oo,y Q).

By aii we abbreviate ai.m,. For technical convenience we set a(1.0) := () and ei+1.0) := aiim-1) for 1 < i < n.
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A necessary condition on e to be a tracking chain is that all its proper initial chains e be tracking chains. We therefore
suppose from now on that all proper initial chains of « are tracking chains. Before we list further conditions on tracking
chains we need to introduce some important terminology.

The vector T = (74, ..., T,) defined by 7;; := end(e; ;) for 1 <i <nand 1 <j < m;is called the chain associated with a.

For 1 < i < nthei-th reference index pair ref(i) of « is ref(i) := (k, my — 1) if the maximal k € {1, ..., i} such thatm; > 1
exists, and ref(i) := (1, 0) otherwise. For technical convenience we set 719 := 1and 7410 := Trefy for 1 < i < n, and
Aio = Tio fori<i<n

The i-th unit 7* of & and its index pair i* for 1 < i < n is defined as follows. Let i* := (I, ) if there exist I, j where
I € {1,...,i— 1} is maximal such that there exists a maximal j € {1,...,m — 1} with 7j; < 7,1, and i* := (1,0)
otherwise.” We then set /" := 7+

For 1 <i <nand1 <j < m; we define the base 7;; of 7;; in o and its index pair (i, j)’ by 7{; := 7(;jy where

L i* ifj=1
4,Jj) =

(i,j— 1) otherwise.
For technical convenience we extend this notation to index pairs (i,0), 1 < i < n, by

:(1, 0) ifi=1
(i, 0) :=
(ref(i— 1))’ otherwise.

For 1 < i < n we define the i-th maximal base 7/ of « by

I /
T = Ty
7. "
Weset (i, )" := ((i, j)')". By 7/ we denote 7(; m;)". In order to increase readability we write ji, ;, ./ for u,;'j, MZ’, ,respectively,
g M g
/ "

T !
and Azijo )‘f{ for )»,:.j., )»:, , respectively, provided those terms are defined.

We define the i-th critical index of « by
log ((1/77) - wi1) +1 if mj=1

/

Ot + 7 if > 1& T < fo & X5 (Tim,) = 0
pi = , :

Ot +1 if My > 1& Ty, < 1y & X7 (Tim) = 1

)LTI/ +1 otherwise

whenever the terms that apply are defined. In order to clarify the tracking chain to which the p-notation refers we will
sometimes write p;(a) instead of p; which is used when no ambiguity is likely.

The <,-greatest index pair (i, j) of a after which the elements of « fall onto the main line starting at «; ; is called the
critical main line index pair of «. The formal definition is as follows:

If there exists a maximal i € {1, ..., n} such that there is a maximalj € {1,...,m; — 1} with o j31 < Ky and if (i, j)
satisfies the following conditions:

e x"(Tijy1) = 1and
e o is reached by maximal 1-step extensions starting from oij+1, according to Definition 5.28

then (i, j) is called the critical main line index pair of &, written as cml(e«). Otherwise ae does not possess a critical main line
index pair.

In order for « to be a tracking chain the following explicitly enumerated conditions must hold:

1. ajj > Oforanyi € {1,...,n}andanyj € {1,...,m;}, unlessn = 1and m, = 1 in which unique case o; ; = 0is
allowed.

5 Notice that since we are operating on additive principal numbers this is a divisibility condition.
6 Here Definition 5.2 is applied only to tracking chains that have already been defined.
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2. Foranyi € {1, ..., n} such that m; > 1 we have
Tit, .-, Gm-1 €E and 7 <71 < -+ < Tym—1-

- Qijp1 < P foralli,jsuchthat1 <i<nand1<j<m,.

. iy11 < piforanyie{1,...,n—1}.

. 0if1,1 7 Tim, Wheneverie {1,...,n—1}and 7} < 7jp, € E.

. If m, = 1 and if a possesses a critical main line index pair cml(at) = (i, j) then 7,1 # ;.

[©2 S0 NN}

By TC we denote the set of all tracking chains. For « € TC we define dom(e) to be the set of all index pairs of e, that is
dom(er) :={(i,j) |1 <i<n&1=<j<m}

By (i, j)* we denote the immediate <,..-successor of (i, j) in dom(e) if that exists and (n + 1, 1) otherwise. For convenience
we set (i, 0)" := (i, 1).

An extension of a tracking chain « is a tracking chain of which « is an initial chain. A 1-step extension is an extension by
exactly one additional ordinal.

Due to frequent future occurrences we introduce the following notation for the modification of a tracking chain’s last ordinal.

ain-1"(tn,1, - oo, Qymy—1,&) IfE>0V(n,my) =(1,1)
(X[E] = a[n—l/\((xn,l, ey O[n,mn_1) lfg =0Am, >1
on—1 ifE=0An>1Am, =1

Remark. Note that ¢[£] might not be a tracking chain. This has to be verified when this notation is used. We have included
cases where £ = 0 for convenience, especially in the formulation of Theorem 7.9. It follows from the definition that for any
& € (0, ap,m,) the following easy criterion holds:

a1 ¢TC & n>1&m, =1&7,_; < Ty_1m, , =& €E.
In this case we do have «[¢] € TC forevery ¢ € (0, pn—1) — {Ta—1,m_1} € Ta—1,my_q + Tr_1-

The following definition describes a procedure to extend a given tracking chain stepwise in a maximal manner. It will be
shown that this procedure terminates after finitely many steps.

Definition 5.2. Let « € TC with components &; = (i1, ..., @) for 1 <i < n.The extension candidate for « is defined
via the following case differentiation, setting t := v, m, and 7’ := 1,

1. m, = 1: We consider three subcases:
1.1. v/ = 7: Then & is already maximal. An extension candidate for & does not exist.
1.2. v/ < v € E: Then « is extended by a, 5 := .
1.3. Otherwise: Then o is extended by arn1,1 := log ((1/7') - 7).
2. m, > 1: We consider three subcases.
2.1. T = 1: Then « is already maximal. An extension candidate for e does not exist.
2.2. 7' < t € E: Here we consider another two subcases.
22.1. T = py < Ay Then we extend o by ovpy 1.1 1= Apr.
2.2.2. Otherwise: Then « is extended by ay i, +1 1= ir.
2.3. Otherwise: We consider again two subcases.
2.3.1. © < puy: Then e is extended by appq,1 := Q;/.
2.3.2. Otherwise: Then « is extended by opy1,1 1= Ap.

If the extension candidate for a exists we denote it by ec(e), and if it is a tracking chain then we call it the maximal 1-step
extension of «.

The iterated extension of « starts with ty := a. Suppose t, has already been defined. If t, is maximal or is not a tracking
chain, then the extension process ends with t,. Otherwise we continue the extension process with the extension candidate
th+1 for ty.

If after finitely many steps some t,, is reached which is a tracking chain that cannot be extended any further or whose
extension candidate is not a tracking chain then we call t,, the maximal extension of o, me(a). We define

+ . Jec(me(ar)) if that exists
me™ (e) := {me(a) otherwise.
Remark. Notice that any extension candidate which itself is not again a tracking chain cannot be extended any further. Note
also that for any & € TC for which cml(e) exists, this same critical main line index pair is maintained along the process of
stepwise maximal extension starting from c.
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The following definition of characteristic sequence for a tracking chain is a characterization of the reversal of the sequence
obtained when, starting with 7, ,,” is applied successively before reaching 1.

Definition 5.3. Let o € TC with components o; = (¢; 1, ..., @ m;) for 1 < i < n. The characteristic sequence cs(a) of o
is defined by

CS(OC) = CS(aIn')A(fn,h ey fn,mn)
where c¢s (()) := (). We define c¢s’(a) € ISeq as a sequence associated with e crucial for inductive proofs along <. If

cs(a) = y~ B, setting
{(1/1,;)-,3 +1 ifm, =1

B+2 ifm, > 1
we define cs’ () to be y734.

Lemma 5.4. Letx € TC.

(a) Ifort is a 1-step extension of o then cs’ (o) <ex €S’ (e0).
(b) The procedure of stepwise extension according to Definition 5.2 terminates after finitely many steps, that is, me(o) exists.
(c) Ifec(me(a)) exists then this candidate satisfies all conditions on tracking chains except for the 6th.

Proof. Part (a) is shown by induction on cs’'(@) € ISeq along <. In the case where a™ has the form
-1 (0t 1, - - - s Oy On.my+1) We have 7, 1 € E>%, and the claim follows directly. If on the other hand a™ has the form
a " (opy1,1), then we have

cs/(a+) = cs(aimn+n*) ™ ((]/T(n+1)") cTht11 + ]) .

Case1:m, = 1.
Then we have 7oy 1,1 < otny1,1 < l0g ((1/7) - Tn1) < Ta1, hence (n + 1)* <, n* and cs(eim+1*) is an initial sequence

of cs(am*). Moreover, 7,111 < Tp,1 since the assumption 7,41,1 = Tp,; would imply 7,1 € E>™ and Opt1,1 = Tp,1 Whichis
not possible due to Condition 5 on tracking chains. This shows the claim in case of cs(ain+1*) = cs(aw*). The claim is seen
easily if cs(atin+1)*) is a proper initial sequence of cs(an*).

Case 2: m, > 1.

Let 7 := Ty m, and v’ := Ty m,—1 = 7. If in this situation 7,11 ;1 < 7’ then cs(aiw+1*) is a proper initial sequence of cs(7/)
and the claim follows easily. Suppose finally that 7,11 > 7/, thatis, (n + 1)* = (n, m,;, — 1). In order to then verify that
742 > (1/t') - Ty41,1 + 1, notice that the contrary assumption 7’ - T < 7,111 in conjunction with the relation o117 < pn
implies, using part (a) of Lemma 3.12 in the case T = py/, Tpy11 < Q:/ < 1t’- T < Ty41.1: Contradiction.

Part (b) is a consequence of part (a).

In order to see part (c) consider the situation where & has an extension candidate o' ¢ TC. It is easy to verify that o'
satisfies Conditions 1 to 5 for tracking chains. Therefore &’ satisfies all conditions on tracking chains except for Condition
6. O

Lemma 5.5. Let a € TC be such that cml(a) =: (i, j) exists.

(a) If (i,j + 1) = (n, my) then ec(e) exists and is a tracking chain.
(b) If (i,j + 1) <ix (n, my) then the following invariance properties hold (using terminology as in Definition 5.2)
o7 <1/
e incaseof m, = 1:t > tjand x%i(r) = 1,
e incaseof m, > 1: 1 = puy and x"i(r") =1,
and ec(a) exists. If ec(a) ¢ TC then ec(a) is an extension of o by some a1,1, and the last unit of ec(at) has the index pair
(n+1)* = (i, ).

Proof. Note that by assumption « is an initial chain of me(«jij+1). In order to show part (a) we use Lemma 5.4. If
7;j < Tij+1 € E then case 2.2.2 of Definition 5.2 applies and the extension is clearly a tracking chain, otherwise case 2.3.1
applies. In this latter case a is extended by «tj1,1 = Q;’fjﬂ = 1;j-A where A := log(t; 1) is alimit ordinal since 7; ;1 € L=%J
due to the assumption x %/ (7;j;1) = 1.Hence ti411 > 7;j = 1:1/+“, implying that ec(a) € TC. Using Lemma 3.3 we have
X (Tij41) = x™(A) = x™(end(A)) = 1and hence also x " (tit1,1) = 1.

By inspection of Definition 5.2 we can now clarify how me™ (a) looks like. Consider index pairs (k, I) such that (i, j+2) <
(k,Dincaseof 7;; < 7jj41 € Eand (i + 1, 1) < (k, I) otherwise. We have the following cases.

e Ifl > 1thenay; = uq,_, whichin the case [ < my is an epsilon number and equal to A, , ;.

o Ifl=1and m_; > 1thenay; = )LT,Hka_lfl.

e Otherwise we have oy = log ((1/T@k-1*) * Tk—1,1)-
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Part (b)is now shown by induction on the index pairs (n, m,) ordered lexicographically. For the initial step & = ec(aij+1)
part (a) yields the invariance properties. Suppose that the invariance properties hold for . We verify that ec(a) exists and
show that in case of ec(a) € TC the invariance properties also hold for ec(e). In the case ec(a) ¢ TC the respective claim
follows from Lemma 5.4 and the inductive hypothesis which shows that there is no 7 ; < 7;j with (i, j) <iex (k, D).

Case1: m, = 1.

We need to show why t = 7’ is not possible. In order to derive a contradiction let us assume this were the case. Then
v/ € E”%i, hence v/ = 7y for some (k, I) such that (i,j) <pex (k,]) <ix (n,my) with | < m;. Now we either have
Ay = Wy = 41 OF Ay = 41,1, and using Lemma 3.3 we see that since X’/(r) = 1 we have XT'()W) = 1, which
in turn implies x%i(z’) = 0 using Lemma 3.3. Contradiction. Thus ec(e) exists, and we proceed to verify the invariance
properties for ec(e) assuming that ec(«) € TC. If case 1.2 of Definition 5.2 applies, thatis, " < t € E, and ec(e) is obtained
by appending oty m,+1 = ., Wehaver;; < 7' < 1 = r,;,mnﬂ and x %ii(r) = 1.1If on the other hand case 1.3 applies then
Opt1,1 = log ((l/r’) . r) is appended to o. Here x®(t) = 1 implies x %(ty41,1) = 1, hence 1,411 > 7;; and thus also

/

Tor1.1 = Tij using the ih. Now, by the assumption ec(e) € TC the equality of 7,41,1 and 7 is excluded.

Case 2: m, > 1.

Then the existence of ec(e) is clear since T = u,» > 1. We verify the invariance properties for ec(e) assuming that it is
a tracking chain. If case 2.2 of Definition 5.2 applies, that is, T’ < 7 € E, and in particular case 2.2.1, thatis T = iy < Ay,
then ec(a) is obtained by appending «;1+1,1 = A/, and we argue as above where case 1.3 applied. If otherwise case 2.2.2
applies, thatis T = pu, = Ay € E, then ay m,+1 = 4 is appended to « and we have r,;’mnﬂ =1 >17 > r7;aswellas
X (1) = x"i(Ay) = x5 (r") = 1.Finally, if case 2.3 and thus in particular case 2.3.2 applies, ¢;+1,1 = A is appended to
o, and we argue as we did when cases 1.3 and 2.2.1 applied. O

Corollary 5.6. Let o € TC be maximal, i.e. « = me(e), with maximal index pair (n, m,). If cml(a) =: (i, j) exists then ec(ot)
exists, and the extending index with index pair (n 4 1, 1) is a successor multiple of 7; ; with (n + 1)* = (i,j). O

The following lemma clarifies, on a technical level, basic properties of tracking chains. It will be needed in proving
Lemma 5.8 which in turn is needed for Lemma 5.10. These lemmas then reveal a crucial structural uniformity property
of tracking chains (see parts (c) of 5.8 and 5.10).

Lemma 5.7. Let o € TC with components a; = (e 1, ..., Qi) for 1 <i < n.
(a) Ifref(i) # (1, 0) then p; < Ay T 1-
(b) 7 < 7o Forie{1,...,n— 1} we have (i + 1)* <, ref(i).

Proof. Part (a) is shown inspecting the definition of p; casewise from i = 1 up to i = n. Assume that ref(i) #£ (1, 0).

Case 1:m; = 1.Theni > 1and ref(i) = ref(i— 1). Wethenhave p; < 7,1 +1 < pi_1 < A

( . < tery + 1 Using the already shown
instance i — 1 of the claim.

Case2:m; > land 7 < o/ Then 7ref;) = 7{. By Lemma 3.12 part (b) we obtain p; < Areyy T 1
Case 3: Otherwise. Then again trfj) = 7/ and the claim follows.
Part (b) is obvious from the definition. O

Lemma 5.8. Let o € TC with components &; = (¢t 1, ..., Qim) for 1 <i<n.

(a) cs(as) is an initial sequence of cs(aui.0)) which is proper if T < Ti .
(b) Ift} > 1then i1 < Aq,.
(c) We have cs(a) € ISeq, more precisely, if cs(et) = y 6 then

dom(k?) ifm, =1

YyERS and =1y m, € {dom(uy) otherwise.

Forie {1,...,n}and 0 <j < m; we even have cs(eij) € RS.

Proof. Part (a) is clear if i* = (1, 0). Otherwise we apply part (b) of the previous lemma to see that 7 is an element of
cs(aii,0), and the claim follows.

Part (b) is shown fori = 1 up toi = n successively. For i = 1 we have i* = (1, 0), so there is nothing to show. Now
supposei € (1, n) and t/,; > 1. By part (b) of the previous lemma this implies ref(i) # (1, 0), hence Tiy11 < A, by part
(a) of the previous lemma. We are done if 7/, ; = Teef(;), otherwise we apply part (a) and use part (c) of Lemma 3.12 as well
as the already shown instances of part (b) to conclude the claim.

Part (c) holds due to Conditions 2, 3, 4, using part (c) of Lemma 3.12 and part (b). O
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Definition 5.9. Let o = (o, ..., a;) where o; = (o1, . . ., & ;) be a tracking chain with associated chain 7.
The evaluations 7;jand ¢; j for 1 <i <nand0 <j < m; are defined by’
T10:=010:=0,
Tip1,0 1= Qiy1,0 '= Tiym—1 forl1 <i<n,
andforl1 <i<nand1<j<m
Tiq = K,T,’f i1 = vffjﬂ
and
G = ke, G = Vi’}lj}ﬂ-
The initial values {o; j(e) | 1 <i <n, 1 <j < m;} of « are defined - setting for convenience m, := 0 and 0g () := 0 - for
i=1,...,nby
0;,1(0t) 1= 0j_1,m;_, (&) + ;1
and
0ijr1(00) == 05j(a) + (=T + @;jp1) forl <j<m
We define the value of « by o(a) := 0y, (&) which is the terminal initial value of a.

Remark. The correction —7;; in the above definition avoids double summation: Consider the easy example of the chain
((g0, 1)) which codes & - 2. Notice that —7; j + &; ;41 is always a non-zero multiple of 7; ;. We clearly have o; j(et) = o(exii).

Notice that by definition the evaluation of a tracking chain whose single component is a tracking sequence is equal to
the evaluation of that tracking sequence, which justifies the use of the same notation. Clearly, all evaluations defined above
yield ordinals below 1°°.

Lemma 5.10. (a) The evaluations of the above definition are well-defined.

(b) In the situation of Definition 5.9 for alli € {1, ..., n} we have
- e
Ti1 = K‘[“ .
(c) Forallie {1,...,n}andj e {1,...,mj}suchthat t;; € E>% and 7 > 1we have
. (Tij1y - -5 Tij) ifir=1
ts(7ij) = . ot = cs(oud).
ts(T#) " (i1, ..., Tij) otherwise

(d) Suppose (i, j) <iex (k, I) wherej < m; and | < my, for index pairs from dom(e). If ts(7; ;) = ts(Tx,1) then (i, j) = (k, ).

Proof. The verification of all claims of the lemma proceeds simultaneously along <, on the index pairs (i, j) where
1<i<nand0<j<m.

Part (a) uses already proved instances of the lemma, if necessary, and Lemma 5.8, part (c), in order to see that 7;; € RP
when j < m;. Condition 4 of Definition 5.1 together with Lemma 5.7, part (a), implies that o;; € dom(k%i0) whereas
Condition 3 guarantees that o; j1 € dom(vii)forj=1,...,m — 1.

For part (b) we use the already shown instance (i, 0) of part (c) of the lemma together with Lemma 5.8, part (a), to verify
that, in case of 77 > 1, ts(7+) is an initial sequence of ts(7; ). If both sequences are equal we are done, otherwise the
immediate successor of (the <-maximal occurrence of) 7;* in ts(%; o) is an epsilon number greater than 7;* (by definition

of i*). Using Lemma 5.8, part (b), we obtain 7; ; < )\r; if 7> > 1.Hence ;1 € dom(/c’i').

In order to prove part (c) assume that 7;; > laswellas 7;; € E>5 (which is implicit in the case m; > 1 where it holds
by Condition 2 of Definition 5.1). The second equality of part (c) follows immediately using the already shown instance i* of
the lemma. If 77 = 1 we are done due to the already shown well-definedness of 7; ; and Lemma 4.10. Otherwise, by part (c)
of Lemma 5.8 we have ts(7x) € RS and by Lemma 5.8, part (b), together with Lemma 3.12, part (c), we obtain 7;; < Mrs

whence by definition vf,."_*l = Kf,'*l = Tj 1, using part (b). We now see that 7;; = o(cs(aii.p)), and Lemma 4.10 yields part (c).
Part (d) follows from part (c) by comparing the index pairs involved starting from the first elements of ts(7;;) and
tS(‘Z’k,[). O

7 The well-definedness of these evaluations follows from the conditions on tracking chains together with the next lemma. Notice that the notation 7;;
depends on the underlying tracking chain which will always be understood from the context in which the -notation is used.
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We continue with estimations on the values of tracking chains that will allow us to establish an order isomorphism
between tracking chains and their evaluations. It is convenient to use the following notion of depth for tracking chains that
will turn out to characterize the <;-reach of the ordinal, say «, coded by the tracking chain unless o <;-connects to some
N + veyq where n + ve <q « is maximal such that £ is not the maximum index of that v-function, in which case this notion
of depth characterizes the distance between o and 1 + vg 1.

Definition 5.11. Leto < 1*° and & = (o1, ..., ;) € TC where &¢; = (oj 1, ..., ;i m;). We call « a tracking chain for o if
o = o(a).

dp(e) is defined as follows: Let T := 7, 1n, and 7’ := 1.

dp;z/ (1) ifm, =1
dp(er) := k7 +dpy(0,) + X7 (1) T ifmy>1&T <y
Kf;, ~+ dpz (A1) ifm, > 1&1 = .
Remark. In case of m;, > 1and t < u,» we have
o(a) + dp(a) = o(afonm, + 11)
as follows from the definition of the v-functions.

We now proceed with a lemma that will allow us to establish an order isomorphism between tracking chains and their
evaluations in 5.14. The explicit computations in parts (c), (d), and (e) of the following lemma will be used in proving
Lemma 6.2.

Lemma 5.12. Let o = (ety, ..., o) € TCwhere a; = (et 1, .. ., o ;) and set o := o(e). If there is no extension of o then
dp(a) = 0.
Otherwise let a™ be a 1-step extension of &, or ec(e) if that exists. Then « is of a form either
of =a (apg11) o @t = (o, ..., 0y 1, 0 Oy t1)s
and we set oy m,+1 = 0if ™ is of the former, and o411 := 0 if @™ is of the latter form.
Ifat ¢ TC then
Tot1,1 = Teml@ and  end(dp(e)) = Temi()-
Otherwise let the vector o’ be obtained from a* by adding 1 to its last ordinal (that is either an 1,1 0T &ty my+1)- Setting T := Ty,
and t’ := t,, we obtain an estimation of o(a™) + dp(a™) depending on the following cases:

1. a # ec(a):
(a) o' & TC: In this case we have m, > 1,7 = iy € EN (7, Ay'), Qnmy+1 = My, and
o(a”) +dp(a®) < o(@™ ((r + 1)) < a + dp().
(b) o € TC: Then we have
o(@™) +dp(e™) <o) <a+dp(ax) and o(a™)+dp(a™) < o + dp(a).
2. at = ec(a):
(@) my > landt < py:
i. x”(t) = 0: Then
o(a™) +dp(@®) < o(a” ((0, + 1)) < & + dp(a).
ii. Xf/(r) = 1: Then cml(me(a)) = (n, m, — 1), me* () & TC, and
o(@®) +dp(e™) = o + dp(a).
(b) Otherwise: Then again
o(e®) +dp(a™) = a + dp(a).
For any extension 8 of & we have
(a) o(B) +dp(B) < o + dp(a).
(b) o(B) < a +dp(a) ifm, > land t < .
() Ifm, > 1,7 < uy,and X’/(r) = 1we have

o(me(a)) + dp(me(@)) = o + dp(er) = o(et[ety,m, + 11)-
(d) If a does not possess a critical main line index pair cml(e) then dp(me(e)) = 0 and
a+dpf/(f) ifmn =1
o(me(a)) = 1@ +K§; +dps(07) ifmy > 1&7T <
o+ ki, +dpy(Ar)  otherwise

which only deviates from o 4+ dp(e) in thecasem, > 1& 7 < .
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(e) If cml(a) =: (i, j) exists then
o(me(er)) + dp(me(a)) = o + dp(a)
o +dp:/ (1) ifm, =1
—{a+ KQ +dpz (7)) if(n,my) = (G,j+ 1)
o+ K{;, 4+ dpz (M)  otherwise

= o(auaj+nlojy1 + 11,

and

I

7j(E+1)

where, say, (r, k;) is the <i-greatest index pair of me(et) and 7;j(§ + 1) for suitable £ > 0 is the extending index of
ec(me(a)) according to Corollary 5.6.

Proof. First of all we verify the two statements made at the beginning of the lemma. If there is no extension of « it follows
from the definitions of TC and dp that dp(e) = 0. In case of @™ ¢ TC we have & = ec(e), and by Corollary 5.6 we have
Tht11 = Temie) < T’ and Temie € ts(T) using part (c) of Lemma 5.10. In the case m,;, = 1 we must have v’ < v ¢ E and
ani1.1 = log((1/7’) - ). Hence

dp(@) = dpz(v) =k, |
because dp;/(otpt1,1) = dpz/ (tht1,1) = 0, and
7 _ 7
an+1,1) - KTcml(a)
If on the other hand m,, > 1, the assumption t < .+ would imply that cml(e) = (n, m, — 1), which according to part (a)
of Lemma 5.5 would entail ™ € TC. We therefore have t = . and ap11.1 = A. Thus

dp(me(a)) = «

=/

end(K = %cml(a) .

dp(e) = k7, 4+ dpz (Ar) = &} and end(x’

nt1,1 Ofn+1,1) = Teml(e)

as above. From now on we assume that e € TC and proceed by showing the assertions concerning o™,

Ad 1 (a). The assumptions imply m, > 1,7 = uy € EN (7', Ay), and &y m,+1 = WK, as stated. We easily compute
o(@™) = a+v} ,dp(e’) =k +dp;(A),0(e” ((r +1))) = a+dpz(r) +1,and dp(e) = «f +dpz(Ar).Since T < Ag

Lemma 4.5 yields “<”, and “<” follows by definition of dp; (7).

Ad1(b).Inthecase t € E>¥ &0 < Onmy+1 < 4r we have o(a™) + dp(e™) = o(e’) < o + dp(a) where “<” again follows
from Lemma 4.5, which also applies in the remaining cases where we have o(a™) + dp(a™) < o(e’) < o + dp().

Ad 2 (a) i. Here both cases concerning the form of & are possible, that is, oty m,+1 = 4 and ap41,1 = ©,. The claim follows
again inspecting the definitions and using Lemma 4.5.

Ad 2 (a) ii. The assertions cml(me(a)) = (n, m, — 1) and me* (o) & TC follow by definition of the maximal extension and
Corollary 5.6. The stated equation is easy to verify.

Ad 2 (b). This again follows directly from the involved definitions.

We now show first part (a), then parts (b) and (c), by induction on c¢s’(e) along </, since any proper extension f of & can
be broken up into the first 1-step extension a™ of & and the extension of @™ to B. Part (a) is then immediate. Part (b) is easily
seen in the case XT/ (t) = 0.Now assume X’/ () = 1. We observe that only successive maximal 1-step extensions, calling &
one such, can and do maintain the equality 0(8) +dp(8) = «+dp(e), a procedure that according to Corollary 5.6 leads to the
final extension candidate me™ () which is not a tracking chain. We thus have o(me(a)) + dp(me(ea)) = o + dp(er), which
is equal to o(at[an,m, + 1]), and for any proper extension, say, § of me(et) we have o(8) + dp(8) < o(me(e)) + dp(me(ex)).
Thus parts (b) and (c) follow.

In order to see part (d) first observe that since me(e) does not have an extension candidate ec(me(e)), it follows that
dp(me(a)) = 0.1In all cases except for the situation where m, > 1and t < ., we know from the already shown parts that
o(me(a)) = o + dp(e). Now, in the case m, > 1and t < u we have X’/(r) = 0. If ¢ is already maximal, we are done.
Otherwise we have me(er) = me(ec(e)) and face two cases:

Case 1: 7’ < 7 € E.Then ec(«) extends « by an additional index &n m,+1 = f4r, and using that Qf = 7 we obtain
o(me(a)) = o(me(ec(e)))
= o(ec(a)) + dp(ec(a))
=+, + & +dp:(ho)
=a+ K;/ + dpf/(gf).
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Case 2: Otherwise. Then ec(a) extends « by an additional index 41,1 = Q;/, and directly obtain the claim.

For part (e) we know by the already shown parts that in the cases where (n, m,) # (i,j + 1) we have o + dp(e) =
o(me(a)) + dp(me(e)). Now, in the situation (n, m,) = (i, j + 1) we know by part (a) of Lemma 5.5 that ec(e) exists and is
a tracking chain. We can then conclude @ + dp(e) = o(ec(e)) + dp(ec(e)) = o(me(e)) + dp(me(e)). The claim regarding
dp(me(a)) follows from the definitions using Corollary 5.6. O

We now define a well-ordering <1c on TC such that the evaluation function o on TC becomes order preserving, as shown
in the sequel.

Definition 5.13. We define a linear ordering <1c on TC as follows. Let ¢, § € TC be given, say, of the form
o= ((al,h ey al,ml)’ ey (an,la ey an,mn))
and

ﬂ = ((ﬂl.la ) ﬂl,lq)v cee (ﬂl,h ceey ﬂl,kl))'

Let (i,j) where 1 < i < min{n,l} and 1 < j < min{m;, k;} be <,-maximal such that a:ij = By, if that exists, and
(i,j) := (1, 0) otherwise.

o <rc B & (i,)) = (n,my) # (I, k)
V(< min{m;, ki} & &tijr1 < Bij+1)
\/(j =m; <k &i< H&OtH_lJ < 1.',‘,]‘)
\/(j =k <m&i< l&‘[i’j < ﬂi+l,l)
V({=k =m&i<min{n, I} &aiy11 < Bir1.1)

a=<cB  Sa<ichfVa=4

Lemma 5.14. For all o, € TC we have
o <tC ,B = O(Ol) < O(ﬂ)

Proof. Let &, 8 € TC such that « <tc B be given. We show o(«) < o(f). The lemma then follows since it is easy to check
that <rc is a linear ordering of TC. The evaluation of a tracking chain is strictly increasing along its initial values. The claim
follows from the strict monotonicity of the «- and v-functions shown in Lemma 4.5 using Lemma 5.12. O

Corollary 5.15. For any o < 1% there exists at most one tracking chain for«. O

In the next section we will establish that the evaluation o on tracking chains is a mapping onto 1°° and define its inverse,
which will be called tc. We will thus obtain an order isomorphism between (1%, <) and (TC, <tc¢).

6. Assignment of tracking chains to the ordinals below 1*°

By the following definition we assign finite sequences of ordinal vectors to the ordinals below 1°° which meet all
conditions for tracking chains stated in Definition 5.1. Moreover, it will be shown that TC from 5.1 is a characterization
of the set {tc(«) | @« < 1°°} as defined below.

Definition 6.1. For @« < 1% we define the tracking chain assigned to «, tc(«), recursively as follows. We define tc(0) :=
((0)),and ifa € Pwessettc(x) := (ts(a)). Now suppose tc() = o = (aq, . . ., &) to be the tracking chain already assigned
to some @ > 0, where &; = (@ 1,...,ap) for1 <i < n,andlet 8 € P=end@ For technical reasons we set opy11 =0
and my; := 1. The definition of tc(« + B), the tracking chain assigned to « + S, requires the following preparations.

e For1 <i<nand0 <j<m;let
By -\ BD) = ts[E51(B),

writing simply (81, ..., B) in the case (i, j) = (1, 0).
e Let (ig, jo), where 1 <ig <nand 1 < jo < m;y, be <,-maximal with

aig,j0+l < M‘L’,‘OJ‘O

if that exists, otherwise set (ig, jo) := (1, 0).
o Let (ko, lo) be either (1,0) orsatisfy 1 < kg < n+ land1 < Iy < my, so that (ko, lp) is <,-minimal with
(i0, jo) <iex (ko, lo) and

1. forall k € {ko, ..., n} we have

k,mp—1
Ogt1,1 + ﬂ1 = Pk
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2. forallk € {kg,...,n}andalll € {1, ..., m, — 2} such that (kg, lp) <ix (k, [) we have

Torr + By > Ay
Case 1: (ig, jo) = (ko, lp). Then there are three subcases:

1.1: B < Ty j,- Then tc(a + B) is defined to be

@iigiorn ™ (0nle,, + BR, BEP, L pR ).
1.2: B = T, j,- Then tc(a + B) is defined by
“f<f0’fo+1>[aio,j0+l +1].
1.3: B > T, j,- Then there is an rq < r such that, setting By := 1, B, = Ty, j,, and tc(x + B) is defined

Qiig—1" (g, 15 - - - » Wig jo» Xigjo+1 T Bro+1s Bro+2 - -+ Br)-

Case 2: (ig, jo) <iex (Ko, lp). Then there are the following subcases:
2.1: kg =n+1and 8™ " = 1,,,, € E*™.Then B = %, n,, and tc(a + B) is defined by
a[n—lA(Oln’], PN O{n'mn, ])

22: ko <mlp€{1,...,my —2}and 7, 41 + B0 < Dy 1> We define te(@ + B) by

— ko,lo ko,lo kol
Qitkg,lo+1) (Tko,lo+1 + 8,77, B, ,Br,f:),(; ,

provided this vector satisfies Condition 6 of Definition 5.1, otherwise we have 8 = 7, j,, and tc(o + B) is defined as in
case 1.2.
2.3: Otherwise. Then kg > ip and o411 + ﬂf’

— k,mp—1 k,mp—1 k,mp—1
o (ako,]+ﬂl 1 ghmet gl )

Tk,mp—1

myg—

' pi fork := ko — 1, and tc(a + B) is defined by

provided this vector satisfies Condition 6 of Definition 5.1, otherwise we have 8 = 7, j,, and tc(o + B) is defined as in
case 1.2.

Remark. Case 1.3 uniformly covers two quite different situations: The situation (ip, jo) = (1, 0) will be shown to correspond
to the scenario where adding 8 to o means to jump into a larger <;-connectivity component, whereas the situation
(i0, jo) # (1,0) corresponds to jumping into a larger <;-connectivity component on the surrounding main line. Notice
that we could have incorporated Case 1.2 into Case 1.3, say, by setting 8,11 := 1. Case 2.1 takes care of Condition 5 of
Definition 5.1.

Lemma6.2. et o < 1%,

(a) tc(e) € TG, i.e. tc(o) meets all conditions of Definition 5.1.
(b) There exists exactly one tracking chain for a, namely tc(w) satisfies o(tc(a)) = c.

Proof. We prove both parts of the lemma simultaneously by induction on «. The case « = 0is trivial, and using Lemma 4.10
we see that the claims hold whenever @ € P. Now suppose the claims have been shown for some @ > 0 with assigned
tracking chain tc(w) = a as in the definition and suppose 8 < end(«) so that we have the inductive hypothesis available
for any ordinal below o + 8. We adopt the terminology of the previous definition and commence proving the inductive step
for « + B by showing the following claims.

Claim 6.3. If B < T, j, then ,BiO’jO < Ty.jo- If additionally x "odo (t;, j,+1) = 1 and (o, jo) <iex (k, 1) for some index pair (k, I) of
me (i jo+n) With | < my then B*! < 7 ;. In both assertions equality holds if and only if B = T j,.

In order to show the claim let us assume that 8 < 7 j,. This assumption implies that (ip, jo) # (1, 0). In the case

ﬂﬁ“b = Tj,j, the assumption implies r;, j, = 1and 8 = T, j,. On the other hand, in case of 8 = 7, j, we clearly have
ts[iiOij](.ﬂ) = (T."OJO)' The assertior} concerning (k, I) can easily be recuced to the one concerning (ip, jo): By Lemma 5.5
ts(%j, j,) is an initial sequence of ts(7y ;) and therefore

[T (B) = (B Bl = (Y. B0 ) = tsl i o) ().
Now assume 8 < Tj, j,. By Lemma 3.15 we have ts(8) < ts(Tjyj,) =: (¥1, ..., ¥s). By part (a) of Lemma 4.17 for some

0 < k < swe have, setting yp := 1, y < ﬂi"'jo < Vi1 =< Tiy,jo- This concludes the proof of Claim 6.3.



T.J. Carlson, G. Wilken / Annals of Pure and Applied Logic 163 (2012) 23-67 47

Claim 6.4. If (io, jo) # (1,0) and x "o (tyy jo+1) = 1then B < T, j, implies (io, jo) <iex (Ko, lo)-

For the proof of this claim assume 8 < 7, j, and let (i, j) be the <,,-maximal index pair such that e is a common
initial chain of & and me(eiy.jo+1), hence (ig, jo + 1) <. (i, ). By Corollary 5.6 we know that ec(ei.j) exists. In order to
derive a contradiction we now assume that (ig, jo) = (ko, lp) and discuss the possible cases in the definition of ec(ei.»). For
convenience of notation we set 7 := 7jand ' := 7.
Case 1:j = 1. Then we have m; = 1 by the maximality of (i, j), i > iy and thus (ip, jo + 1) <iex (i,]).
Subcase 1.1: ' < 7 € E. By Lemma 5.5 and the assumption kg = iy < i we then have

xm,—l

Tigjo =T = log((1/7) 1) < pi < ait1,1 + By

But accordmg to Claim 6.3 we have g™

iy11+ ﬂ] < p;. Contradiction.

< Tj,.j,» and by Condition 5 for tracking chains we have «;1; < 7, whence

Subcase 1.2: Otherwise. Then ;1 1 is strictly less than log((1/7’) - t) which is the extending index of ec(eii.») and according
to Lemma 5.5 and Corollary 5.6 a proper multiple of z;, ;,. We run into the same contradiction as in Subcase 1.1.

Case2:j > 1.Thent' = 1;;_;.

Subcase 2.1: 7' < 7 € E.

2 1.1: 7 = puy < Ay.Then (ig, jo+ 1) <ix (i, j) which implies (ko, lp) <iex (i,j— 1). The extending index ofec(a @) is then
.. Ifj < m; we obtain the contradiction r+ﬁ'1’ T A, otherwise we obtain the contradiction o 1, 1+,81 < pi = Ap+1

in a similar fashion as in Case 1.

2.1.2: Otherwise. The extending index of ec(w;.) is then w., and m; = j. By Condition 5 for tracking chains «;y1,1 # ©. By

the assumptions of this case and using Lemma 5.5 we have 7, j, < 7. We first consider the case (i, j) = (ip, jo + 1). Then

ait1.1 < T and p; = T + 1. We obtain the contradiction o, 11 + 8%~! < p;, again using the previous claim. Now assume

(ip,Jo + 1) <iex (i, J). Again we have p; = 7 + 1, @i+1,1 < 7, and we run into the same contradiction.

Subcase 2.2: Otherwise. Then again m; = j.

22.1: 7T < g ThlS can only occur if (i, j) = (lo,]o + 1), thus v’ = 75, j, and T = Ty, j,+1. The extending index ofec(oz @p) is
Jold ' and 0i = 01 "+ 1.Lemma5.5 yields x* (Q ) = 1. We are then confronted with the contradiction «j+1,1 + /31 < pi.
2.2.2: Otherwise, that is, T = /. This implies (i, jo + 1) <i (i,J), and the extending index of ec(aic.) is A,» which again

is a proper multiple of 7, j,. Thus a1 1 + Bl < Ay < Ay + 1 = p;. Contradiction. Our assumption (ig, jo) = (ko, lp)
therefore cannot hold true, which concludes the proof of Claim 6.4.

We are now prepared to verify the lemma for each of the six clauses of the assignment of tc(x + 8) to « + . However, a
uniform argument exploiting the careful choice of the index pair (kq, l) will be given in the last part of this proof to complete
the treatment of the single clauses.

Case 1: (ip, jo) = (ko, lp).

Subcase 1.1: 8 < T, j,. Then clearly (ip, jo) # (1, 0), by Claim 6.3 /320”:0 < Tig.jo» and Claim 6.4 yields x Modo (zjp jo+1) = O.
Using Lemma 4.17 we obtain tc(e + B) € TC, and since ;41,1 + ﬂ;m > pj, we must have m;; > jo 4+ 1 and hence
Qo
ote(a + ) = o(@itpig+1) + P, (Tiysp1) + B
= o(me(ipjo+n)) + B.
It remains to be shown that this is equal to o + B.

Subcase 1.2: 8 = T;, j,. Again, (ip, jo) # (1, 0), by Claim 6.3 we have g0 = (t;, ;,),and Claim 6.4 yields x "0 (t;, j,+1) = 0.
tc(a + B) € TCis immediate. We compute similarly as above

= Tj, jo+1- According to part (d) 2 of Lemma 4.5, Lemma 4.15, and part (d) of Lemma 5.12 we have

o(tc(a + B)) = o(eipo+n) + KQT? J[J) +1 + dp%iovfo (ino.foﬂ) + P
= o(me(aidg.io+1)) + B,
and again it remains to be shown that this is equal to o + S.
Subcase 1.3: 8 > T, j,. Making use of Lemma 5.12 we observe that

’O Jo

Tig.jo < B < end(a) = end(an,m,) < Vittiyjo
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which, realizing that due to Lemma 4.10 ts(v,if’0 ) = t5(Tipjp) " Hrig o , according to Lemma 3.15 implies

t5(Tig.jo) <tex tS(B) <iex t5(Tig o) ™ My o »

whence ts(T;, j,) is a proper initial segment of ts(8). Thus there is an ry < r such that 7;, j, = B,, leaving the possibility
ro = 0 for the case (ig, jo) = (1, 0). We now see that tc(« 4+ 8) € TC. Using again Lemmas 4.10 and 5.12 we obtain

o(te(ee + B)) = o(me(etiigo+n)) + B,
and leave showing that this is equal to o + S for later.
Case 2: (ig, jo) <iex (Ko, lo)-
Subcase 2.1: ko = n+ 1and g™ = 7, ,, € E*™. Since # < %, ,, We then have 8 = %, 1, and tc(a + f) € TCis clear.
Since ko = n + 1 we have 7, ,, < pp, and realizing that —%, ,, + vf”"”” = T,.m, We obtain

o(tc(a + B)) = a + B.

Subcase 2.2: ko < n,lp € {1,..., mg, — 2} and 7y, jy+1 + ﬂfo"" <Ag -

’ 0-'0
2.2.1: ditkglo+D " (rko,,oﬂ + ﬂlo o ,Bko b Sf’ f’) satisfies Condition 6 for tracking chains. Then tc(a + B) is defined
by this vector which is easily seen to be a trackmg chain. Note that since 7y jo4+1 = Mg, € E™ ™0 N Ay, We have

kg lo+2 <1 €C(@iky.lp+1), implying that oeik,.l+2 does not possess a critical main line index pair. Part (d) of Lemma 5.12
therefore yields
0.lp+1

o(me(iky.lg+2)) = 0(@ikg.lg+2) + Klrk ot
0

+ dp%ko,lo+1 ()\’TkOvIO‘H)'
We now compute using Lemma 4.15

o(tc(a + B)) = o(atkg.dp+1) + dek 1o Tolo1) + B

Thg.lg-+1 Tig.lg+1
o(atikg.lp+1) + vzko 2 TK ;wk S+ + dpfko,loﬂ ()\‘Tko.lo+l) +B

0.lp+1

= o(aikg.lg+2) + K)er ot

dpfk0’10+1 ()\'tko,l(fr]) + ﬂ
= o(me(&iky.p+2)) + B
and leave the task of showing this to be equal to « + g for later.

2.2.2: Otherwise. Then tc(a + B) = audgdo+nletiy jo+1 + 11 € TC. The assumptions making up this case imply ry, ,, = 1,
f"”o = Ty jo» Thoulp+1 T ﬂk" o _ = Az, ,,» Which is the extending index of ec(atiky io+1) & TC, and thus me(eigjo+1) = ik lo+1.
Noticing that dptk0 o ()\%1 ,O) = 0 part (e) of Lemma 5.12 now conveys the computation

o(te(ee + B)) = o(@iigio+1) + KQOJO + dpfioJo (Qrio»jo+1)

Tig.jo+1
To.lp
Tko.lo

= 0o(@ikg.lo+1) + dekO‘,o (Thy,lp+1) + B

= 0(@ikg.lo+1) + K,

— ~ Tho,lg+1
- 0(““‘0—1 (ako,h cees Qg lg+1 lj/rko lo+1 )) + K )‘Tk g+ + dp%’<0,[0+1 ()\'T"O~‘0+1) + /3
= o(me(iky.p+2)) + B
where the last equality holds, since the tracking chain etikg—17 (g, 15 - - - » Qi lg+1> M’ko-loﬂ) does not possess a critical main

line index pair, according to part (d) of Lemma 5.12. That this is equal to « 4+ § will be shown later.

k,mp—1

Subcase 2.3: Otherwise. Then ko > ig, lp = 1, and 41,1 + B4 < pi fork := ko — 1.

2.3.1: The vector otj™ (ako A L s ﬂlﬂt 1) satisfies Condition 6 for tracking chains. Then tc(o + B) is

defined by this vector which using part a) of Lemma 5.7 is easily seen to be a tracking chain. Let us first assume that ky = n-+1.
Using Lemma 4.15 we then have

o(tc(x + B)) = a + B.
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Now we suppose ko < n. We observe that ek,.1 does not possess a critical main line index pair since oy, 1 < ox — 1 where
Temy < M) is possible only if (k, my) = (ip, ko + 1). Now Lemmas 4.15 and 5.12, part (d), yield

o(tc(er + B)) = o(aie1) +dpz, . (Tip.1) + B
= o(me(aiky.lp)) + B
which will be shown to be equal to o + .

2.3.2: Otherwise. Then tc(o + B) = audgio+nletiy jy+1 + 1] € TC. In this final case we have rk,mk,l =1, ghm—1 = (Tig.jo )
Qo1 + Tigjo = Pk = 1, and me(aiig.jp+1) = etk By part (a) of Lemma 5.5 we either have p; ~ 1 = log((1/1}) - 1) in the
case my, = 1 where k > iy, or we have p, — 1 = A,/ in the case my, > 1where t; , = = Mol Uig.1 must be a (possibly zero in
the case ko = n + 1) multiple of 7;, j, since if not, by part (a) of Lemma 5.12 we would have

T,
ki
o(an) < o < o(ok) + Krk(?ﬁ_] < o(am) + B

where we have used that our assumption would entail 7y, < T, Whence r,éo would be an element of ts(7;, j,) and
O -Jo
0470
We are now prepared for another twofold application of Lemma 5.12, first part (e), then part (d). In the case kg = n + 1 we
are finished with the second equation while otherwise we continue the computation as shown.

therefore dp (rko 1) = dp,l0 io (Tiy,1) < Ky = Tjj, = B.This would mean that end(e) < B which is not the case.

ofte(@ + £)) = oleiu) + 457 | +dps (g jo41)

Tig.jo+1

_ o(ot k) +Kal<mk 1

+dpz, 4 (@) + B
= o(atiky.1) + dpf’:O (Tko,1) + B
= o(me(aky.lp)) + B
which in the case ky < n will be shown below to be equal to o + 8.

We are now going to show the equalities left open in the single cases. Notice that all cases where kg = n+ 1 are finished
already. We therefore assume kg < n from now on, whence ﬁ” M=l pn. In the first step we show that

o(me(a)) + B =a +B. (1)
This is clear if me(«) = a. If @ <7c me () we have to consider three cases in each of which we use Lemma 5.12.

Ifm, = 1thena < o(me(x)) < o + dp% (tn.1), and referring to Lemmas 5.8 and 5.10 we have

APz, (10.1) = Koot ey 1) + AP0 (108((1/71) - 1)),

By part (b) of Lemma 4.17 the assumption 8 < dp; (ty,1) would imply ﬂf’o < log((1/7,) - Ta,1) + 1 = pn which is not the
case.
Now assume m, > 1and ym, < . This is only possible if (n, my,) = (i, jo + 1). We then have ¢ < o(me(a)) <

X0]0 . 1010 . - .
o + K Qf, P + dp;iojO (QTinOH). Here the assumption § < KQr, i+ + dp;iojo (Qrio«j0+1) would entail the contradiction
lo Jo < pn.

Otherwise we have m; > 1and tp m, = i,;. Then we have & < o(me(a)) < o + Kj”/ + dp;; (A7), and the assumption
™

B < Kf’/‘, +dp;/ (A7) would lead to the contradiction ,3" M=l A +1 = pp. Thusinall cases we have o(me(«))+8 = o+

as claimed.
We now have to show that for index pairs (i, j) € dom(e) — {(n, m;)} which are lexicographically greater than or equal
to the index pair occurring in the respective case above we have

o(me(aiip)) + B = o(me(aiin*)) + B. (2)

This means that regarding the equations to be proven in Case 1 we assume (i, jo+ 1) < (i, j), regarding those to be shown
in Case 2.2 we assume (ko, lo + 2) <, (i,]), and regarding Case 2.3 we assume (kq, lp) <ix (i, ). Let such an index pair
(i, j) be given. We may assume that me(a:i)+t) <tc me(eiip) since in the case of equality there is nothing to show, while
me(atiij) <tc me(aian*) is not possible, for if this were the case we would have (i, j) = (ip, jo + 1), x 090 (zi, j,41) = O,
Pip = ino.joﬂ + Tig jo» (Nt =@+ 1,1),and ajy11 = Cigjot1 T & for some & € (0, 7y, j,), which by Lemma 5.12 would

imply that 8 < end(«) < T, j, whence we would be in Case 1.1, running into the contradiction «;,41 + ﬁ;o'jo < pi,- We
therefore have a6yt <1c ec(eeiij) and consider the two possibilities for (i, j)*:
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e (i,)T = (i,j+ 1). Then we have ¢; j;1 = Hoijo since (ip, jo) <iex (i,J). Due to the fact that e j+1) is not a maximal 1-step
extension of ey we havej > 1,7 = g, € EN(Tij1, Ay ), ec(ain) = aiin™ (Ag;_,), and (o, jo + 1) <iex (i, J)-
In particular, aij+1) does not possess a critical main line index pair. Part (d) of Lemma 5.12 yields

o(me(eiij+n))

oeasen) + K5, +dpg ()

= 0(“ (U)) + v/lr, + KA” + dpi’i.j ()"T,'_j)
= o(aip) + dp;l._ji1 (‘EL]).

Another extensive application of Lemma 5.12 provides us with
o) + dpz, (7)) < o(me(aiin)) < o) + K;ir'f:] +dpz, Oy

ij—1

Now setting § := —7;; + A the assumption 8 < /cg’l'j_1 + dp;i (6) would imply, by Lemma 4.17, that 8;" ~ < §

and hence 7, + " < A
2.3 presupposes that Ty, j,+1 + ﬂf"’lo > Az, ,,» Which covers the only possibility where (ko, lo) = (i, j — 1).

e (i,j)™ = (i+ 1, 1). We then have j = m; and consider three subcases.
Ifm; = 1then oir11 < log((1/7/) - ©i,1) = pi = 1, hence ajiv1.1 does not possess a critical main line index pair. By
Lemma 5.12 we have

Tij-1°

i1 which is not the case: In Cases 1 and 2.2 we always have (kg, ly) <ix (i, j — 1), while Case

o(me(aii+1,1)) = o(@i+1,m) + dpfigrl(fiﬂj)

= o(@iin) + ket ; + dps, , (Tiv1,1)
< o(me(eain))
=< o(ai@n) 4 dpg/(Ti1)

o(ain) + KIZ’gO((l/TI_,).Tm + dp;i_o(log((l/r{) “Ti1)).

By setting 8 := —aj;1,1 +1log((1/7/) - 7;,1) and assuming B < /c o4 dp ,(8) we would obtain ¢ 1,1 + /31 < p; which

because of i > kg is not the case. Thus Eq. (2) holds in the case m; = 1.
If (i, m;) = (ip, jo + 1) then only Case 1 is possible, and it follows that o411 < Oy o1 < Pio- Lemma 5.12 supplies

us with

o(me(ai+1.1)) = 0(eidg.o+1) + Ka,+ +dps, ;. (@it11)
< o(me(ocmojoﬂ)))

OJO

< o(®idg.jo+1) + KQTI i+

+dps i)

and setting § := —ai11+0,, o the assumption 8 < K;io’jo + dpﬁ.0 o (8) would have the consequence o 1.1 + ,3;0’10 <
0-J0 B

Pi, which is not the case. We therefore have (2) in this special case.

Finally, if m; > 1and (ip, jo + 1) <iex (i, m;) then @i 1.1 < )\,,.le_fl = p; — 1. Lemma 5.12 yields

o(me(ai+1n)) = o(otm.m,-))—l—/caiﬂl +dpy,, , (@i11)

A

o(me(oiimp))

xm,l

IA

O(O{ (@i,m;j )) + K)\ + dpftmi—l (Afi,m,-fl )’

2=

and setting § = —o4p11 + )”r,m _, the assumption § < K(Sl "4 dpz, . _,(6) would imply the contradictory

aiv11+ ﬁ;’m"_l < pi. Consequently, Eq. (2) follows also in this situation.
This concludes the proof of (2). From the Egs. (1) and (2) all claimed equalities follow, completing the proof of Lemma6.2. O
Corollary 6.5. tc is a <-<gc-order isomorphism between 1°° and TC with inverse o. We thus have
tc(o()) = o
forany a € TC and
a < B & tc(a) <1c te(B)
foralla, B < 1. O
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Corollary 6.6. Leta < 1°° and tc(a) =: o = (ety, ..., 0tp), Where o = (a1, ..., @im;) for 1 < i < n. Then we have

a[otn,mn + 1] ifmn >1& Tnmn < My mp—1

d =
tC(Oé + D(Ot)) [me(a) otherwise.

Let B < 1°°. Then tc(B) is a proper extension of tc(w) if and only if

(@ o +dp@) ifmy > 1&Tym, < ey,

€
(o, ¢ +dp(a)] otherwise.

Proof. Using the above corollary the first claim now follows by Definition 5.11 of dp (see the remark there) and Lemma 5.12.

The left-to-right direction of the second claim follows from Lemma 5.12. For the right-to-left direction assume that g lies
within the respective interval. By the above corollary we have tc(«) <rc tc(B).

Case 1:my > 1& Ty, < Loy, s Then by the above corollary

tC(ﬂ) <TC a[an,mn + 1]

Case 2: Otherwise. Then by the above corollary tc(8) <tc me(a). O

7. Arithmetical characterization of <; and <,

It is only now that we are prepared to compute the relations <; and <, below the least « € Ord such that every pure
pattern of order 2 has a covering below o, which will be shown to be equal to 1°°, the proof-theoretic ordinal of KP£,.

First of all we provide criteria for elementary substructurehood that allow us to avoid dealing with formulas. As already
applied in [1,9,11] we have the following folklore criterion for X';-elementary substructure for finite relational languages.

Proposition 7.1. Let A and B be structures for a finite language without function symbols. 4 is a X'1-elementary substructure
of B if and only if 4 is a substructure of 8 and whenever X is a finite subset of | A| and Y is a finite subset of | 8| — || then there

exists a subset Y of || such that
XUY 2 XUY.
Proof. The proof is elementary and given in full detail in [8]. O
Lemma 7.2. 1. In R, we have (see [1])
a<ja0+1 <& «aelim.
2. In R, we have
a<ia+1 < aelim & VBB <xa=a=sup{y <al|B <3 y}.

Proof. We show part 2. Recall Lemma 1.2. Let us first assume that @ <; o + 1.1t is easy to see that « € Lim. If there were
some B suchthat 8 <; @« and § := sup{y < @ | B <, ¥} < o then we would have 8 <; §,anda+1 =3I >46 B <, x
while @ = 3x > § <, x. Hence the right hand side of the equivalence holds whenever o <; o + 1.

Now suppose the right hand side of the equivalence holds. We use 7.1 to show that ¢ <; o + 1. Let X Ty, o be given
andletY := {a}. Weset X/ := {x € X | x £; o} fori =1, 2. There is 4 < & such that

VX eX VEe (a)x £ &, i=1,2.

In the case X; = X we may choose any ordinal & € (i, «) and set Y = {a} while otherwise there exists  := max(X — X})
so that we have y <; B forall y € X — X}, then choose some § € (u, «) such that 8 <, § and set Y = {8}. It is now easy
to see that we have X UY £ X UY. O

For the readers’ convenience we recall results shown in [1]. Let lh’lﬂ" (o) be max{f | « 5'?" B} if that exists and oo

otherwise.

Theorem 7.3 ([1]). 1. R = R N[a + 1, 00) forall a.
2. I (g - (14 1)) = oo forall .
3. Foro =cyp %1 + - - + 0* (n > 0) with oy =pne P14+ - - - + Pm < @ we have

Ihy" (o) = o + 107" (p1) + -+ - + 10y (om).

The approach to obtain the above result is to consider the connectivity components of <; in R; and to compute the
enumeration function @ — «, of the <;-minimal ordinals. In this computation the translation invariance of R (see the
first claim of the theorem) plays an essential role.
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A criterion for the relation <, that will turn out to actually characterize <, in R; is
Proposition 7.4. Suppose « < B. Ifforall X Cg, a and allY gy [, B) there exists Y such that:

LX<Y <aand
2.3h: X UY — X UY such that for all finite YT withY C Y+ C «

YT CB hTDh stht XUV > XUYT
then o <; B.

Proof. Letordinals «r, B such thato < B be given and assume the criterion of the lemma holds. Using 7.1 we obtain«x <; 8.
Let ¢(x,y, z) be a quantifier free formula of L(R,) with all free variables shown and let § C « be a list of parameters
matching the length of x. Assume first that

alE=JVzely, 2).

Let # C « be a list of witnesses for y so that o = Vz ¢(§, 3, z). Thanks to @ <; B we have 8 = Vz ¢(&, 5, z), whence
B E 3y Vz (&, y,z). Now let us assume that

BEIVzZeEy. 2)

and let » € B be witnesses for y. Without loss of generality we may assume that n C [«, 8) since we could regard witnesses
below « as parameters in the list £. Set X := {£ | £ € &}, Y := {n | n € n}. By the criterion there exists a set Y such that

conditions 1 and 2 of the criterion hold. Let h : X UY —> X U'Y be according to condition 2 and let 7 := h~'[y]. We claim
a EVz o1, 2).
In order to show thif claim let Z‘ C o matching z be gNiven. SetYt:=YU 2:’ and let h™ and Y+~be according to the criterion
so that for £ := h*[£].Since B = ¢(&, 5, &) and X U YT = X U Y+ we then have o |= ¢(§, 7, £) and thus
o=y VzeEy.z)
concluding the proof of the criterion. O

Remark. The above type of criterion can be generalized to the higher levels as well as to structures with underlying
arithmetic. Notice that if the criterion holds for pairs of ordinals «, 8 and 8, y, showing that « <, B8 <, y then the
criterion also holds for «, y. Also, if the criterion holds for pairs «, y,, where ¢ € I for some nonempty set I, showing that
a <5 y, forall¢ € I, then the criterion also holds for «, sup{y, | ¢ € I}.

Example. In R, we have gy - @ <3 &g - (w + 1). This is the least such pair of ordinals in R,. The least <;-predecessor of
&o - w is &g which is the least element of the <;-chain of the multiples of &g up to &g - (w + 1). In general, as an elementary
observation, any ordinal that has a proper <,-successor is the supremum of an infinite <;-chain:

Lemma 7.5. Ifa <, B then « is the sup of an infinite <-chain.

Proof. For any p < o wehave § &= IxVy > x (p < x <; y). Hence the same holds true in «. We obtain
P1<102<1p3<1 " <qa. 0O

Another useful elementary observation is the following
Lemma 7.6. Suppose o <3 8, X Cqn o, and d # Y Can [, B).

1. There exist cofinally many Y < B such that X U Y = X U Y. More generally, for any Z Cgn o with X < Z, if
o EVXIZ (x <Z A“X UZ = X UZ") then this also holds in B.

2. Cofinally in «, copies YCua of Y can be chosen which besides X < Yand X UY = X UY also “maintain <;-connections to
B Foranyy € Y such thaty < B the corresponding y satisfiesy < c.

Proof. By ¢ <; fwehave« = Vr ay (r< YA“XUY =XXU Y”) where “X U Y = X UY” means that the diagram of X UY
in the language of R, holds accordingly for X U Y. By o <, B this also holds in 8. This shows the first part of the lemma.
The second part follows from « <, B by letting {y € Y |y <1 B} = {y1, - . ., ¥«} and noting that for any parameter §{ < «

k
ﬁ|:ax?>§Vr>?<"xu?;xuyw/\yi<1r)
i=1

which then also holds in «. Notice that we used y; to indicate the element of Y corresponding to y; € Y which can be done
by using e.g. increasing enumerations of the elementsinY and Y. O

We now introduce some terminology which will be helpful in the statement of Theorem 7.9.
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Definition 7.7. Let @ € Ord. We define Pred;(«) to be the set of all <;-predecessors of « fori = 1, 2.
Predi(a) :={B | B <; a}.
We define terms for the greatest <;-predecessor of «, i = 1, 2, if such exist.
max (Pred;(«)) if that exists
pred;(@) := .
otherwise.
The class of all <;-successors of « is denoted by
Succi(e) :={B | <;i B},
in analogy to IhT" we define
max (Succ;(e)) if that exists
lhj(x) := .
otherwise,
and we will make use of the abbreviation lh := lh;.
Definition 7.8. Given substructures X and Y of R,, a mapping h : X < Y is a covering of X into Y, if

1. his aninjection of X into Y that preserves <, and
2. h maintains <;-connections fori =1, 2,i.e.Va, 8 € X (¢ <; B = h(x) <; h(B)).

We call h a covering of X if it is a covering from X into R,. We call Y a cover of X if there is a covering of X with image Y.

Recall the definition of cml(e), the critical main line index pair of @ € TC, in 5.1, as well as the notion of maximal
extension me(a) of a tracking chain «, defined in 5.2. Also recall the notations 7; ; and o; j(«) for the (i, j)-th initial value of
o from Definition 5.9 as well as the notations i* for the index pair of the i-th unit 7;* of @ and a[£] for modification of the last
entry of a tracking chain from Definition 5.1.

Theorem 7.9. Let o < 1°° and tc(a) = a where o; = (a1, ..., ot) for 1 <i < n.
(a) We have
a is <i-minimal < (n,m,) = (1, 1)
and
On—1,m, (@) ifmy=1andn > 1

o(a[&]) ifmy > 1, apm, =6+ 1, and x"(§) =0
pred, (o) = )

o(me (a[&])) imy> Ll anm, =&+ 1, and x*(§) =1

0 otherwise.

In the case where m, > 1and op m, € Lim we have

Predi(@) = | J Pred; (o(el£])).

§<anmy
(b) We have
o is <y-minimal & m, <2andzt) =1,
and in terms of pred, we have, setting (ip, jo) := n*,
On,my—1() ifm, > 2
pred, (o) = { Ojpjo+1(e) ifm, <2andt; > 1
0 otherwise.

The criterion of Proposition 7.4 holds for any pair y, « such that y <, a.
(C) Along <lex Tdom(m)

(Oi,j (“)) (i,jyedom(er)

is a strictly increasing <{-chain. For any i < n such that m; > 1 the sequence
(0i2(e), ..., 0 m ()

is a strictly increasing <,-chain, and for any j € (1, m;] and § < o; j we have

o(aiip[€]) <1 0;j().
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(d) Ifmy =1, 001 =& + 1forsome &, let § := 0,_1,m, , (), B be such thatox = B 4 1, and X := Pred,(8) U {8}. There exists
a finite set Z C (8, o) such that there is no cover X Uz of XUZ withX < ZandXUZ C B.

Proof. The proofis by induction on ¢, where part (¢) is an easy consequence of parts (a) and (b). We will make frequent use
of Corollary 6.5. In the case « = 0, equivalently « = ((0)), there is nothing to show, so let us assume that « > 0, whence
On,m, > 0. We distinguish between cases concerning m, and whether o, n, is a limit or a successor ordinal.

Case1:m, = 1.

Subcase 1.1: oy, 1 is a successor ordinal, say oy 1 = & + 1.
We then have 7,; = 1, 1) = 1, and « is a successor ordinal, say « = B + 1. By 7.6 « is clearly <,-minimal. Let
%n.O

8 := Op—1,m,_, (&) and notice that 8 = § + ke F dp;m0 (&). Note further that the tracking chain of any ordinal in the
interval [§, B8] has the initial chain &n-1.m,_). In the case n = 1 we have to show that « is <;-minimal. This will be the
special case § = 0. Generally, for n > 1 we now show that « is §-<;-minimal, which follows from part (d). In order to prove
part (d) let us first consider the case £ = 0. Then § = § and « is clearly §-<;-minimal. We trivially choose Z := .

Now let us assume that £ =;y & + --- + & > 0. Since ¢ € TC, we then have «[£] € TC if and only if Condition 5 of
Definition 5.1 holds, and accordingly set

—~ . >t/
y = oin-2" (Qn—1,15 - -+ » Cn—1,my_;» Nrn_m,,_]) ifn>1and§ =11, , € B
€] otherwise.

Lettc(B) =: B, where B; = (B 1, ..., Bix,) fori =1, ..., I, which by Lemma 5.12, part (d), is equal to me(p) since, again
because of & € TC, we know that y (and hence also ) does not possess a critical main line index pair. Let o be the chain
associated with § and set ko := 0. The i.h. yields § < y := o(y) <1 8,8 <7 y if § > 0, and we clearly have k; = 1 by the
choice of y and the definition of me. Hence there exists a <,.,-minimal index pair (p, 1) € dom(f) suchthatbothp > n > 1

and B, 1 & E>%. Let 1N = Op—1k, 4 (B). Notice that due to the minimality of p the case k,_; = 1 can only occur whenp = n,
m,_1 = 1,and hence § = 7. Setting B’ := Bip.1y and B’ := o(B’), in general have
§<n, y<B =n+kg, and B +dps(By1) =B

using part (b) of Lemma 5.10, which implies that dpépo(ﬂm) = dp;,; (0p,1), and again Lemma 5.12, part (d). Setting
X, := Pred,(n) U {n}, note that X, N § C X. We now consider cases regarding S, ; in order to define in each case a
finite set Z, C (1, &) such that there does not exist any cover X, U Z, of X,, U Z, with X, < Z, and X, UZ, C B.

e 0,1 = 1.Then | = p, and by the i.h. applied to 8’ = g, which is of the form § = p” + 1, there isZ’ Ty, (1, B), with the
property that there is no cover X, U VA of X, UZ' such that X,, < Z' and X, U 7 C B’ Let

Z,:=7 U{B}.

Clearly, if there were a set Z, C (i, 8) such that X, U Z, is a cover of X, U Z, then X, U (Z, N max(Z,)) would be a cover
of X, U Z" which is contained in 8”.

e Bp1 = o, € E.Then B’ is maximal, implying that | = p and g’ = B. Note that by Lemma 4.5 and in awareness of the
remark following Definition 5.1

B =sup{o(B'[¢]) 10 < ¢ < By}

By the i.h. and using Lemma 7.2 we see that j is a successor-<;-successor of its greatest <,-predecessor 0; .1 (8) where
(i, j) := p*. Clearly, 0;j1+1(B) € X,. Accordingly,

Zr] = {,B}

has the requested property.
e Bp1 =n { + 0p1 Where {, 0,1 > 1.Since ¢ + 1,051+ 1 < B, 1 we can apply the i.h. to 8”7 := o(f'[¢ + 1]) and
B := o(B'[op.1 + 1]), obtaining sets Z’ and Z” according to the claim, respectively. We then set

Z,=ZU(B"+(-n+2")).
Z, has the desired property due to the fact that
/3”/ ; 7]+1U[,3”,O[)

which in turn follows from the i.h. Clearly, we exploit the i.h. regarding 8” in order to see that a hypothetical cover of
X, U Z, would imply the existence of a cover of X,, U Z".
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e Otherwise. Then 8,1 = 0,1 € E1,and we havek, = 1, (p + 1, 1) € dom(p), and
0 < Bp+1,1 = log((1/0y) - 0p1) < 0p 1.
By the i.h. applied to B'[Bp+1.1 + 1] we obtain aset Z’ < (17, o(B'[Bp+1.1 + 11)) according to the claim. We set

={B1U(B +(=n+2)).

Arguing toward contradiction let us assume there were a setZ C (n, B) with X, < Z such that X, U Z C Bisacover
of X, U Z,. Since by the i.h. 8/ <; B, thus 8’ <; Z, and hence p := mm(Z ) <1 Z,, using criterion 7.1 we find cofinally

many copies on,, below 8’. We may therefore assume that Z,, C (n, B’) and moreover for some v € (0, f,,1) such that
v > oy and log((l/op*) - V) < Bpy1,1 (clearly satisfying g'[v] € TC)

Z, =2~y < (B". B")
where 8 := o(B'[v]) and B” := o(B/[v + 1]). Setting
Z =0+ (-p"+Z,)
and using that due to the i.h. we have
nH1U(B" ) Z 0+ (=B + ")
we obtain a cover X, U Vi of X, UZ' with X, < 7 and X, U 7 C o(B'[Bp+1,11), which contradicts the i.h.

Now, in the case § = n we are done, choosing Z := Z,. Let us therefore assume that § < n. We claim that for every index pair
(i, j) € dom(B) with (n — 1, mp—1) <ix (i,J) <ix (p, 1), setting for convenience »; j := 0;;(B), thereis Z;j Crin (771',1" «) such
that, setting X; ; := Pred,(n; ;) U{n;;}, there does not exist any cover X; ; UZ-,]- of X;jUZ; jwithX;; < Z-,j and X; j UZI-,]- C B.This
is shown by induction on the finite number of 1-step extensions from B to 8'. The initial step where (i, j) = (p — 1, kp—1)
and ; ; = n has been shown above. Now assume (i, j) <ix (0—1, kp—1) andlet (s, t) := (i,j)*.Let X;; := Pred(ns.) U{ns.}
and Z;; < (1., o) be according to the i.h. The i.h. provides us with knowledge of the <;-predecessors of 1 (i = 1, 2),
which in turn is in <q-relation with any element in Z ;. We consider cases regarding (s, t).

o If (s, t) = (i,j+ 1), letting o := ojjand o’ := o/; we have f; ;i1 = 4, The i.h. applied to® o(Biiy) " (6 + 1)) yields a set
Zs € (nij, o(Biip~ (6 + 1))) according to the claim. We now define

Zij = {nsc} U (s,e + (=11 + Z5)) U{o(Bisn™ (o))} U Zs,

and assume that there were a cover X;; U Z;; of X;; U Zj with X;; < Zj and X;; U Zi; C p. Notice that since
N5t <2 0(Bis.” (o)) theimage p := min(Z; ;) of 05, must have a <,-successor and therefore, by the i.h. and Lemma 7.5,
a tracking chain ending with a limit v-index. Using criterion 7.1 the assumption can be fortified to assuming (noticing
that we have Kg/ =candtc(nij+0) = Bi-1" (Bi1, ..., Bij, 1)

Zij < [mij + K? s Mij + Kf_H) =:1
for a least ¢, which using the i.h. can easily be seen to satisfy { € EN (o, o) and

w <1 o(me(Biin(¢))) = nij+ K "+ dps (¢) = max(Z;)).

The minimality of £ moreover allows us to assume that o(Biw)” (¢, v)) <, u for some index v < . for the following
reasons: Incase of u < o(Biiy~ (¢, ) thereisaleastv > Osuchthat u <; o(Biwy” (¢, v+1)),and by the i.h. we have
(making use of Lemma 5.5) o(Biis~ (¢, v)) <, pred;(o(Biip~ (¢, v+1))).1f on the other hand > o(Biip~ (¢, ¢ )) the
assumption o(Biwp” (£, 1¢)) Z2 n would imply, using the i.h. regarding <,-predecessors of u, that there is aleast g > i
such that og 1 (me(Bii»~ (¢))) <1 n with a corresponding index p such that end(p) < ¢ — contradicting the minimality
of £. We may furthermore strengthen the assumption o(81i.»~ (¢, v)) <, u for some index v < . to actual equality of
wand o(Biiy~ (¢, v)) since it is easy to check that this still results in a cover of X; ; U Z; ; with the assumed properties.

Since ¢ € (0, 0), setting ¢ := 715 - wehave (A;) < A, (cf. Lemma 8.2 of [10]) and ¢ (1) < u, by Lemma 3.8. The
vectors in the <tc-segment tc[I] of TC have a form

t=PBiin (&, &, &)

8 Here we use the operator in the context T"/. hences > o',
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where ¢ = (¢, &1, ..., &p) with g, h > 0. Let

g [ By D) ifh=0
T Bixs s Bijs 1+ 9(81), 9(82), - .., 9(8n))  otherwise.
Let gy € {1, ..., g} be minimal such that &, ; < ¢ if that exists, and go = g + 1 otherwise. We can now define the base

transformation of ¢ by
t(t) = ﬂ“;{x (4/7 ‘9(51)’ ey §0(§g0—1)7 Sg()’ D) Eg) .

In order to clarify the definition note that t(¢) = Bi-1~ (¢') in case of g = 0. The part (&, ..., &,), which is empty in
case of gg = g + 1, refers to the addition of a parameter below o(B:.)~ (¢)) which is the reason why the relevant indices
are not subject to base transformation. It is easy to see that t(¢) € TC and therefore

t:tc[l] = TC, witho[lm(t)] € [n;; + 7, B).

Using t and applying the i.h. in combination with the commutativity of ¢ with all operators acting on the indices, as
shown in 7.10 of [ 10] and Section 3, we obtain

Nij +1Ul = Nij + 1Uo[Im(t)]

since thanks to o’ < ¢ < o itis easy to see that 7; j +Kg/ and n; j+¢ have the same greatest <,-predecessor (which then
is less than or equal to #; ;) unless both are <,-minimal. The set Z-J- :=o0oto tc[Z,-_J-] therefore gives rise to another cover
of X; ; U Z; ; with the assumed properties. We have min(Zi,j) = o(Bis.0[p(v)]), corresponding to . = o(Biiy~ (£, v)). In

the case ¢ (v) < s = Bs.t, thanks to criterion 7.1 we firstly may assume that Z,-J is contained in the interval
[o(Bisole (M), o(Bisole(v) + 1) =:],

and finally we may as well assume that ZJ C [ns.¢, B) since otherwise, as seen directly from the i.h., we exploit the
isomorphism

nij+1UJ = nij+1U (5 + (—o(Bisole(W)]) +1))

which shifts ] into the interval [#;, 8). We have now transformed the originally assumed cover X;; U Zi,j to a cover
Xij U é,;j of X; j U Z; ; which fixes ns ; = min(éi_j) and still has the assumed property X; ; U Zj c B.
Now, defining Z,t to be the subset corresponding to Z; ; in éi,f we obtain a cover X, ; U qut of Xs+ U Z; ; that satisfies
Xt < Zsrand Xs; U Zg; € B. Contradiction.
e If otherwise (s, t) = (i 4+ 1, 1) then we have f;; = o, € E>° (by the minimality of p) and (s, t)* = (i + 1, 2) with
Bit1.2 = Moy, We define
Zi,j = ZS,[

and assume there were a cover X;; U Z;j of X;; U Z;; with X;j < Zj and X;; U Z;; C B. By the i.h. and, if necessary, an
application of criterion 7.1, we may assume that Z-J C (nij, ns,¢)- The i.h. shows that we have the following isomorphism

N5t = nij+1U (Ms,¢, o(Bi™ (Bs,t» 1)),

which shows that defining Z;; := 7, + (—7i; + Zj) we obtain another cover X;; U Z;; of X;; U Z;; with the assumed
properties. We now claim that X; ; U Z-J» is a cover of X ; U Z; ; with X;; < Zi,j and X; ; U Zi,j C B, contradicting the i.h.

Indeed, we have n;; <; Z;j, Z,-,j and ns; %, vforanyv € Z;; U Z,;j, and for any v such that v <, 7 we have v < n;;
and either v = 7, ;, which belongs to X; j, or v < n; ;, implying that v <, 5;; and hence also v € X; ;.

This finishes the proof of part (d). Assuming n > 1 from now on we show using criterion 7.1 that § <; « as claimed in part
(a). Let finite sets X € § and Y C [8, «) be given. Without loss of generality we may assume that § € Y. We are going to
defineasetY suchthatX <Y <dandXUY =X XUY, distinguishing between two cases, the second of which will require
base transformation.

Subcase 1.1.1: m;,_; = 1.Since a1 < 0,_; = log((1/7;_;) - Tn—1,1) + 1 we see that ap,_1 7 is a limit of ordinals n < ap_1,1
such that log((1/7;_;) - end(n)) > &. Now choose such an index n large enough so that n > a,_1,1 ~ end(a;—1,1),

7y, < end(n) < Tp—1,1,and X < o(am-11[n]) =: y. Notice using the i.h. that y and é have the same <;-predecessors
(i =1, 2). We will define a translation mapping t in terms of tracking chains resulting in an isomorphic copy of the interval
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[8, B] starting from y. The tracking chain of an ordinal ¢ € [§, 8] hasaform¢ := ejw-1.0"§ where § = (&, ..., &,),8 = 0,
and Ci = (;i,]v ceey ;i,w,-) fOl‘ 1 E l E g‘ Let

((m, 1,85, ..., &) ifg>0&¢; =end(n) € E™71 &wy = 1
=01+ 812 813 e Clw) &as e e vn ) ifg > 0&¢ =end(n) € E™-1 &wy > 1
(ST ) otherwise

where the first two cases take care of Condition 5 of Definition 5.1 since the situation end(n) € E>"-1 cannot be avoided,
and define

t(t) = on-2my " ¢

The mapping ¢t gives rise to the translation mappingoototc: [8, 8] — [y, ¥y + K;"'O + dp;, ,(6)], and by the i.h. we have

[0, ¥ + 1" +dp;, ()] = [0,y) U8, Bl.
This shows that in order to obtainX UY = X UY we may choose

Y=y +(=5+Y).
Subcase 1.1.2: m;_; > 1.Leto 1= 41, ;—1and o’ := T",l_]~mn—1_1' If n_1,m, , € Limleta’ be a successor ordinal below
it, large enough to satisfy o(aim-1[e’]) > X, otherwise let &’ := ap_1,m, , = 1. Notice that we have p,_; > o and £ < A,.
We consider the following subcases:

e £ < 0. Here we can argue comfortably as in the treatment of Subcase 1.1.1, however, in the special case where
x% (') = 1 consider y := me(an-1[a’]). Using Corollary 5.6 and part (e) of Lemma 5.12 we know that ec(y) exists
and is of a form o - (¢ + 1) for some ¢ as well as that the maximal extension of «in—1[e’] to y does not add epsilon bases
(in the sense of Definition 5.1) between ¢’ and o. In the cases where x? (a’) = 0 we set y := am-1[a’]. Clearly, o is a
limit of ordinals n such that log((1/¢”’) - end(n)) = & + 1, which guarantees that end(n) > o’, and n can be chosen large
enough so that setting

o-c+n ifx@)=1
vi=4{0s +n ifa’ elim&x(a’)=0
n otherwise

we obtain X < o(y~(v)) =: 5. Observe that by the i.h. § and § then have the same <,-predecessors and the same
<q-predecessors below §. The i.h. shows that

S+ +dps () +1 = 5U[8, B]
whence choosing
Y:=8+(=8+Y)

satisfies our needs.
e £ > o.Then we consequently have a;_1,,, , € Lim, 0 € Lim(E), and according to Lemma 8.1 of [10] o is a limit of

,ofe EE with (p()»;/) > & where ¢ := 71,;3,. Note that for any y € Y the tracking chain tc(y) is an extension of tc(§), and is
of a form

tC(y) = ot~nfzﬁ(an_1,1, s 01 my_qs C(;], ey C({ko(y))ﬁcy
where ko(y) > 0,8 = (&1, ..., &/, T = 0,and & = (&}, ..., &) With ki(y) > 1fori = 1,...,1(y). Notice
that kg(y) > O implies that 7,1, , € E7° and § > t,_1,n,_,- We now define ry(y) € {1, ..., r(y)} to be minimal such

that ;ﬁ(’)(y)’l < o if that exists, and ro(y) := r(y) + 1 otherwise. For convenience let gry(y)-ﬁ—l,l := 0. Using Lemma 8.1 of

[10] we may choose an epsilon number p € (¢”, o) satisfying § € T°lrland A, > 7 (§), where 7 := 7, ,, large enough
so that

Gl €W

foreveryy € Y,everyi € [0,r9(y)), and everyj € {1, ..., ki(y)}. We may now map § to § = o(am-1[a' 17 (p, 4p)),
easily verifying using the i.h. that § and § have the same <,-predecessors in Ord and the same <;-predecessors in X.
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The additional requirement p > & yields the bounds ¢(X,) < A, (cf. Lemma 8.2 of [10]) and ¢(11,) < p, by Lemma 3.8.
Let p := Kg’ and

1= 8,8+« +dp; (T (€))].

As in the proof of part (d) we are now going to define
t:tc[I] - TC, witho[lm(t)] C [4, @)

as follows. Any tracking chain ¢ € tc[I] has a form

o[’ ((/0, Moy 80155 80kg)> E1o v v s Cr)
where kg > 0,r > 0,and §; = (i1, ..., 8ik) Withk; > 1for1 < i < r.Letrg € {1,...,r} be minimal such that
Lrp,1 < p if that exists and rp := r + 1 otherwise. We distinguish between two groups of cases, as follows:
1. ko = 0:1fky > 0and ¢(¢1,1) = Th—1,m,_, € E”? we define the auxiliary vector
o (1) ifk; =1
b= {(1 +¢(812), 9(513), ..., @(S1k,))  otherwise
and then define
@) == otm2" (1783 08 o 0y 1)s Lo ) s
whereas otherwise we smoothly set
(@) =1 (1) @y 1)s Lrgr -2 &) -

2. ko > 0: Clearly, this can occur only if u, € E>*. If ¢(11) = Th—1,m, , € E> we smoothly define

£ 1= 2 (@1 @(Ee)s &) o 0y 1)s Lo -2 &r)
whereas otherwise
ORI (1<) NARIC ) N SRS o
where
¢ = {(‘P(Mp)) if o1 =1
O @p), =1+ 900, 9(0.2), -+, ¢(Go))  Otherwise.
By our choice of p we now have Y C o[Im(t)], and defining

Y:=o0ot lotc[Y]
we obtain the desired copy of Y, since using the i.h. it is easy to check that, setting A := o(am-1[e']) + 1,

AUI = AU o[Im(t)].

Subcase 1.2: ¢ 1 € Lim.
In the case n = 1 using Lemma 4.5 we have

a = sup{o(((§)) | & < a1}

which by the i.h. is a proper supremum of <;-minimal ordinals. Hence « is <;-minimal fori = 1, 2 and we are done.
Let us now assume thatn > 1,and let § := 0,1 m, , (). By Lemma 4.5 we have

a = supf{o(@[£]) |0 < & < a1 &af§] € TCY,

and part (a) of the claim for « follows from the i.h. applied to the o(«[£]) for & € (0, ot,1) such that «[£] € TC. § is therefore
the greatest <-predecessor of «.

We now turn to the proof of part (b). In the case 77 = 1 we have to show that « is <,-minimal. Arguing toward
contradiction let us assume that there exists y such that y <, «. Then clearly y <, 4 and hence tc(y) is seen to be a
proper initial chain of &, say y = 0;j41(a) for some i, j such that (i,j + 1) € dom(«) and i < n. Due to the i.h. and
Lemma 7.5 we know that m,_; > lincaseof y = §.In case of 7,1 < &y 1 let n be such that a1 =y 7 + 74,1, Otherwise

letn :=0.LetB =48+ K,;”’O +dp;, ,(n) so that B + T, 1 = a. Notice that according to our assumptions 7;; > 7,1 > 1.Let

fi.j

¢ :=0;j(er). Applying part (d) of the i.h. to X := Pred,(¢) U {¢} there exists a finite setZ C (¢, ¢ + K141

) such that there

isnocover X UZ of X UZ withX < ZandX UZ C ¢ + Tp1 (note that K:;Jl = T, and dpfw_(r,.,,]) = 0). By the i.h. we know
that

CH1+T; = ¢4 1U (0[], o(@iisnl€]) + Tij)
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forevery & € (0, o j41). In the case «;j+1 € Lim we directly see that below y there are cofinally many copies Z such that

XUzZ=XU Z In the case «;j.1 ¢ Lim we have by the i.h. (cf. Subcase 1.1.2,§ < o, above) y = pred,(y) + KT 1) for

some v and, setting y’ := pred,(y) + "r,-}uﬂ-

C+H14+%; = c+100 ),
and within the interval [y’, y) we find cofinally many intervals of the form

(V _i_K)L 77/ +K}L+T 1+]]

where A < 1;; such that A + 7, 1 is in normal form, 1somorph1c to (¢, ¢ + Tp,1 + 1] over ¢ + 1. Hence in any case there are
copies Z of Z cofinally in y suchthatX UZ =X U Z By Lemma 7.6 and our assumption y <, o we now obtain copies Zy
of Z cofinally below « (and hence above 8)suchthatX UZ = X U Z,. The i.h. reassures us of the isomorphism

(+1+T1 2 ¢+1UB, o),

noting that the ordinals of the interval (8, o) cannot have any <,-predecessors in (¢, 8] and that the tracking chains of the
ordinalsin (¢, ¢ + Tp,1) U (8, o) have the proper initial chain a,. This provides us, however, with a copyZ C (&, ¢+Tn1)
of ZsuchthatXUZ = X UZ, contradicting our choice of X and Z, whence y <, « is impossible. In the case 7, = 1 the
ordinal « is therefore <,-minimal.

From now on let us assume that r; > 1, and let (i,j) € dom(e) be such that n* = (i, j). We have to show that
predy(a) = 0;j41(e) =: y. The above argument showing the <,-minimality of « in the case ) = 1 relativizes
straightforwardly to showing that « is y-<,-minimal. The next step is to verify that y <, «. In the situation 7, < 7,1
the ordinal « is a limit of <;-successors of ¥ (whose greatest <,-predecessor is y ). This follows from the i.h. noticing that
ap,1 is a limit of indices which are successor multiples of 7. We are left to consider the situation 7; = 7, ;. Here we show
y <3 ausingcriterion7.4. To thisendletX Cg, ¥y andY Cgy, [y, o) be given. Without loss of generality we may assume that
y € Y.Sett :=7;jand T := 7;. Let (k, ]) be the <j,-maximum index pair indom(er) such that (i, j4+1) <iex (k, ) <iex (11, 1)
and o411 < pr =~ lincase of (k, )t = (k+ 1, 1) and ) < pr(oukn) = 1in case of (k, )t = (k, [ + 1), if that exists, and
(k, D) := (i,j + 1) otherwise. We then have a1 = p, Whenever (k, ) <y (s,t + 1) € dom(er) due to Corollary 5.6
since 7, 1 = t and « is maximal. Moreover, we have & = me(e«.n*). In case of 7y ; < o let n be such that o =ne 7 + Tk s
otherwise set n := 0. Let B := oy (). For the reader’s convenience we are going to discuss the following cases in full detail.
Subcase 1.2.1.2 below will treat the situation where a genuinely larger <,-connectivity component arises.

Subcase 1.2.1: (k, ) = (i,j + 1). Let ¢ := @11 if (i, j+ 1) = (i + 1, 1) and ¢ := 7; ;1 (which then is an epsilon number
greater than t) otherwise. Lemma 3.3 allows us to conclude x*(¢) = 1, and by Lemma 5.12 we have
a =y +k; +dp: (o).

Let A € Lim U {0} and p < o be such that logend(¢; j+1) = A + p. Then we have Q;UH =1-(A+p-= x*(X)).It follows
from end(«) = 7 that ¢ must have the form o = 7 - £ forsome & € (0, A +p = x*(A)].

1.2.1.1: 0 < Qéij+1’ In this case it is easy to check that ;1 is a supremum of indices n + v such that ¢ < ¢,,, and
x*(v) = 0:If x*(A) = 1 we distinguish between p < 1, where we have Q;im =7t1-2and§ < A,andp > 1, where
ij1 = sup{n + P 1r[r e (0,0}oy =7 (h+p—1)and 0y, witp1, = T+ (A +p—2).1fon the other hand

x7(A) = 0wehave o < 7 - Aincase of p = 0, while for p > 0 we again obtain «; j;1 = sup{n + &P r | e (0,w)),
however with o < Q:]ﬂoﬂpﬂ'r =17 - (A +p— 1).By the ih. we have

Yo = 0(oudi+n[n +v]) <2 v + g +dp; ()
and

ay =y k. +dp:(0) =y Uly. ) (3)
for the v specified above. Choose v as spec1f1ed above large enough so that X C y, and let Y,, be the isomorphic copy of Y
according to (3). By the i.h. we obtain a copy Y C y, according to criterion 7.4. Let Yt withY € Yt C y be given, and
setU :=XUYtnN Y, V 1= =Yt — 1. Since by the i.h. clearly y,, <1 y we obtain a copy VsuchthatU < V C y» and
UUV ZUUV.Setting Y := (Yt N o) U V,hence Y C Y+ C y,, the criterion yields an appropriate extension Y, C a,
such that X U Yj = XUY,! extends X U Y = XUY,.Nowlet Y* be the isomorphic copy of Y;" according to (3). This provides
us with the extension of Y according to Yt as required by criterion 7.4.
1.21.2:0 = Q;UH. Recalling that we have x (o) = 1 this implies (i, j + 1)* = (i + 1, 1) according to Corollary 5.6 which
also shows that here the case p = 0 does not occur. We now have o j1 = sup{n + P11 |1 € (0, w)}, and in the case

x"(A) = 1&p = 1wehavep = o’ ot ,whlle in the remaining cases o = QHpr 1, T 7. Incase of x¥(A) = 0 the ordinal
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gisequalto T - (A + p) whereasitisequaltot - (A +p — 1) if x"(A) = 1. Letr € (0, ) be large enough so that X C y,
where v := 0**?~! . r and y, := o(aiaj+n[n + v]). Setting &, := o(aiij+n[n + v + 1]) we obtain a, = y, + x5 +dpz(0)

by Lemma 5.12 in the case x 7 (1) = 1&p = 1, while otherwise o, = y, + K§r+ +dpzop,,) + T =n +kl. Now the i.h.
n+v
yields
o, = pUly,a), (4)
and we choose Y to be the isomorphic copy of Y under this isomorphism. Let Yt withy € Y+ C y be glven Let

U —XUY*ﬂav andV = Y+—oz\, Smcebythelh we have o, <1 ¥ there exists V withU < V < o, andUUV =X UUV.
Now let Y be the copy of (Y N &) U V under (4). This choice satisfies the requirements of criterion 7.4.

Subcase 1.2.2: (i,j + 1) < (k, ). We argue similarly as in Subcases 1.1.1 and 1.1.2 above.

1.2.2.1: | = 1. This subcase corresponds to Subcase 1.1.1. Here we have (k, )™ = (k+ 1,1) and apy1.1 < px ~ 1 =
log((1/7;) - tk,1). We see that oy 1 is a limit of ordinals n+v < a1 suchthat 77 < end(v) < 71 and log((1/7;)-end(v)) >
ak+1,1, and choosing v large enough we may assume that Y N 8 C o(ai«n[n + v]) =: B,. Using the i.h. and setting

T . . .
ay = By + Kapor s + dp;, , (@+1,1) we now obtain the isomorphism

a, = B, U[B, ) (5)

via a mapping of the corresponding tracking chains defined similarly as in Subcase 1.1.1. In fact, since y <, «, by the i.h,,
proving that y <, a shows that this isomorphism extends to the suprema, that is, mapping «,, to «. Exploiting (5) and using
that the criterion holds for y, o, we can now straightforwardly show that the criterion holds for y, «.

1.2.2.2:1 > 1. Here we proceed in parallel with Subcase 1.1.2. Let § := o411 incase of (k, )T = (k+ 1, 1) and § := 7y,
otherwise, whence

@ = o(@) + &7 + dp; (£).

Let further o := 74—y and o’ := r,;YH. In the case o € Lim let o’ € (1, 1) be a successor ordinal large enough so that
Y N [o(aiwnle’]), B) = ¥, otherwise let o’ := o — 1. Notice that we have p(ai») > o and § < A,.

e £ < o.Inthe special case where x“ («') = 1 consider o' := me(a«.n[a’]). Using Corollary 5.6 and part (e) of Lemma 5.12
we know that ec(e’) exists and is of a form o - (¢ + 1) for some ¢ as well as that the maximal extension of e;«.n[c'] to &’
does not add epsilon bases between ¢’ and o. In the cases where x? (¢') = 0 we set o' := ajp[@’]. Clearly, o is a limit
of ordinals p such that log((1/c”) - end(p)) = & + 1, which guarantees that end(p) > ¢, and p can be chosen large
enough so that setting

o-¢+p ifx’@)=1
o +p ifo/ e Lim& x° (') =0
P otherwise

we obtain, setting 8, := o(a” (v)), Y N [B,,B) = @. Observe that by the i.h. 8, and B8 then have the same
<,-predecessors and the same <;-predecessors below §,. The i.h. shows that

@ =B+ +dp; () = B U@ and ¥y <s

which we can exploit to show that criterion 7.4 holds for y, « from its validity for y, «,, implying that the above
isomorphism extends to mapping «, to «.
e £ > ¢.Then we consequently have oy ; € Lim, ¢ € Lim(E), and according to Lemma 8.1 of [10] o is a limitof p € E

with ga(kg/) > & where ¢ := n;;. Note that for any y € Y — g the tracking chain tc(y) is an extension of tc(8), and is
of a form

—~ y y —~
te(y) = etie—1" (@15 -+ Al Gy 1o -+ -5 S e ) ot

whereko(y) > 0,8 = (&3, ..., &), T¥) = 0,and & = (&y, ..., &y () Withki(y) > 1fori=1,...,r(y). Notice that
ko(y) > 0 implies that 7, ; € E* and § > 1 ;. We now define ro(y) € {1, ..., r(y)} to be minimal such that ;“r’;(y)’] <0
if that exists, and ry(y) := r(y) 4+ 1 otherwise. For convenience let fﬁl(y)+1,1 := 0. Using Lemma 8.1 of [ 10] we may choose
an epsilon number p € (¢’, o) satisfying £ € T’lrland A, > 7 (£), where 7 := 7, ,, large enough so that

y y
§r0@),1’ & € T [pl

for everyy € Y, everyi € [0, 19(y)), and every j € {1, ..., ki(y)}. We may now map S to 8, := o(awn[e']1™ (p, 1)),
easily verifying using the i.h. that 8 and B, have the same <,-predecessors in Ord and the same <;-predecessors in
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XU (Y N B,). The additional requirement p > & yields the bounds ¢(A,) < A, (cf.Lemma 8.2 of [10]) and ¢(t,,) < pis
by Lemma 3.8. Let p := k5, @, := B, + kb, + dp; (7 (£)), and

I:=1[B,, ).

In the same way as in Subcase 1.1.2 we can now define
t:tc[l] - TC, witho[Im(t)] C [8,a)

so that, setting A := o(ain[c’]) + 1, by the i.h.
AUI = AUo[Im(t)] and y <) ap.

By our choice of &’ we have XU (YN B) C o(eikn[a’]), and by our choice of p we have Y — 8 C o[Im(t)], hence exploiting
the mapping 0 ot~ o tc we can now derive the validity of criterion 7.4 for y, « from its validity for y, oy, again implying
that the above isomorphism extends to mapping «, to o.

Case2: m, > 1.

Subcase 2.1: a;, 1, is a successor ordinal, say op,m, = & + 1.
Let T := Ty m,—1 and o’ := o(«[£]). We consider cases for x*(&):

Subcase 2.1.1: x"(¢) = 0. In order to verify part (a) we have to show that pred, (o) = «’. By Lemma 4.5 we have
o = supfo(al§]”(of +n) I n € (0, D}

which by the i.h. is a proper supremum over ordinals whose greatest <;-predecessor is «'.

We now proceed to prove part (b). We first consider the special case § = 0. By part (a) @’ = 0,,n,—1(e) is the greatest
<1-predecessor of «.. Then if m, = 2 by the i.h. &’ is either <;-minimal or has a greatest <-predecessor, and thus &’ #, «
by Lemma 7.5, as claimed. Clearly, any <,-predecessor of « then must be a <,-predecessor of o as well. If pred, (¢’) > 0
then using the i.h. « is seen to be the supremum of <;-successors of pred,(«’) like &’ itself, hence pred,(«) = pred,(«’),
as claimed. If on the other hand m,, > 2 then @’ <, « as according to the i.h. o then is the supremum of <,-successors of
o/, hence pred, (o) = o/, as claimed.

From now on let us assume that & > 0.If & is a successor ordinal then by the i.h. «’ has a greatest <;-predecessor, is itself
the greatest <;-predecessor of , and Lemma 7.5 therefore yields o’ #, «.In the case m;, = 2 & r; = 1 the <,-minimality
follows then from the <,-minimality of o/, while in the remaining cases « is easily seen to be the supremum of ordinals
with the same greatest <,-predecessor as claimed for «.

We are left with the case that & € Lim. Then o' is the greatest <;-predecessor, hence « is o’-<,-minimal, and
showing that o’ #, « will imply the claim as above. Arguing toward contradiction let us assume that &’ <, «. Let

X := Predy(¢) U{o’}and Z C (/.o + K£§+1) be sets according to part (d) of the i.h. for which there does not exist

any cover X UZ suchthatX < ZandXUZ C o + Kgg + dp:(0f). We set X' := X — {&'} and Z' := {a'} U Z. By
Lemma 7.6 we obtain cofinally many copies Z’ below o’ such that X’ < Z’ and X' U Z' = X’ U Z’ with the property that
&' :=minZ <; o'.Letv € (0, &) be such that o(e[v]) < & < o(e[v + 1]). Choosing Z’ large enough we may assume
that X’ < o(a[v]) and logend(v) < logend(&), hence o] < of. Notice that if o(e[v]) < &' the ih.yields x*(v) = 1
and pred; (o(e[v 4+ 1])) = me(o(«[v])) > «’ and thus o(e[v]) <, &'. We may therefore assume that &’ = o(a[v]) since
exchgnging these ordinals would still result in a cover of X’UZ’. Because o(a[v+1]) <; o’ by the i.h. we may further assume
that Z’ C o(a[v + 1]). Noticing that in the case o] = Qg we must have x*(v) = 1and by the ih. o(a[v]™(0])) <1 o' we
finally may assume that X’ UZ’ C o(e[v]"(¢)) for some ¢ < o with min 7' = o(a[v]) so that X’ UZ’ is a cover of X' U Z'.
Since by i.h. '
o([v]™(¢)) = o(a[v]) U[a', o(e[£]7(£))),

setting
Z:= (' + (—o(a[v]) +2) — {'}
resultsinacover X UZ of XUZ withX <ZandXUZ C o' + /cgg + dp; (Qg). Contradiction.
Subcase 2.1.2: x 7 (£) = 1. Part (a) claims that, setting § := me(«[£]), pred;(«) = 0(8) =: §. By part (e) of Lemma 5.12 the
extending index of ec(d) is of a form 7 - (n + 1) for some . Notice that cml(§) = (n, m, — 1). By Lemma 4.5 we then have

a =sup{o(§" (t-n+1¢)) ¢ €(0, 1)},
which by the i.h. is a proper supremum over ordinals whose greatest <;-predecessor is §.
As to part (b) we first show that « is o’-<,-minimal, arguing similarly as in the proof of (relativized) <,-minimality
in Subcase 1.2., but providing the argument explicitly again for the reader’s convenience. We will then prove o’ #; «
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which as above implies the claim. Recall that we have pred,; (o) = 0(8) = & according to part (a). Any <,-predecessor
y of « then satisfies y <, §, so that by the i.h. y := tc(y) is an initial chain of § extending «[£]. Let § = (81,..., ;)
where §; = (8;1,...,8i) for 1 < i < r with associated chain ¢. Thenr > n, k, > my, 8, m, = &, and §;; = o for
all (i,j) € dom(d) such that (i,j) <, (n, m,). According to Lemma 5.5 we have (n, m,) <. (1, k;), and by part (e) of
Lemma 5.12 we have

&
a=46+ Kelo1)-
By Lemma 5.5 and the i.h. we know that o’ <, 8. Arguing toward contradiction let us assume that y > o', thusy = 0;j;1(8)
for some (i,j + 1) € dom(d) with (n, m;) <ix (i,j + 1). We then have o;; > 7, and set £ := 0;;(8) as well as

B:=65+ /cf.’/,] +dps/ (7 - n), so thate = B + T. Applying part (d) of the i.h. to X := Pred,(¢) U {¢} there exists a finite set
Z € (¢,¢ 4+ T+ 1) such that there is no cover X U ZofXUZwithX <ZandXUZ C ¢ + 7. By the i.h. we know that
L+ 146 = ¢+ 1U (0(8iin[v]), o8ian[v]) + 6i)

for every v € (0, §;j41). Since §;j41 = Moy, € Pwe directly see that below y there are cofinally many copies Zy such that
XuUuz=XU ZJ,. By Lemma 7.6 and our assumption y <, o we now obtain copies Z, of Z cofinally below « (and hence
above B) such that X UZ = X U Z,. The i.h. reassures us of the isomorphism

C+H1+T =2 ¢4+1UB, @),
noting that the ordinals of the interval (8, «) cannot have any <;-predecessors in (¢, 8] and that the tracking chains of the
ordinalsin (¢, ¢ + T) U (8, «) have the proper initial chain §:,. This provides us, however, witha copyZ C (¢, ¢ 4+ 7) of Z
such that X U Z = X U Z, contradicting our choice of X and Z, whence y <5 « is impossible. Therefore « is o’-<,-minimal.

We now show that &’ #; «. In order to reach a contradiction let us assume to the contrary that &’ <; «. Under this
assumption we can prove the following variant of part (d):

Claim 7.10. Suppose o' <, « and let X := Pred,(a’) U {a'}. There exists a finite set Z C (a’, a] such that there is no cover
XUZofXUZwithX <ZandXUZ C a.

The proof of the above claim both builds upon part (d) and is similar to its proof, but for the reader’s convenience we give
it in detail. We are going to show that for every index pair (i, j) € dom(§) such that (n, m,;) < (i,J) < (T, k), se~tting
nij := 0;;(8) and X;; := Pred,(n;;) U {n;;}, there exists a finite set Z;; C (»;;, o] such that there is no cover X;; U Z; j of
Xij U Zjwith X;j < Zjand X;j UZ; C a. We proceed by induction on the finite number of 1-step extensions from &
't e T 1)
5+ Kfan toobtainasetZ’ C (8,8 + Kffnﬂ) such that there does not exist any cover X; ; UZ’ of X; j UZ’ with X;; < Z’ and

XijUZ' C 8+ %%, + dpgy (x - ). Defining
Zi’j =7'U {Ol}

and noticing that by our assumption we have o’ <, « and that by the i.h. there are no <,-successors of «’ in the interval
(8, ), it is easy to check that Z; j has the required property. Let us now assume that (i, j) < (1, k;) and set (s, t) := (i, ).

to §: The initial step is (i,j) = (r, k;), hence n;; = 4. Recalling thato = § + « we can apply part (d) of the i.h. to

e (s,t) = (i+ 1, 1). By Lemma 5.5 we have oy, > 7 € E and hence o > 1. Notice that the case o, ; = o, cannot occur
since then ec(d;s.0) would not exist. We discuss the remaining possibilities for J; ;:
1. & € E>° . We then argue as in the corresponding case in the proof of part (d). We therefore define
quj = Zs,t~

That this choice is adequate is shown as in the proof of part (d).
2. Otherwise. Let 0 := 0iy10 and ¢ := Giy1,0. In case of &, > o5, let ¢ be such that §;; =y ¢ + o5, otherwise set

¢ :=0.1f¢ > 0letZ, € (n;j, nij+ K?_H) be the set according to part (d) of the i.h. so that there does not exist any
cover X;j UZ, of X;; U Z, withX;; < Z, and X; j UZ, C nij + Kg + dp; (¢), otherwise set Z, := ). We now define
Zij:=Zg U{nse} UZs,.
In order to show that this choice of Z satisfies the claim let us assume to the contrary the existence of a set Z; ; such
that X,"j U Z,‘qj is a cover OfX,'J U Zl',j with X,'_J‘ < Z,‘J and Xl"j U Z,‘qj Coa.letZ = {7’}5’{} U Z; and Z' be the subset OfZi,j
corresponding to Z’. Due to the property of Z; in the case ¢ > 0 we have
Z' S mij+ Kl ),
and by an application of Proposition 7.1 to ns; <; o we obtain that - keeping the same <;-predecessors - there are
cofinally many copies

Z/ C [ni,j + Kiqa 775,[)
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below ;. The ordinal © := min Z corresponds to 7, ¢ in Z; j, and since p <4 7’ we see that there exists v € (¢, ds.t)

such that
Z'—{wc ',
where ' := n;; + % and 0" = n;; + Kf+], which again we may assume to satisfy v > o and log((1/0;) - v) <

log((1/0}) - 05,). By the i.h. we have
n" = 0" Ulnse, nse + (=0 +n")
since 7 ¢ and 1’ have the same <;-predecessors. Exploiting this isomorphism and noticing that X; ; — {n;} < X;; we
obtain a copy Zs ; of Z' — {u} such that X; ; UZ; ; is a cover of X; s UZ;  with X; ; < Zs and X;; UZ;; C «. Contradiction.
e (s,t) = (i,j+ 1).Settingo :=o;jand o’ := a’ we then have 6; ;11 = 14, and proceed as in the corresponding case in
the proof of part (d). Applying part (d) of the i.h. to 0(éii)” (6 + 1)) yields a set ZU € (nij, nij + k2 ;) such that there

- o+1
does not exist a cover X;; U Z; of X;j U Z; with X;; < Zs and XijU Z; C nij+ /c(-, + dps/(6). We now define

Zij = {05} U (s,e + (=11 + Z5)) U{o(8i0™ (0))} U Zg ;.

In order to show that Z; ; has the desired property we assume that there were a cover X;; U Z;j of X;; U Z;; with X;j < Z;;
and X;; U Z;; € o and then argue as in the corresponding case in the proof of part (d) in order to drive the assumption
into a contradiction.

The final instance (i, j) = (n, m,) establishes Claim 7.10.

We can now derive a contradiction similarly as in the previous subcase. Let X, Z be as in the above claim. Without loss of
generality me may assume that predl(a) =8eZ WesetX :=X—{a'}andZ' := {o¢'}UZ — {«}. By Lemma 7.6 we obtain
cofinally many coples 7' below o’ such thatX’ < Z’ and X' UZ’ = X’ UZ' with the property that all <;-connections to « are
maintained. Let & := minZ’ and notice that & <, y forally € 7' such that y <; o' Letv € (0, &) be such that o(a[v]) <
& < o(a[v + 1]). Choosing 7 large enough we may assume that X’ < o(«[v]) and logend(v) < logend(£), hence o < ,Qg.
Notice that the i.h. yields x*(v) = 1and pred, (o(x[v+1])) = me(o(x[v])) > «’and thus o(x[v]) <, &. We may therefore
assume that &’ = o(e[v]) since exchanging these ordinals would still result in a cover of X'UZ’. Because o(a[v+1]) <1 a’ by
the i.h. we may further assume thatZ' C o(a[v+ 1]). Noticing that since x " (v) = x*(§) = 1wehavev-w < &, and setting

a:=o(afv- )+ K, +dp:(o;.,)
we can use the isomorphism
o(a[v +11) = o(e[v]) Ulo(alv - @]), @),

which is establlshed by the i.h., in order to shift VA by the translation Z = o(alv - w]) + (—o(x[v]) + 2’). This results in
the cover X’ U Z of X’ U Z'. By the i.h. we know that
o(@[v - w]) <2 @ = o(e[v - ]) + (—o(@[v]) + o(e[v + 11))

~ =/
and that for all y € Z’ such that y <; &' the corresponding element in Z satisfies

o(e[v - @]) + (—o(e[v]) +¥) <1 &.

Since g, < ©;, setting a:=a + K;Ew + dp; (o; ), we may finally exploit the isomorphism
@+1 = o(afv- o)) U, &]

so that setting

=/ ~ ,
= (&' + (—o(a[v - w]) + (Z U{a}))) — {a}
we obtain the cover X U Z of X U Z which satisfies X < Z and X U Z C «. Contradiction.

Subcase 2.2: oy, € Lim.
Part (a) follows from the i.h. by part (b) of Lemma 4.5 which shows that

o = supfo(a[£]) | § € (0, anm,)}-

In order to see part (b) we simply observe that according to part (a) and the i.h. (0(«[£1))¢ <ay n, 1S @ <i-chain of ordinals
either <,-minimal as claimed for & or with the same greatest <,-predecessor as claimed for @. O

Corollary 7.11. 1% is <{-minimal.

Proof. That 1°° is <;-minimal immediately follows from part (a) of Theorem 7.9 since clearly
sup{k | & < 1%} =1

is a non-attained supremum of <;-minimal ordinals. O
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Definition 7.12. Let o« € TC where &; = (@i 1, ..., @) for 1 < i < nand set
.. | ifm, =1
o« = a[l’(’fn,mn—1] otherwise.

We define the greatest branch-off index pair of «, gbo(a), by

gbo(aiij+n) if (i,j) := cml(a*) exists
gho(a) := _
(n, my) otherwise.
Corollary 7.13. Let o < 1°° with tc(e) = o where &t = (i1, ..., &tim;) for 1 <i<n.

(a) If m, = 1then
Succy (o) = {a} and Ihy(a) = .

In the case m,, > 1 let v, & be such that K; +dp;(0) =T -v+&and & < T where t 1= Tym,—1, T = Tnm,—1, and
0= o0y, . Then setting

Mmax =V = X" (Ta,my)
we have
Succy(@) ={a+7 10|10 <nNmax} and lhy(@) =a + T - Nmax-
(b) Setting (ng, mg) := gbo(a) and m := mg =~ 2 + 1 we have
Ih(a) = 04y m(0r) + dp;no’m_] (Tng,m)-

Proof. For the proof of part (a) we first observe that by Theorem 7.9 and Corollary 7.11, for any 8, if« <; 8 then 8 < 1°°.
Next we notice that the case m, = 1 is trivial, since according to part (b) of Theorem 7.9 « cannot be the <,-predecessor
of any ordinal. Let us now assume that m,, > 1. By Theorem 7.9 we know that for any § such that o <, B tc(«) is a proper
initial chain of tc(8) and g lies within the interval specified in Corollary 6.6. We argue by induction on 8, where according
to Corollary 6.6

(0,0 +dp(a)) ifmy, >1& 1y, < JUr—
(o, @ +dp(a)] otherwise,

and show that o <, Bifandonlyif 8 € {« +7-1n|0 < 1 < nmax}. It is easy to check that o + 7 - nma is the greatest multiple
of 7 in the interval provided by Corollary 6.6 which also yields that tc(8) is a proper extension of tc(a) for any g in the
interval. Let (r, k) be the <,,-maximal index pair of the proper extension 8 := tc(8) of a. Notice that (n, m,) < (1, k)
and end(B) = end(%; x,). Clearly, we then have n < r, k; = m; fori < n, and m, < k, (which is strict in case of r = n). In
the case k, = 2 & 7., = 1 we obtain the claimed equivalence from the i.h. using Theorem 7.9. We may therefore exclude
this special case in the following argumentation.

Case 1: k, > 2. Then according to part (b) of Theorem 7.9 the greatest <,-predecessor of B is o, x,—1(8) which is greater
than or equal to «. It follows that 7, ;, is a multiple of 7, ;,_1. In order to derive a contradiction we assume that

Trk—1 <T = Tk, -

This implies 7., > 1and ts(Tr k,—1) <iex tS(T) <ix tS(Tr,) by 3.15, and using part (c) of Lemma 5.10 we obtain that
ts(Tr k,—1) is a proper initial sequence of ts(7) which contradicts part (d) of Lemma 5.10 since (n, m, — 1) <y (r, k- — 1).
We therefore either have 7 < 7, _, which implies that @ <, o,4,—1(8) < B using the i.h. if needed, or we have
Trk—1, Trk, < T, whence by the i.h. o %5 o, k,—1(B), implying that also o %, 8; see Lemma 1.2.

Case 2: k, < 2and t} > 1. This impliesn < r.Let (i,j) :=r*,0 := 135, and ¢ := 7;;. Then by part (b) of Theorem 7.9 the
greatest <;-predecessor of B is 0;j41(B). We have o = 1 < 7, 1,0 < 7; 1 (by part (b) of Lemma 5.10), and if k, = 2 then
Tr 2 is a multiple of 7; ;.

Subcase 2.1: (i, j) = (n,m, — 1).Then6 =T < 7, ; < end(B) and 0;j+1(B) = c.

Subcase 2.2: (i,j) <ix (n,m; — 1). Thenwe haveo < 1,1 < 7,06 <71 = Kfm < T by parts (b) and (c) of Lemma 5.10,
and 0; j+1(B) < «. We have to show that end(%; x,) < 7. In the case k, = 1 we are done, otherwise we have o0 < 7, 1, and
7,2 > 1 according to our argumentation above, hence ts(z, ;) = ts(6) " (1.1, Tr.2) using part (c) of Lemma 5.10. In order
to derive a contradiction let us assume that T < 7, ,. Then we have ts(7; 1) < tS(T) <ix ts(Zr2) by Lemma 3.15. As in
Case 1 we obtain that ts(7, 1) is a proper initial sequence of ts(7). Since (n, m, — 1) <y (r, 1) this contradicts part (d) of
Lemma 5.10.

Subcase 2.3: (n, m,— 1) <, (i,j). We thenhavea < 0;11(B) <, B.Inthecase T < 7; ;4 by theih.wehavea <; 0;;11(B)
and have to verify that T < 7, . Assuming ¢ < T we obtain that ts(¢) is a proper initial sequence of ts(7), again due
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to Lemma 3.15 and part (c) of Lemma 5.10, which since (n, m, — 1) <, (i,j) contradicts part (d) of Lemma 5.10. Thus
T<0=<%1=Tk
Otherwise we have T > T7;j;1 > &, and by the i.h. we have « %; 0;;+1(B) and hence o %, S. We have to show that
Tk < T.Letusassume to the contrary that T < 7, ;. Notice that in the special case k, = 1& 7, ; ¢ E”° we have
T < VZay
which using Lemma 3.12 is seen as follows: 7, is a multiple of o, hence 71 < ¢} .If u, ¢ E”° then by part (e) of
Lemma 4.5

T =Ky, <Ky, SV

while otherwise directly 7, ; < us = p,, and
%r,l < KZU = UZU.

Since ts(vig) = ts(6)" i, by Lemma 4.10 we then obtain from our assumptions that
tS(&) <lex tS(‘E) Slex ts(&)f\l‘ba’

whence ts(6) is a proper initial sequence of ts(7), contradicting part (d) of Lemma 5.10 since (n, m, — 1) <, (i, j). In the
remaining cases we again obtain that ts(¢) is a proper initial sequence of ts(7) contradicting part (d) of Lemma 5.10.

Case 3: Otherwise. Then we have k, < 2, 7 = 1, and again n < r. According to part (b) of Theorem 7.9 8 does not have
any <,-predecessor. We have to show that 7, , < 7.Since t; = 1 we have 7, ; < 7 and hence 7, ; = /{?H < I{?kl <7
where (k, I) is the index pair of the first element of ts(7) according to part (c) of Lemma 5.10, which implies that 7, 1 < 7.
In the case k, = 1 we are done, otherwise we have ., > 1 according to our earlier assumption. By part (c) of Lemma 5.10
we have ts(7, ;) = (7.1, Tr.2). The assumption T < 7, , then implies that ts(%, ;) is a proper initial sequence of ts(7) which
because of (n, m, — 1) < (r, 1) contradicts part (d) of Lemma 5.10.

In order to show part (b) let &’ := (eti(ng.mp))* using the *-notation from Definition 7.12, according to which the vector o

does not possess a critical main line index pair. Using Lemma 5.12 part (d) we obtain
Ong.m(@) +dpz, ., (Tng,m) = O(me(a)).
We first show that
o < o(me(a)). (6)

Since in the case my = 1 we have (ng, mg) = (n, m,) whence there is nothing to show, we may assume that my > 1. By part
(c) of Theorem 7.9 we have @ <; o(ar*) <; o(me(a*)). If cml(e*) does not exist, that is ' = «*, we are done with showing
(6). Otherwise let cml(e*) =: (i1, j1) and let [y be maximal so that for all [ € (0, lp) cml((eiGj+n)*) =: (i1, ji+1) exists.
Clearly, the sequence of index pairs we obtain in this way is <-decreasing and by Definition 7.12 (iy,, ji, + 1) = (10, mo).
Using parts (a) and (c) of Theorem 7.9 we now obtain the chain of inequations

o <1 0(e*) <1 0((@iars+0)%) <1 ... <1 0((@id+1)*) = 0(e) <1 0(me(e)).
We claim that
pred;(o(me(a)) + 1) < o(a'). (7)
To this end note that tc(o(me(e’)) + 1) must be of a form &~ (ei1,1 + 1) where i < ng, and by part (a) of Theorem 7.9
o(me(et')) + 1 either does not have any <;-predecessor or the greatest <;-predecessor is o(®_1,m; ,). Hence (7) follows,
which implies that o #; o(me(et’)) 4+ 1. We thus have Ih(e) = 0,y m(at) + dp%mq (Tng,m)- O
Corollary 7.14. Any pure pattern of order 2 has a covering below 1°°, the least such ordinal.

Proof. Consider the maximal extensions of the tracking chains tc(| ID, |) = ((] ID, |)) of the proof-theoretic ordinals of the
theories ID, where n € (0, w). Omitting the first initial value | ID,, | we obtain a <,-chain connecting n + 2 ordinals when
considering me(tc(| ID, |)). This shows that any pure pattern of order 2 has a covering below 1*°. By part (d) of Theorem 7.9
we obtain pure patterns of order 2 contained in the ordinals

K, 1+1 = o(me(tc(| 1Dy ) + 1 = | IDy | + dpy(| 1Dy |) + 1

for which there does not exist a covering contained in | ID,, | + dpy(| ID, ). O

8. Conclusion

As mentioned in the introduction this article provides the basis for both a full arithmetical characterization of R, thereby
showing that the sequence (7z)zcorq as defined in [10], thatis, 7o = 1°°, Tz = rg", and 7, = lim{z; | § < A}, starts with
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To <1 77 and then connects 7; <, T, for any &, n such that 0 < & < n where the greatest <,-predecessor of any 71
is 7z for & > 0, while 77 is <;-minimal. The method to be applied in order to generalize the results of this article is base

transformation in the sense of [10].

The characterization of isominimal substructures and the core of R, will be supplied by effective assignments between
pure patterns of order 2 and finite sets of ordinals in hull notations, following the style of [ 12,4]. The key to such assignments

will be the concept of tracking chains that was introduced in the present article.

Future work will extend the methods introduced here to variants of R, such as !Rz+ and higher orders. A considerable gain
in strength beyond the proof-theoretical ordinal of KPI is claimed. The starting point for a more powerful ordinal arithmetic

is given in [7].
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