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a b s t r a c t

We apply the ordinal arithmetical tools that were developed in Wilken (2007) [10] and
Carlson andWilken (in press) [4] in order to introduce tracking chains as the crucial means
in the arithmetical analysis of (pure) elementary patterns of resemblance of order 2;
see Carlson (2001) [2], Carlson (2009) [3], and Carlson and Wilken (in preparation) [5].
Although underlying heuristics for an analysis of Σ2-elementarity within the structure
R2 is given in [5], this article is independent of [5] and provides a complete arithmetical
analysis of the structure R2 below the least ordinal α such that any pure pattern of order
2 has a covering below α. α is shown to be the proof-theoretic ordinal of KPℓ0.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

In order to integrate and locate the present article into the general program on patterns of embeddings (cf. [2,3]) we
commence with the central definition of structures of ordinals in which elementary patterns of resemblance arise.

Definition 1.1. Let R0 := (Ord; ≤) be the structure of all ordinals with the usual ordering ≤. Setting ≤0:=≤, for n < ω the
structure R0 is extended to

Rn :=

Ord; (≤i)i≤n


where the relations ≤i for i = 1, . . . , n are defined simultaneously by the (in β) inductive definition

α ≤i β :⇔

α; (≤j)j≤n


≼Σi


β; (≤j)j≤n


and ≼Σi is the usual notion of Σi-elementary substructure. Similarly,

Rω := (Ord; (≤i)i<ω)

is defined by

α ≤i β :⇔

α; (≤j)j<ω


≼Σi


β; (≤j)j<ω


.

Note that we have amore liberal notion of structure in that we consider partial (possibly empty) class structures, identifying
an ordinal α with the set {γ | γ < α}.

Immediate consequences of the notion of Σi-elementary substructure are summarized in the following.
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Lemma 1.2. For the first four assertions below fix any of the R-structures introduced above.

1. ≤i is a forest, i.e. a partial ordering in which the sets of ≤i-predecessors of an element are linearly ordered by ≤i.
2. ≤i+1 respects ≤i:

• ≤i+1 ⊆ ≤i and
• α ≤i β ≤i γ & α ≤i+1 γ ⇒ α ≤i+1 β .

3. {β | α ≤1 β} is a closed interval.
4. {β | α ≤2 β} is closed.
5. For n < m ≤ ω and the least β such that there exists an α with Rm |H α <n β we have

Rn ∩ β = Rm �(≤i)i≤n ∩ β.

Proof. Straightforward. �

Interpreting 0 and + as graphs of the ordinal 0 and ordinal addition restricted to the respective universe, the above
definition can be modified to extend the additive structure R+

0 := (Ord; 0, +, ≤) to structures R+
n and R+

ω where the
notion of Σi-elementary substructure is based on the respective language including 0, +. The structure R+

1 and variants
were first studied in [2] and later analyzed using familiar ordinal arithmetic in [9,11]. The general setting of underlying
Ehrenfeucht–Mostowski structures was introduced in [3] and taken as a basis to investigate a variant of REM

2 , where EM
indicates the underlying Ehrenfeucht–Mostowski structure. The above lemma generalizes to R-structures with underlying
arithmetic structure.

This article is motivated by the ordinal arithmetical analysis of a special case of ordinal structures accommodating
elementary patterns of resemblance, namely R2. As will be shown elsewhere, many ideas applied in this article will
generalize to the higher levels. Unless explicitly stated otherwise, in this article we are going to specifically refer to the
structure R2 = (Ord; ≤, ≤1, ≤2). In the light of part 5 of the above lemma we will be able to naturally build upon the
approach and results of [1], however, we will obtain alternative proofs. Heuristics of the analysis of R2 is exposed in [5],
however, in this article we directly deal with elementary substructurehood.

The article is organized as follows: In the preliminaries sectionwe are going to introduce those basic arithmetical notions
that will be used throughout the entire paper. For themore sophisticatedmeans of ordinal arithmetic used in this article the
reader is referred to [10,4]. In Section 3we establish a structure on the additive principal numbers below the proof-theoretic
ordinal of KPℓ0 which will frequently be denoted by 1∞. The structure introduced in Section 3 will serve as the backbone for
the central Definition 4.4 in Section 4which introduces functions on the ordinals below 1∞ that will turn out to characterize
the enumeration of (suitably relativized) connectivity components of the relations ≤1 and ≤2 in Section 7, as can be read
off from Theorem 7.9 and its corollaries, on the basis of Section 6. Though specifically motivated by the analysis of R2, the
‘‘facet’’ structure of ordinals that is introduced in Section 4 and revealed in Sections 5 and 6 is of interest in its own right. In
Section 7 we finally apply the apparatus built up in the earlier sections in order to analyze the structure R2 up to the least
ordinal α such that any pure pattern of order 2 is covered below α; see Theorem 7.9 and Corollary 7.13. This ordinal α is
shown in this article to be 1∞; see Corollary 7.14. The present article provides the means for work in progress which will
show that 1∞ is equal to the core of R2, the union of all isominimal substructures ofR2; see [3]. There we are going to show
that 1∞

≤1 β for any β ≥ 1∞. Moreover, the relations ≤1 and ≤2 will be arithmetically characterized within the entire R2,
and the isominimal substructures of R2 will be characterized arithmetically.

2. Preliminaries

We presume familiarity with basics of ordinal arithmetic (see e.g. [6] for a comprehensive introduction) and the ordinal
arithmetical tools developed in [10] and Section 5 of [4]. See the index at the end of [10] for quick access to its terminology,
which is not included in this article’s index.

For α with additive normal form α1 +· · ·+αn, according to the terminology in [10] also written as α =ANF α1 +· · ·+αn,
we define mc(α) := α1 and end(α) := αn. We set end(0) := 0. As usual let α −· β be 0 if β ≥ α, γ if β < α and there exists
the minimal γ s.t. α = γ + β , and α otherwise.

While P, L, and E denote the classes of additive principal numbers, their limits, and epsilon numbers, respectively, let M
denote the class of multiplicative principal numbers, i.e. the positive ordinals which are closed under ordinal multiplication.
For any class X of ordinals and any ordinal α we sometimes use the abbreviation X>α for the class of ordinals in X which
are strictly greater than α. Expressions such as X≤α are defined likewise. Note that

M = {1} ∪ {ωωη
| η ∈ Ord}.

For α ∈ Ord we denote the least multiplicative principal number greater than α by αM. Notice that if α ∈ P, α > 1, say
α = ωα′

, we have αM
= αω

= ωα′
·ω .

For α ∈ P we use the following notations for the notion ofmultiplicative normal form:

• α =NF η · ξ if and only if ξ = ωξ0 ∈ M (i.e. ξ0 ∈ {0} ∪ P) and either η = 1 or η = ωη1+···+ηn such that η1 + · · · + ηn + ξ0
is in additive normal form (i.e. η1, . . . , ηn, ξ0 ∈ P and η1 ≥ · · · ≥ ηn ≥ ξ0).

• α =MNF α1 · · · αk if and only if α1, . . . , αk is the unique decreasing sequence of multiplicative principal numbers whose
product is equal to α.
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For α ∈ P, α =MNF α1 · · · αk, we write lf(α) for αk. Note that if α ∈ P − M then lf(α) ∈ M>1 and α =NF ᾱ · lf(α) where
the definition of ᾱ given in [10] for limits of additive principal numbers is extended to ordinals α of a form α = ωα′

+1 by
ᾱ := ωα′

; see Section 5 of [4].
Given ordinals α, β with α ≤ β we write −α + β for the unique γ such that α + γ = β . Given α, β ∈ P with α ≤ β we

write (1/α) ·β for the uniquely determined ordinal γ ≤ β such that α · γ = β . Note that with the representations α = ωα′

and β = ωβ ′

we have

(1/α) · β = ω−α′
+β ′

.

If α is of a form ωα′

then we write log(α) for α′ and set log(0) := 0, so that for an arbitrary ordinal β we have logend(β) =

log(end(β)).
We denote the (strict) lexicographic ordering on sequences of objects (ordered by <) by ≤lex (<lex).
Settings of relativization are given by ordinals from E1 := {1} ∪ E and frequently indicated by Greek letters, preferably

σ or τ . Clearly, in this context τ = 1 denotes the trivial setting of relativization. For a setting τ of relativization we define
τ∞

:= Tτ
∩ Ω1. In order to avoid confusion, in the present article we will not use the notation τ0 := 1∞, τξ+1 := τ∞

ξ , and
τλ := sup{τξ | ξ < λ} for λ ∈ Lim as defined in [10]. Indeed, our considerations will mostly be confined to the segment 1∞.

As in [11], by lh(α) we denote the maximum ordinal β ≥ α such that α ≤1 β if that exists, and ∞ otherwise. We say
that α is τ -≤i-minimal if there does not exist any β ∈ (τ , α) such that β ≤i α.

3. Tracking sequences

The notion of tracking sequence introduced in this section will provide us with a coarse-grained raster which operates
on the additive principal numbers below 1∞. It will turn out in the end that this already admits a rough orientation within
the structure R2. More precisely, it will be shown that any additive principal number α in the core of R2 is the last element
of a finite increasing ≤1-chain α1, . . . , αn that starts with a ≤1-minimal ordinal and continues (in case of n > 1) with
≤2-connected ordinals α2, . . . , αn where α2 is ≤2-minimal with lh(α1) = lh(α2) and αi+1 is αi-≤2-minimal for i =

2, . . . , n − 1. The tracking sequence for α yields the indices of appropriate enumeration functions of (relativized) ≤1- and
≤2-connectivity components that will be characterized in purely arithmetical terms in the next section. The semantical
correctness of this arithmetical characterization will be shown at the end of this article.

It will be shown that the indicator functions defined below are crucial in characterizing those (relativized)
≤2-connectivity components which ≤1-connect back to the ≤1-component they started from (cf. also the comment
preceding Definition 4.4).

Definition 3.1. For τ ∈ E the indicator function χ τ
: Tτ

→ {0, 1} is defined by

• χ τ (ξ) := 0 for parameters ξ < τ
• χ τ (τ ) := 1
• χ τ (η + ξ) := χ τ (ξ) if η + ξ > τ is in normal form
• Let i < ω and ξ = ∆ + η ∈ dom(ϑi) where η < Ωi+1 | ∆ with ξ > 0 in case of i = 0.

– χ τ (ϑi(ξ)) := χ τ (∆) if η = supσ<η ϑi(∆ + σ) or logend(η) = 0
– χ τ (ϑi(ξ)) := χ τ (ξ) otherwise.

Let χ̌ τ
: Tτ

→ {0, 1} be the dual indicator function, i.e. χ̌ τ
:= 1 − χ τ .

Remark. An essential property of the χ-indicator will be revealed in Corollary 5.6.

The next lemma shows an important uniformity property of the χ-operator, namely that it commutes with respect to
base transformation. Recall the concept of base transformation from Section 5 of [10].

Lemma 3.2. Let σ , τ ∈ E, σ < τ , and α ∈ Tτ [σ ]. Then χσ (πσ ,τ (α)) = χ τ (α), i.e. the following diagram is commutative:

Tτ [σ ] {0, 1}

Tσ

✲χτ

❅
❅❅❘

πσ ,τ �
��✒
χσ

The analogue statement holds for χ̌ τ .

Proof. Straightforward, cf. the proof of Lemma 5.6 in [10]. �

Recall the operator ζ τ
α which indicates the degree of thinning out limit points as well as the cofinality operators ιτ ,α and

λτ
α from [10]. We show a crucial property of the indicator functions defined above.

Lemma 3.3. Let τ ∈ E and α = ϑτ (∆ + η) > τ .

(a) χ τ (α) is equal to each of the following: χ τ (β + α) for all β < τ∞, χ τ (logend(α)), χ τ (ωα), χ τ (β · α) for all β ∈ (0, τ∞),
χ τ ((1/β) · α) for all β ∈ P<α , and χ τ (λτ

α).
(b) If α ∈ E then for all ξ ∈ Tτ

�α
such that χα(ιτ ,α(ξ)) = 1 we have χ τ (ξ) = 0.
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Proof. Part (a) follows once we show the claims concerning logend and λτ . In order to verify the equality χ τ (logend(α)) =

χ τ (α) we use Lemma 4.10 of [10]. The equality concerning λτ
α is clear if ζ τ

α > 0 whence χ τ (λτ
α) = χ τ (logend(α)). Let us

now assume that ζ τ
α = 0 which implies that η = supσ<η ϑτ (∆ + σ) and hence χ τ (α) = χ τ (∆). Since the case ∆ = 0 is

trivial we may assume ∆ > 0. We prove the following

Claim. For every ξ ∈ Subτ
0(∆) we have

χ τ (ξ) = χ τ

ιτ ,α(ξ)t

α
τ


.

The claim implies the desired equality since ∆ ∈ Subτ
0(∆) and is shown by induction on the buildup of Tτ -terms (cf. Lemma

7.9 of [10]). The interesting cases are ϑ-terms, in particular the case ξ = ϑ1(ρ) where ρ = Ξ + ν > 0 with ν < Ω2 | Ξ .
Setting ν ′

:= ιτ ,α(ν)t
α
τ and Ξ ′

:= ιτ ,α(Ξ)t
α
τ notice that

ν = sup
σ<ν

ϑ1(Ξ + σ) ∨ logend(ν) = 0 ⇔ ν ′
= sup

σ<ν′

ϑτ (Ξ ′
+ σ) ∨ logend(ν ′) = 0.

Notice also that in case of ν = supσ<ν ϑ1(Ξ +σ) we have the equality ν ′
= supσ<ν′ ϑτ (Ξ ′

+α +σ). We now have a closer
look at the term ξ ′

:= ιτ ,α(ξ)t
α
τ :

Case 1: Ξ = 0.
Then ξ ′

= ϑτ (α + ιτ ,α(ν0)
tατ ) where ν0 := −1 + ν. If in this case ν ∈ E>Ω1 or ν is a successor ordinal then we

obtain χ τ (ξ) = 0 = χ τ (ξ ′) using that α ∈ E since we assume ∆ > 0. Otherwise we use the i.h. for ν and obtain
χ τ (ξ) = χ τ (ν) = χ τ (ν ′) = χ τ (ξ ′).

Case 2: Ξ∗1 ≥ Ω1.
Then ξ ′

= ϑτ (Ξ ′
+ ν ′), and we apply the i.h. for Ξ and ν using the equivalence from above.

Case 3: Otherwise.
Then ξ ′

= ϑτ (Ξ ′
+ α + ν ′). In case of ν > 0 we argue as in Case 2. Suppose finally that ν = 0. We then have

χ τ (ξ ′) = χ τ (ϑτ (Ξ ′
+ α)) = χ τ (Ξ ′) since Ξ ′ < ∆ due to the fact that ξ ′

∈ (α, α+), and the claim follows by an
application of the i.h. for Ξ .

Part (b) is shown by induction on the buildup of ξ ∈ Tτ
�α
. The interesting case is where ξ = ϑk+1(Ξ + ν) with ν <

Ωk+2 | Ξ . Since the claim is clear if Ξ + ν = 0 we may assume that Ξ + ν > 0. Setting ξ ′
:= ιτ ,α(ξ), Ξ ′

:= ιτ ,α(Ξ), and
ν ′

:= ιτ ,α(ν) we again use the equivalence

ν = sup
σ<ν

ϑk+1(Ξ + σ) ∨ logend(ν) = 0 ⇔ ν ′
= sup

σ<ν′

ϑk+1(Ξ
′
+ σ) ∨ logend(ν ′) = 0.

Now, if ν = supσ<ν ϑk+1(Ξ + σ) ∨ logend(ν) = 0 then χα(ξ ′) = χα(Ξ ′) = 1 and hence by the i.h. χ τ (ξ) = χ τ (Ξ) = 0.
Otherwise χα(ξ ′) = χα(ν ′) = 1 and hence by the i.h. χ τ (ξ) = χ τ (ν) = 0. �

We now define two additional operatorsµτ
α and ϱτ

α that will play an essential role in the definition of tracking sequences
and chains. As will be shown later, µτ

α yields the index of the largest of those ≤2-connectivity components newly arising in
theα-th component (whereα is an epsilon number greater than τ ) within a context locally indexed by τ . The set of contexts,
called reference points, is defined in 3.18 and shown in Corollary 4.11 tomatch the set of appropriate relativization points for
enumeration functions of connectivity components. Referring again to the context locally indexed by τ from above, the α-th
component becomes a new context (within the outer context indicated by τ ) giving itself rise to new, larger≤2-components.
In fact, reference points are exactly those ordinals whose tracking sequence consists of increasing epsilon numbers (cf. 3.18).

Stayingwith the same τ andα as in the above explanation ofµτ
α ,ϱ

α
ξ (see Definition 3.9)where ξ ≤ µτ

α will be shown later
to yield the index of that νξ -relativized≤1-connectivity component which contains the largest≤2-successor of νξ where νξ

is the ξ -th such newly arising ≤2-component in the α-th component.

Definition 3.4. Let τ ∈ E1 and α ∈ (τ , τ∞) ∩ E, say α = ϑτ (∆ + η) where ∆ = Ω1 · (λ + k) such that λ ∈ {0} ∪ Lim and
k < ω. We define

µτ
α := ωιτ ,α(λ)+χα(ιτ ,α(λ))+k.

Thenext lemmawill justify inductive proofs alonghtτ whichwas introduced in [10]. Themore refined estimationwill also
be used, especially when dealing with localizations. The subsequent algebraic lemmas concerning the notions of translation
and base transformation introduced in [10] will later be used without explicit mention.

Lemma 3.5. htα(µτ
α) ≤ htα(λτ

α) < htτ (α) and µτ
α, (µτ

α)+ < α+.

Proof. Immediate from the respective definitions, cf. Corollaries 7.3 and 7.6 of [10]. Note that we regard µτ
α and (µτ

α)+

elements of Tα , whereas α+
= ϑτ (∆ + η + 1) = ϑα(∆) as shown in [10]. �
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Lemma 3.6. Let α = ϑτ (∆ + η) ∈ E>τ . Then

µτ
β = µα

βtτα
= µα

β

for every β = ϑτ (Γ + ρ) ∈ (α, α+) ∩ E.

Proof. Immediate from the respective definitions, cf. Lemma 7.7 of [10]. �

Lemma 3.7. Let σ , τ ∈ E, σ < τ , and α = ϑτ (∆ + η) ∈ Tτ [σ ] ∩ (τ , τ∞) ∩ E. Then µτ
α ∈ Tτ [σ ] and πσ ,τ (µ

τ
α) = µσ

πσ ,τ (α), i.e.
the following diagram is commutative:

Tτ [σ ] ∩ (τ , τ∞) ∩ E Tτ [σ ]

Tσ
∩ (σ , σ∞) ∩ E Tσ

✲µτ

❄
πσ ,τ

❄
πσ ,τ

✲
µσ

Proof. By Lemma 5.10 of [4] we have commutativity ofω· with πσ ,τ . It is then easy to see that πσ ,τ (∆) = Ω1 · (πσ ,τ (λ)+k)
and

χπσ ,τ (α)

ισ ,πσ ,τ (α)(πσ ,τ (λ))


= χα


ιτ ,α(λ)


where λ, k are as in the definition of µτ

α . An application of Lemma 7.9 of [10] now yields the claim. See also 7.10 of [10] for
the corresponding lemma for λτ

α . �

For the next lemma recall the ·̄-operator which was introduced in Section 8 of [10] and extended in Section 5 of [4].

Lemma 3.8. Let τ ∈ E1 and α ∈ E ∩ (τ , τ∞) and γ ∈ E ∩ (ᾱ, α). Then we have

π−1
γ ,α(µτ

γ ) ≤ µτ
α.

Proof. Notice that the claim is similar to the consequence of Lemma 8.2 of [10] which shows that π−1
γ ,α(λτ

γ ) < λτ
α . Suppose

γ = ϑτ (Γ + ν) and α = ϑτ (∆ + η). Since γ ∈ (ᾱ, α) we have Γ ≤ ∆. Let µ, λ ∈ Lim ∪ {0} and k, l < ω be such that
Γ = Ω1 · (µ+ l) and∆ = Ω1 · (λ+k). In the caseµ = λwe have l ≤ k, and the claim follows since π−1

γ ,α(ιτ ,γ (µ)) = ιτ ,α(λ)

using Lemma 7.8 of [10] which thanks to Lemma 3.2 also yields χγ (ιτ ,γ (µ)) = χα(ιτ ,α(λ)). In the case µ < λ we obtain
π−1

γ ,α(ιτ ,γ (µ)) = ιτ ,α(µ) < ιτ ,α(λ) by Lemma 7.2 of [10] which implies the claim since ιτ ,α(λ) is a limit ordinal greater than
ιτ ,α(µ). �

Definition 3.9. Let τ ∈ E and α < τ∞ where logend(α) = λ + k such that λ ∈ {0} ∪ Lim and k < ω. We define

ϱτ
α := τ · (λ + k −· χ τ (λ)).

Lemma 3.10. ϱτ
α ≤ τ · logend(α) and htτ (ϱτ

α) ≤ max{1, htτ (α)}.

Proof. Immediate by definition. �

Lemma 3.11. Let σ , τ ∈ E, σ < τ , and α ∈ Tτ [σ ] ∩ τ∞. Then we have ϱτ
α ∈ Tτ [σ ] and

πσ ,τ (ϱ
τ
α) = ϱσ

πσ ,τ (α),

i.e. the following diagram is commutative:

Tτ [σ ] ∩ τ∞ Tτ [σ ]

Tσ
∩ σ∞ Tσ

✲ϱτ

❄
πσ ,τ

❄
πσ ,τ

✲
ϱσ

Proof. Straightforward. �

The lemma below shows the interrelations between the operators from [10] and the new ones.

Lemma 3.12. Let τ ∈ E1 and α = ϑτ (∆ + η) ∈ (τ , τ∞) ∩ E. Then we have

(a) ιτ ,α(∆) = ϱα
µτ

α
and hence λτ

α = ϱα
µτ

α
+ ζ τ

α .
(b) ϱα

β ≤ λτ
α for every β ≤ µτ

α . For β < µτ
α even ϱα

β + α ≤ λτ
α .

(c) If µτ
α < α we have µτ

α < α ≤ λτ
α < α2, while otherwise

max

(µτ

α + 1) ∩ E


= max

(λτ

α + 1) ∩ E

.

(d) If λτ
α ∈ E>α we have µτ

α = λτ
α · ω in case of χα(λτ

α) = 1 and µτ
α = λτ

α otherwise.

Proof. Immediate from the respective definitions. �
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In order to see that the following central definition of (relativized) tracking sequences is sound one needs to verify the
subsequent lemma along the way.

Definition 3.13. Let τ ∈ E1 and α ∈ [τ , τ∞) ∩ P. The tracking sequence of α above τ , tsτ (α), is defined recursively in α
as follows.

• If α ∈ M>τ with τ -localization τ = α0, . . . , αn = α we set

i :=


max{j ∈ {1, . . . , n − 1} | µτ

αj
≥ α} if that exists

n otherwise.

– If i = n then tsτ (α) := (α).
– If i < n then tsτ (α) := tsτ (αi)

⌢(α) is obtained from tsτ (αi) by appending α.
• α ∉ M>τ and α ≤ τω: Then tsτ (α) := (α).
• Otherwise. Then ᾱ ∈ [τ , α) and α =NF ᾱ · β for some β ∈ M>1. Let tsτ (ᾱ) = (α1, . . . , αn) and set α0 := τ .1

– If αn ∈ E>αn−1 and β ≤ µτ
αn

then tsτ (α) := (α1, . . . , αn, β).
– Otherwise. For i ∈ {1, . . . , n} let (β i

1, . . . , β
i
mi

) be tsαi(β) provided β > αi, and set mi := 1, β i
1 := αi · β if β ≤ αi.

Define
i0 := max


{1} ∪ {j ∈ {2, . . . , n} | β

j
1 ≤ µτ

αj−1
}


.

Then tsτ (α) := (α1, . . . , αi0−1, β
i0
1 , . . . , β

i0
mi0

).

Instead of ts1(α) we also simply write ts(α).

Remark. For α ∈ E ∩ (τ , τ∞) the tracking sequence of α above τ is exactly the τ -≤1-localization of α as in Definition 5.8
of [11], as follows from Corollary 5.9 of [11], Lemma 3.12, part (c), and Lemma 3.14, part (a), below. Notice that according to
Lemma 4.9 of [11] there is convenient robustness of the above definition regarding the base to which the µ-operator refers.

Lemma 3.14. Let τ ∈ E1 and α ∈ [τ , τ∞) ∩ P. Let further (α1, . . . , αn) be tsτ (α), the tracking sequence of α above τ .

(a) If α ∈ M then αn = α and tsτ (αi) = (α1, . . . , αi) for i = 1, . . . , n.
(b) If α =NF η · ξ ∉ M then αn ∈ P ∩ [ξ, α] and αn =NF αn · ξ .
(c) (α1, . . . , αn−1) is either empty or a strictly increasing sequence of epsilon numbers in the interval (τ , α).
(d) For 1 ≤ i ≤ n − 1 we have αi+1 ≤ µτ

αi
, and if αi < αi+1 then (α1, . . . , αi+1) is a subsequence of the τ -localization of αi+1.

Proof. Immediate by induction on α along the definition of tsτ (α). �

The card provided by the following lemma, which establishes a<-<lex-order isomorphism of additive principal numbers
and their tracking sequences relative to τ , will be playedwinningly in thenext sectionwhen showing that tracking sequences
click into place with the system of enumeration functions for (relativized) connectivity components in the core of R2.

Lemma 3.15. Let τ ∈ E1 and α, γ ∈ [τ , τ∞) ∩ P, α < γ . Then we have

tsτ (α) <lex tsτ (γ ).

Proof. The proof is by induction on the natural sum α#γ where τ may vary. We will make frequent use of Lemma 3.14.

Case 1. γ ≤ τω:
Then tsτ (α) = (α) <lex (γ ) = tsτ (γ ).

Case 2. γ ∈ M>τ :
Let γ = (γ1, . . . , γn) be the τ -localization of γ and tsτ (γ ) = (γi1 , . . . , γil). The claim is immediately verified if l = 1.

Therefore suppose l > 1 and set γ ′
:= γil−1 . Note that γ ≤ µτ

γ ′ . Ifα ≤ γ ′ by the i.h.we obtain tsτ (α) ≤lex tsτ (γ ′) <lex tsτ (γ ).
Otherwise we have γ ′ < α < γ whence by Lemma 5.3 of [4] the initial sequence (γ1, . . . , γ

′) of γ is an initial sequence of
the τ -localization of α. The subcase where α ≤ τω is trivial. Suppose next that α ∈ M>τ . Then tsτ (γ ′) is an initial sequence
of tsτ (α)which implies the claim. If α ∉ M>τ

∪ (τω
+1), say α =NF ᾱ ·β , we have γ ′

≤ ᾱ since γ ′
∈ M. By the i.h. we obtain

tsτ (γ ′) ≤lex tsτ (ᾱ) <lex tsτ (γ ) whence tsτ (γ ′) is an initial sequence of tsτ (ᾱ). Let tsτ (ᾱ) = (ξ1, . . . , ξp). If ξp ∈ E>ξp−1

and β ≤ µτ
ξp

we are done. This is particularly the case if l − 1 = p. Otherwise we have l ≤ p, i.e. tsτ (γ ′) is a proper initial
sequence of tsτ (ᾱ). Let (β l

1, . . . , β
l
ml

) be according to the definition of tsτ (α). Since β l
1 ≤ ξl · β ≤ α < µτ

γ ′ we have i0 ≥ l
for i0 according to the definition of tsτ (α). Thus the claim follows.

Case 3. γ ∉ M>τ
∪ (τω

+ 1):
Let γ =NF γ̄ · δ. Let (ζ1, . . . , ζq) := tsτ (γ̄ ). The subcase α ≤ τω is again trivial. If α ∈ M>τ then α ≤ γ̄ whence by the i.h.

tsτ (α) ≤lex tsτ (γ̄ ).Wehave tsτ (γ̄ ) <lex tsτ (γ )bydefinition. If finallyα ∉ M>τ
∪(τω

+1), sayα =NF ᾱ·β , we are again done if

1 As verified in part (b) of the lemma below we have β ≤ αn .
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α < γ̄ . Suppose γ̄ ≤ α and let the decompositions of ᾱ and γ̄ into products of descendingmultiplicative principal numbers
be given by α1 · · · αk and γ1 · · · γl, respectively. We then see that in presence of our current assumptions (γ1, . . . , γl) must
be an initial sequence of (α1, . . . , αk, β). The case l = k+ 1 is clear since tsτ (γ̄ ) <lex tsτ (γ ). We henceforth assume l ≤ k. If
ζq ∈ E>ζq−1 and δ ≤ µτ

ζq
, it is easy to see that tsτ (α) = (ζ1, . . . , ζq, αl+1 · · · αk · β) <lex (ζ1, . . . , ζq, δ) = tsτ (γ ). Otherwise

let j0 ∈ {1, . . . , q} be according to the definition of tsτ (γ ) so that

tsτ (γ ) = (ζ1, . . . , ζj0−1, δ
j0
1 , . . . , δj0

nj0
).

We give a uniform treatment of the cases where l ≤ k in this situation. Suppose that for some α⋆
∈ P ∩ [γ̄ , γ ) (say,

α⋆
= α1 · · · αi for some i ∈ {l, . . . , k}) with tsτ (α⋆) = (η1, . . . , ηr) we already know that ηj = ζj for 1 ≤ j ≤ j0 − 1, r ≥ j0,

ηj0 ∈ [ζj0 , δ
j0
1 ], and tsτ (α⋆) <lex tsτ (γ ). Let some ε ∈ M ∩ (1, δ) be given such that for α′

:= α⋆
· ε we have α′

=NF α⋆
· ε

(here we aim at ε = αi+1 if i < k or ε = β otherwise). We show that tsτ (α′) then again is of a form

tsτ (α′) = (η1, . . . , ηi0−1, ε
i0
1 , . . . , εi0

mi0
)

where j0 ≤ i0, mi0 ≥ 1, that its j0-th component belongs to the interval [ζj0 , δ
j0
1 ], and that we have tsτ (α′) <lex tsτ (γ ). A

(k − l + 1)-fold iteration of this argument then yields tsτ (α) <lex tsτ (γ ).
In case of ηr ∈ E>ηr−1 and ε ≤ µτ

ηr
we have tsτ (α′) = tsτ (α⋆)⌢ε <lex tsτ (γ ) since ε ≤ ηr . Note that this case applies

whenever tsτ (α⋆) is a proper initial sequence of tsτ (γ ).
Let us now suppose that tsτ (α⋆) is not a proper initial sequence of tsτ (γ ). Then there exists the least s ∈ {1, . . . , r−j0+1}

such that ηj < δ
j0
s , setting j := j0 − 1 + s. Note that we then have δ

j0
s ≤ µτ

ηj−1
.

If ε ≤ ηj then ε
j
1 = ηj · ε < δ

j0
s ≤ µτ

ηj−1
and hence j0 ≤ j ≤ i0 and tsτ (α′) <lex tsτ (γ ). Otherwise we first note that in the

situationwhere ε
j
1 < δ

j0
s or ε = δ

j0
s we immediately obtain j0 ≤ j ≤ i0 and tsτ (α′) <lex tsτ (γ ). We now assume that εj

1 ≥ δ
j0
s

and ε > δ
j0
s . Then δ > δ

j0
s , i.e. s < nj0 . We take a closer look at tsηj(ε) in comparison with tsδ

j0
s (δ) = (δ

j0
s+1, . . . , δ

j0
nj0

). Note

that ε ∈


δ
j0
s , (δ

j0
s )+


whence by Lemma 6.5 of [10] the ηj-localization of ε is the concatenation of the ηj-localization of δj0

s

with the δ
j0
s -localization of ε. The i.h. applied to ε < δ yields tsδ

j0
s (ε) <lex tsδ

j0
s (δ). The assumption ε

j
1 > δ

j0
s would imply

ε
j
1 ≤ δ

j0
s+1 ≤ µτ

δ
j0
s

and therefore contradict the fact that ε
j
1 is the first element of tsηj(ε). Thus ε

j
1 = δ

j0
s ≤ µτ

ηj−1
and hence

j0 ≤ j ≤ i0 as well as tsηj(ε) = (ε
j
1)

⌢tsδ
j0
s (ε) <lex (δ

j0
s , . . . , δ

j0
nj0

) which then allows for the desired conclusion. �

The following definition will play an important role in the next section. It will turn out to provide refined upper bounds
for (relativized) connectivity components.

Definition 3.16. Let τ ∈ E1 and α ∈ (τ , τ∞) ∩ E. We define

α := min{γ ∈ M>α
| tsα(γ ) = (γ ) & µτ

α < γ }.

Remark. Note that in the above context we haveα ≤ α+. As is the case with α+ we suppress the base τ in the notationα
assuming that it will always be well understood from the respective context.

Lemma 3.17. Let τ , α be as in the above definition. Thenβ ≤α for any β ∈ Tα
∩ E ∩ (α, µτ

α].

We further have λτ
α <α.

Proof. We show thatα satisfies the conditions on β apart from minimality. We clearly haveα ∈ M>β . The assumptionα ≤ µα
β would imply β <α < β+ and therefore contradict the property tsα(α) = (α), which also entails tsβ(α) = (α).

In order to show that λτ
α < α let α = ϑτ (∆ + η). If µτ

α < α we have λτ
α < α2 < αω

≤ α by Lemma 3.12. Now assume
µτ

α ≥ α. Sinceα ≥ (µτ
α)ω ≥ αω wemay assumeλτ

α ≥ αω , whence∆ ≥ Ωω
1 . This shows that (µτ

α)ω > ωιτ ,α(∆)
+ζ τ

α ≥ λτ
α . �

We are now able to describe the set of ordinals that comprises the essential starting points of relativized connectivity
components of Core(R2) for both relations≤1 and≤2. The purely arithmetical relevance of these ordinals will become clear
during the following sections (cf. 4.11) while its semantical meaning concerning R2, namely of being the origins of infinite
≤1-chains along which new ≤2-components arise, will be proved at the end of this article.

Definition 3.18. The set RP of reference points below 1∞ is defined by

RP := {0} ∪ {α ∈ P<1∞

| ts(α) = (α1, . . . , αn) where α1 < · · · < αn ∈ E}.
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4. A facet structure of ordinals

In this section we introduce functions that will turn out to characterize the enumeration functions of (relativized)
connectivity components of the core of R2. This characterization already takes crucial uniformity properties, particularly
of relativized ≤1-connectivity components, into account and restricts the enumeration of components up to their ‘‘critical
index’’ (cf. the remark preceding Definition 3.4), which in turn is necessary because of the nested occurrence of ≤1- and
≤2-components. Our simultaneously recursive Definition 4.4 will make use of the ordering (ISeq, <lex) given below.

Lemma 4.1. Let ISeq comprise all nonempty finite sequences (α1, . . . , αn) of ordinals below 1∞ that satisfy α1, . . . , αn−1 ∈ E
and htαi(αi+1) < htαi−1(αi) for 1 ≤ i ≤ n − 1 where α0 := 1. Then the lexicographic ordering

(ISeq, <lex)

is a well-ordering.

Proof. Suppose α := (α1, . . . , αn) ∈ ISeq. We set l := ht1(α1) whence n ≤ l + 1. Any β := (β1, . . . , βm) ∈ ISeq such that
β <lex α satisfies ht1(β1) ≤ ht1(α1), since β1 ≤ α1, and therefore underlies the restrictionm ≤ l + 1. �

We now define a set of ordinal sequences that will turn out to characterize the set of tracking sequences defined in
Section 3 via an evaluation procedure defined in 4.8. The evaluations of reference sequences defined subsequently comprises
RP as will be shown at the end of this section.

Definition 4.2. Let τ ∈ E1. A nonempty sequence (α1, . . . , αn) of ordinals in the interval [τ , τ∞) is called a τ -tracking
sequence if

1. (α1, . . . , αn−1) is either empty or a strictly increasing sequence of epsilon numbers greater than τ .
2. αn ∈ P, αn > 1 if n > 1.
3. αi+1 ≤ µτ

αi
for every i ∈ {1, . . . , n − 1}.

By TSτ we denote the set of all τ -tracking sequences. Instead of TS1 we also write TS.

Remark. Note that {tsτ (α) | α ∈ P ∩ [τ , τ∞)} ⊆ TSτ , that TSτ is closed under nonempty initial sequences, and that
TS ⊆ ISeq. It will be shown that in fact TS = {ts(α) | α ∈ P ∩ 1∞

}. For i ∈ {1, . . . , n− 2} the initial sequence (α1, . . . , αi+1)
is a subsequence of the τ -localization of αi+1. This also holds for i = n − 1 provided that αn−1 < αn.

Definition 4.3. Let τ ∈ E1. A sequence α of ordinals below τ∞ is a τ -reference sequence if

• α = () or
• α = (α1, . . . , αn) ∈ TSτ such that αn ∈ E>αn−1 (where α0 := τ ).

We denote the set of τ -reference sequences by RSτ . In case of τ = 1 we simply write RS and call its elements reference
sequences.

Remark. Note that RSτ is closed under initial sequences and that it contains the sequence (α1, . . . , αn−1) for anyα ∈ P∩τ∞

such that tsτ (α) = (α1, . . . , αn).

We are now going to define those functions which arithmetically characterize the enumerations of suitably relativized
≤1- and ≤2-components below the least α such that α <1 ∞ which in turn will eventually be proved to be equal to 1∞ and
comprise Core(R2). The soundness of this essential definition will be shown in the subsequent Lemma 4.5. Its semantical
correctness can only be proved at the end of this article. We will then see that

• κ () enumerates those ≤1-minimal ordinals and lh(κ ()
α ) = κ ()

α + dp()(α), that
• να (where the nonempty index sequence α = (α1, . . . , αn) ∈ RS codes the relativization point, say, α) enumerates the

α-≤2-minimal ordinals να
ξ > α (1 ≤ ξ ≤ µ

αn−1
αn , setting α0 := 1) up to the origin of the largest new2

≤2-connectivity
component which satisfy lh(να

ξ ) = lh(α · 2) ≤ lh(α), while να
0 = α satisfies lh(α) = lh(α · 2) if and only if n = 1 or

n > 1 and either χαn−1(αn) = 1 or αn = µ
αn−2
αn−1 = λ

αn−2
αn−1 , and that, referring to the same α as above,

• να
ξ + κα

β is the β-th να
ξ -≤1-minimal ordinal for ξ ≤ µ

αn−1
αn and

β <


ϱ

αn
ξ + αn if ξ < µ

αn−1
αn and χαn(ξ) = 0,

ϱ
αn
ξ + 1 if ξ < µ

αn−1
αn and χαn(ξ) = 1,

λ
αn−1
αn + 1 if ξ = µ

αn−1
αn .

2 By ‘‘new’’ we mean a connectivity component which cannot be obtained by translation of an isomorphic copy from below.



T.J. Carlson, G. Wilken / Annals of Pure and Applied Logic 163 (2012) 23–67 31

Notice that the case in the middle addresses the situation where the ≤2-component starting from να
ξ non-trivially ≤1-

connects back to themain line starting from α, that is: the image of να together with all ordinals γ such that να
ξ <1 γ <1

να
ξ+1 for some ξ in the domain of να. ‘‘Non-trivial’’ means that ϱ

αn
ξ > 0, whence να

ξ has its greatest <2-successor in the
ϱ

αn
ξ -th να

ξ -relativized ≤1-component, and ‘‘≤1-connects back to the main line’’ means that να
ξ + κα

ϱ
αn
ξ

<1 να
ξ+1.

3

It is crucial that the cofinality operator λ falls into place in the third case. This shows another parallel to the situation
in Core(R+

1 ); see [11].
dpα(β), where we now assume that β > 0, satisfies the equation lh(να

ξ + κα
β ) = να

ξ + κα
β + dpα(β) only if the

να
ξ -relativized ≤1-component starting at να

ξ + κα
β does not ≤1-connect back to any previously arising main line. If

it does, let να′

η be the largest element of the largest such main line such that να′

η < να
ξ + κα

β , whence we have
να

ξ + κα
β + dpα(β) = να′

η+1. Here, the case να′

η < να
ξ implies ξ = µ

αn−1
αn as will be shown later.

Definition 4.4. For anyα ∈ RS, sayα = (α1, . . . , αn)where n = 0 in case ofα = (), we set α0 := 1 and define the functions

κα
: dom(κα) → 1∞ where dom(κα) :=


1∞ if n = 0

λ
αn−1
αn + 1 otherwise,

dpα : dom(κα) → 1∞,

and for n > 0 only

να
: dom(να) → 1∞, where dom(να) := µ

αn−1
αn + 1.

Along the way we use the following abbreviations

α�0 := (), α�i := (α1, . . . , αi) (i = 1, . . . , n),

and set β ′
:=

1/β̄


· β whenever β ∈ P.

The clauses defining κα are as follows.

• κα
0 := 0, κα

1 := 1,
• κα

β := κα
γ + dpα(γ ) + κα

δ for β =NF γ + δ,
• κα

β := κ
α�n−1
β if n > 0 and β ∈ P ∩ (1, αn],

• κα
β := κα

β̄+1
· β ′ for β ∈ P>αn .

dpα is defined by:

• dpα(0) := 0, dpα(1) := 0, and dpα(αn) := 0 in case of n > 0,
• dpα(β) := dpα(δ) if β =NF γ + δ,
• dpα(β) := dpα�n−1(β) if n > 0 for β ∈ P ∩ (1, αn),
• for β ∈ P>αn − E let γ := (1/αn) · β and log(γ ) =ANF γ1 + · · · + γm and set 4

dpα(β) := κα
γ1

+ dpα(γ1) + · · · + κα
γm

+ dpα(γm),

• for β ∈ E>αn let γ := (α1, . . . , αn, β), and set

dpα(β) := ν
γ

µ
αn
β

+ κ
γ

λ
αn
β

+ dpγ(λ
αn
β ).

For n > 0 setting α := κα�n−1
αn

we define να by

• να
0 := α,

• να
β := να

γ + κα

ϱ
αn
γ

+ dpα(ϱ
αn
γ ) + χ̌αn(γ ) · α if β = γ + 1,

• να
β := να

γ + κα

ϱ
αn
γ

+ dpα(ϱ
αn
γ ) + να

δ if β =NF γ + δ ∈ Lim,
• να

β := α · β for β ∈ P ∩ (1, αn],
• να

β := να

β̄+1
· β ′ for β ∈ P>αn − E,

• να
β := κα

β for β ∈ E>αn .

Remark. Notice that TS comprises the sequences of a form α⌢β where α ∈ RS and β ∈ P ∩ 1∞ such that β ∈ P ∩ dom(κ ())
if α = () and β ∈ P>1

∩ dom(να) otherwise.

3 We will use the term ‘‘main line’’ only in informal formulations, no proof will rely on this nevertheless intuitive and crucial notion.
4 This integrates the treatment of R1 from [1] into the setting of R2 as will be shown later.
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We now verify the well-definedness of the functions introduced above and prove some basic properties and useful
estimations.

Lemma 4.5. Let α ∈ RS, say α = (α1, . . . , αn) where n = 0 in case of α = (), and set α0 := 1. The functions κα, dpα, and (in
case of n > 0) να are well-defined and satisfy the following properties.

(a) κα is continuous, strictly increasing, and maps additive principal numbers to additive principal numbers.
(b) In case of n > 0 also να is continuous, strictly increasing, and maps infinite additive principal numbers to additive principal

numbers greater than α := κα�n−1
αn

.
(c) If n > 0 we have

κα
β = κ

α�n−1
β whenever β ≤ αn

and

dpα(β) = dpα�n−1(β) whenever β < αn.

(d) For β ∈ dom(κα) we have the following estimations on dpα(β):
1. dpα(β) < κα

β if β ∉ E, β > 0.
2. κα

β · ω ≤ dpα(β) < κα
β ·β if β ∈ E>αn .

3. dpα(β) < κα
β · µ

αn
β · ω if β ∈ E>αn and µ

αn
β < β .

(e) If n > 0 and β ∈ dom(να) − E>αn we have ϱ
αn
β ∈ dom(κα) and

mc


κα

ϱ
αn
β

+ dpα(ϱ
αn
β )


≤ να

β .

(f) If n > 0 we have

Im(κα), Im(να) ⊆ α · αn.

Proof. The proof proceeds by induction along <lex on ISeq in the following way:

Claim 4.6. Given α as above and β such that α⌢β ∈ ISeq we prove:

1. If β is of a form γ + 1 where γ ∈ dom(κα) then dpα(γ ) is well-defined and the claims concerning dpα stated in the Lemma,
including part (d), but excluding part (e), hold up to (and including) γ .

2. If β ∈ dom(κα) then κα
β is well-defined and the claims concerning κα stated in the Lemma, excluding parts (d) and (e), hold

up to (and including) β .
3. If n > 0 and β is of a form αn · (γ + 1) such that γ ∈ dom(να) − E>αn then part (e) holds up to and including γ .
4. If n > 0 and β is of a form αn · γ such that γ ∈ dom(να) then να

γ is well-defined and the claims concerning να stated in the
Lemma, excluding part (e), hold up to (and including) γ .

Ad 1. The well-definedness of dpα(γ ) follows using the i.h. Notice the crucial point that in the case γ ∈ E>αn we have

(α1, . . . , αn, γ , . . .) <lex (α1, . . . , αn, β).

Part (c) concerning dpα follows by i.h. and definition of dpα.
For part (d) we use that by the i.h. κα has already been shown to be strictly increasing up to (and including) γ , and that

by definition κα
δ+1 = κα

δ + dpα(δ) + 1. The case γ ∉ E is then easily verified using the i.h. , showing part 1 of (d).
In order to see part 2 of (d) suppose γ ∈ E>αn and set γ := α⌢γ . It is easy to see that dpα(γ ) ≥ ν

γ
ω = κα

γ · ω. The
estimation dpα(γ ) < κα

γ ·γ is verified as follows. By i.h. we have Im(κγ), Im(νγ) ⊆ κα
γ ·γ , and dpγ(λ

αn
γ ) < κ

γ

λ
αn
γ

if λαn
γ ∉ E.

We have dpγ(λ
αn
γ ) = 0 if λαn

γ = γ , and if λαn
γ ∈ E ∩ γ we obtain dpγ(λ

αn
γ ) = dpα(λ

αn
γ ) < κα

λ
αn
γ +1

≤ κα
γ using the i.h. If

finally λαn
γ ∈ E>γ we have dpγ(λ

αn
γ ) < κ

γ

λ
αn
γ

· λαn
γ by the i.h. Since λαn

γ ≤ γ according to Lemmata 3.12 and 3.17, the latter
expression is less than or equal to κα

γ ·γ . Thus dpα(γ ) < κα
γ ·γ follows.

For part 3 of (d) assume that γ ∈ E>αn and µαn
γ < γ . By Lemma 3.12 we have µαn

γ < γ ≤ λαn
γ < γ 2, moreover

δ := mc(λαn
γ ) ≤ γ ·µαn

γ , whichusing the i.h. and inspecting thedefinition ofκγ yieldsκ
γ
δ ≤ κα

γ ·µαn
γ whenceκ

γ

λ
αn
γ

< κα
γ ·µαn

γ ·ω.

By definition we have ν
γ

µ
αn
γ

= κα
γ · µαn

γ , and using the i.h. we have dpγ(λ
αn
γ ) < κ

γ

λ
αn
γ
. Thus dpα(γ ) < κα

γ · µαn
γ · ω.

Ad 2. Supposeβ ∈ dom(κα). Using the i.h. we immediately see that κα
β is well-defined, that it is an additive principal number

if β is, and that κα
β = κ

α�n−1
β ≤ α if n > 0 and β ≤ αn. We therefore immediately obtain the claim if β ≤ αn and may from

now on assume β > αn. We employ a side induction on γ < β to verify κα
γ < κα

β among the other remaining claims of 2.

Case 1: β ∉ P.
Then the i.h. immediately implies that κα is strictly increasing and continuous up to and including β . If n > 0 and

β =NF γ + δ we obtain κα
β < α · αn using part d) (for α⌢(γ + 1)) which gives dpα(γ ) < κα

γ if γ ∉ E, and dpα(γ ) < κα
γ ·γ

if γ ∈ E. In this latter case Lemma 3.17 yieldsγ ≤ αn, so that altogether we obtain κα
β < α · αn.
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Case 2: β ∈ P.
Setting β ′

:= (1/β̄) ·β we have κα
β = κα

β̄+1
·β ′ according to the definition. In case of n > 0 we have κα

β̄+1
< α · αn by the

i.h. and β ′
≤ β ≤ λ

αn−1
αn < αn using Lemma 3.17. This shows κα

β < α · αn if n > 0. It remains to show that κα
β is the proper

supremum of Im(κα
�β).

Subcase 2.1: β = β̄ · ω (i.e. β ∉ L).
We then have κα

β = (κα

β̄
+ dpα(β̄)) · ω = sup{κα

β̄·k
| k < ω}.

Subcase 2.2: β ∈ L.
From now on we may show κα

γ < κα
β just for ordinals γ ∈ (β̄, β) ∩ P =: G since β is the proper supremum of G. κα

β will
then be shown to be the proper supremum of the κα

γ for γ ∈ G. Since the case γ̄ = β̄ is trivial in showing κα
γ < κα

β , in such
verifications we may assume that γ̄ ∈ (β̄, β), whence also γ̄ + < β . Let γ ′

:= (1/γ̄ ) · γ . We have κα
γ = (κα

γ̄ + dpα(γ̄ )) · γ ′,
and κα

γ̄ < κα
β by the i.h.

Subcase 2.2.1: β ∉ M.
Then neither γ nor γ̄ can be multiplicative principal numbers. We then have β =NF β̄ · β ′ as well as γ =NF γ̄ · γ ′, and

it follows that γ ′ < β ′. We have the already established dpα(γ̄ ) < κα
γ̄ , and so κα

γ = κα
γ̄ · γ ′ < κα

β̄+1
· β ′

= κα
β . In order to

see that κα
β = sup{κα

γ | γ ∈ G} notice that the proper supremum of the ordinals γ ′ corresponding with γ ∈ G is β ′ and that
κα

β̄+1
· γ ′

≤ κα
γ̄+1 · γ ′

= κα
γ < κα

β̄+1
· β ′

= κα
β .

Subcase 2.2.2: β ∈ M.
Then we have β ′

= β , and in the more interesting case of γ̄ ∈ E we use the already established dpα(γ̄ ) < κα
γ̄ · ̄γ

together with ̄γ ≤ γ̄ + < β to conclude κα
γ < κα

γ̄ · ̄γ · γ ′ < κα

β̄+1
· β = κα

β . If β ∈ Lim(M) we now immediately

see that κα
β = sup{κα

γ | γ ∈ G}. Otherwise β has a form ωωδ+1
and by Lemma 5.10 of [4] we have β̄ ∈ E1 (being the

predecessor of β in its τ -localization), and setting γk := ωωδ
·(k+1) for k < ω we have β = sup{γk | k < ω} and by definition

obtain either κα
γk

= κα

β̄+1
· (ωωδ

)(k+1), namely when δ ∉ E, or κα
γk+1

= κα

β̄+1
· (ωωδ

)(k+1) otherwise. This explicitly shows
κα

β = sup{κα
γ | γ ∈ G}.

Ad 3. Suppose that n > 0 and β is of a form αn · (γ + 1) such that γ ∈ dom(να) − E>αn . Note that ϱαn
γ ≤ αn · logend(γ ) ≤

αn · γ < β , and that by part (b) of Lemma 3.12 we have ϱαn
γ ≤ λ

αn−1
αn . Inspecting the definition and using the i.h. we can read

off the desired estimation.

Case 1: γ ≤ αn.

Subcase 1.1: γ ∈ E≤αn .
ϱαn

γ = αn · γ , να
γ = α · γ = κα

αn·γ
, and dpα(αn · γ ) = κα

γ + dpα(γ ) ≤ α.

Subcase 1.2: γ < αn, γ ∉ E.
Let logend(γ ) =: δ =ANF δ1 + · · · + δl. Then we have ϱαn

γ = αn · δ, να
γ ≥ α · γ , κα

αn·δ
= κα

αn·δ1
+ dpα(αn · δ1) + · · · +

κα
αn·δl−1

+ dpα(αn · δl−1) + κα
αn·δl

= α · δ, and dpα(αn · δ) = dpα(αn · δl) < α.

Case 2: γ =NF δ + ξ > αn.
Notice that ϱαn

γ = ϱ
αn
ξ . The i.h. directly applies to ξ , if ξ ∉ E>αn . By the i.h. (part 4 of the Claim) we have να

γ > να
ξ . If on

the other hand ξ ∈ E>αn , then ϱαn
γ = ξ whence να

γ ≥ να
ξ+1 = κα

ξ · 2 + dpα(ξ) + κα
ξ .

Case 3: γ ∈ P>αn − E.
By definition να

γ = να
γ̄+1 · γ ′ where γ ′

= (1/γ̄ ) · γ . Let γ =CNF ωγ1+···+γk . Then ϱαn
γ ≤ αn · (γ1 + · · · + γk) and

mc(κα

ϱ
αn
γ

+ dpα(ϱ
αn
γ )) = mc(κα

αn·γ1
+ dpα(αn · γ1)).

Subcase 3.1: γ ∉ M, i.e. k > 1.
Then γ̄ = ωγ1+···+γk−1 and γ =NF γ̄ · γ ′. Hence mc(κα

αn·γ1
+ dpα(αn · γ1)) = mc(κα

ϱ
αn
γ̄

+ dpα(ϱ
αn
γ̄ )) ≤ να

γ̄+1 < να
γ .

Subcase 3.2: γ ∈ M, i.e. k = 1.
Thenγ1 ∈ (αn, γ )∩P−E,γ ′

= γ , and γ̄ ∈ E≥αn . By i.h.wehave the estimationdpα(αn·γ1) < κα
αn·γ1

. Letγ1 =CNF ωδ1+···+δl .
If δ1 = αn we have γ̄ = αn and κα

αn·γ1
= α · γ1 < α · αn · γ = να

γ . If otherwise δ1 > αn we have αn · γ1 = γ1 and obtain
κα

γ1
≤ κα

γ̄+1 · γ1 ≤ να
γ̄+1 · γ1 < να

γ .

Ad 4. Suppose that n > 0 and β is of a form αn · γ such that γ ∈ dom(να). That να
γ ∈ P>α in case of γ ∈ P>1 will follow

immediately once the well-definedness of να
γ is shown. We consider the following cases.

Case 1: γ =NF δ + ξ .
As in part 3we note thatϱαn

δ ≤ αn ·logend(δ) ≤ αn ·δ < β and that by part (b) of Lemma3.12we haveϱ
αn
δ ≤ λ

αn−1
αn . By the

i.h. and the already established parts 1 and 2 of Claim 4.6 we know that κα and dpα are well-defined and satisfy the claimed
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properties up to and including ϱ
αn
δ . Thus να

γ is well-defined. If ξ = 1 and χαn(δ) = 1 we easily verify that κα

ϱ
αn
δ

+dpα(ϱ
αn
δ ) is

greater than 0 since ϱ
αn
δ > 0 in this case. In all other cases, using the i.h. we immediately see that να

γ > να
γ ′ for any γ ′ < γ ,

and that να
γ is the supremumof Im(να

�γ ) in the case ξ > 1. In order to see that να
γ < α ·αn weneed to verify dpα(ϱ

αn
δ ) < α ·αn.

If ϱ
αn
δ ∉ E or ϱ

αn
δ = αn we have dpα(ϱ

αn
δ ) < κα

ϱ
αn
δ

, otherwise, i.e. ϱαn
δ ∈ E>αn , we have ϱ

αn
δ ≤ µ

αn−1
αn by Lemma 3.12 and

therefore obtain ϱαn
δ ≤ αn by Lemma 3.17, which together with dpα(ϱ

αn
δ ) < κα

ϱ
αn
δ

· ϱαn
δ yields dpα(ϱ

αn
δ ) < α · αn.

Case 2: γ ∈ P ∩ (1, αn].
Then we have να

γ = α · γ . All claims follow immediately from the i.h. if γ ∈ L. If γ =NF δ · ω we have να
γ = α · δ · ω =

sup{να
δ·k | k < ω} since ϱ

αn
δ·(k+1) = ϱ

αn
δ ≤ αn · logend(δ) ≤ αn · δ < αn

2 and dpα(ϱ
αn
δ ) < α, κα

ϱ
αn
δ

= α · logend(δ), which can
be seen inspecting the definition and using the i.h.

Case 3: αn < γ = γ̄ · ω.
Then, again inspecting the definition and using the i.h., να

γ = να
γ̄+1 · ω = sup{να

γ̄ ·k | k < ω}, and the claims concerning να
γ

follow by the i.h.

Case 4: γ ∈ L>αn − E.
Then να

γ = να
γ̄+1 · γ ′ where γ ′

= (1/γ̄ ) · γ . By side induction on δ ∈ (γ̄ , γ ) ∩ P =: D we show να
δ < να

γ . Notice that
(γ̄ , γ )∩ E = ∅. Let δ ∈ Dwhence να

δ = να

δ̄+1
· δ′ where δ′

= (1/δ̄) · δ < γ ′. The case δ̄ = γ̄ is trivial, so assume δ̄ ∈ D. Since
mc(κα

ϱ
αn
δ̄

+ dpα(ϱ
αn
δ̄

)) ≤ να

δ̄
by the i.h., we also have να

δ̄+1
< να

γ by the i.h. This implies να
δ < να

γ . In order to see continuity in

γ notice that να
γ̄+1 · δ′

≤ να

δ̄+1
· δ′

= να
δ and sup{δ′

+ 1 | δ ∈ D} = γ ′.

Case 5: γ ∈ E>αn .
We then have να

γ = κα
γ = κα

γ̄+1 ·γ and set D := (γ̄ , γ )∩M. For any δ ∈ D∩E we have να
δ = κα

δ and thus obtain να
δ < να

γ

from the already established part 2 of Claim 4.6. Let δ ∈ D − E whence να
δ = να

δ̄+1
· δ. If δ̄ = γ̄ or δ̄ ∉ E>αn we proceed as

in the previous case. Otherwise we have ϱ
αn
δ̄

= δ̄ and κα

δ̄
+ dpα(δ̄) < κα

γ by part 2 of the Claim, hence να
δ < να

γ . Continuity
in γ follows by part 2 of the Claim if γ ∈ Lim(E). Otherwise we again have D ∩ E = ∅ and να

δ = να

δ̄+1
· δ ≥ κα

γ̄+1 · δ since
να

γ̄+1 ≥ κα
γ̄+1. Therefore sup{να

δ | δ ∈ D} = να
γ . This concludes the proof of Claim 4.6 and thus establishes Lemma 4.5. �

The following lemma reveals equations for κ- and ν-values referring to tracking sequences, thus providing a more
intuitive redefinition of the κ- and ν-functions. Notice that using this alternative definition involving tracking sequences
directly in 4.4 would have complicated the proof of Lemma 4.5 considerably.

Lemma 4.7. Let α ∈ RS, say α = (α1, . . . , αn) where n = 0 in case of α = (), and set α0 := 1. Let β ∈ M>αn and γ be the
immediate predecessor of β in tsαn(β) if that exists and αn otherwise. If β ∈ dom(κα) then

κα
β = κα

γ+1 · β.

If n > 0 and β ∈ dom(να) then

να
β = να

γ+1 · β.

For products δ =MNF δ1 · · · δm > αn where m > 1 let γ be the immediate predecessor of δ1 in tsαn(δ1) if that exists and αn
otherwise. If δ ∈ dom(κα) we have

κα
δ =


κα

γ+1 · δ if δ1 ∈ M>αn − E

κα
δ1+1 · δ2 · · · δm if δ1 ∈ E≥αn .

If n > 0 and δ ∈ dom(να) we similarly have

να
δ =


να

γ+1 · δ if δ1 ∈ M>αn − E

να
δ1+1 · δ2 · · · δm if δ1 ∈ E≥αn .

Proof. The proof is by inspection of Definition 4.4 using Lemma 4.5, in particular part d) 2. Let αn = β0, . . . , βm = β be the
τ -fine-localization of β . Since β ∈ M>αn we have β̄ = βm−1 ∈ E≥αn . Let k ∈ {0, . . . ,m− 1} be such that βk = γ . One easily
sees that βk+i ≤ β for i = 1, . . . ,m−k−1 (referring to baseαn). Thus κα

β = κα
βk+i

·β successively for i = m−k−1, . . . , i = 1,
and κα

β = κα
βk+1 · β .

The claim concerning να
β (where n > 0 is assumed) is derived easily from the result for κα by inspecting the definition

of να
β .
The remaining claims are now straightforward, using parts (d) and (e) of Lemma 4.5. �



T.J. Carlson, G. Wilken / Annals of Pure and Applied Logic 163 (2012) 23–67 35

Definition 4.8. o : TS → P ∩ 1∞ , the evaluation function for tracking sequences, is defined by setting for α⌢β ∈ TS

o (α⌢β) :=


κ

()

β if α = ()

να
β otherwise.

We additionally define o (()) := 0 so that o is defined on all of RS.

The definition given next is crucial in the proof of the subsequent lemma. It will help us detect multiplicative normal
forms of ordinals given as multiples of (relativized) connectivity components. These multiplicative normal forms are
in turn necessary to find the tracking sequences of ordinals given as evaluations. We will thus be able to show that
tracking sequences perfectly reverse enumerations of those relativized components in the core of R2 which are additively
indecomposable.

Definition 4.9. For β ∈ M ∩ 1∞ and γ ∈ E ∩ 1∞ let skβ(γ ) be the maximal sequence δ1, . . . , δl such that (setting δ0 := 1)

• δ1 = γ and
• if i ∈ {1, . . . , l − 1} & δi ∈ E>δi−1 & β ≤ µδi , then δi+1 = µδi · β .

Remark. Lemma 3.5 guarantees that the above definition terminates. We have (δ1, . . . , δl−1) ∈ RS and (δ1, . . . , δl) ∈ TS.
Notice that β ≤ δi for i = 2, . . . , l.

Lemma 4.10. For any γ ∈ TS we have

ts(o(γ)) = γ .

For any α ∈ P ∩ 1∞ we have

o(ts(α)) = α.

In other words, the mapping ts is a <-<lex-order-isomorphism of P ∩ 1∞ onto TS with inverse o.

Proof. By Lemma 3.15 the second and third claim follow from the first. The first claim is shown by induction along the
ordering <lex on TS. Let γ = α⌢β ∈ TS, where α = (α1, . . . , αn) ∈ RS, and α0 := 1. We set β ′

:= (1/β̄) · β , so that
β ′

∈ M≤β , and α := κα�n−· 1
αn

. By Lemma 3.14 we have lf(α) = lf(αn) = αn.

Case 1: β ≤ αn.
This is trivial if n = 0. If n > 0 we have o(γ ) =NF α · β , and the claim follows immediately from αn ∈ E>αn−1 and

β ≤ µ
αn−1
αn .

Case 2: β > αn.
We define

β̃ :=


βk−1 if β ∈ M where tsαn(β) = (β1, . . . , βk) and β0 := αn

β̄ otherwise.

Case 2.1: β̃ = αn.
If n = 0, using Lemma 4.7 we obtain o(γ) = β , and the claim follows immediately. Now suppose n > 0. If β ∉ M we

have o(γ) =NF να
αn

· β ′, να
αn

= α · αn, and by the i.h. we have ts(να
αn

) = α⌢αn. The claim then follows, given that β ′
≤ αn

and β = αn · β ′
≤ µ

αn−1
αn . Now assume β ∈ M, whence β ′

= β and o(γ) = α · β . The case α < β is trivial, so let us assume
that β ≤ α. Then α ∉ M, implying that α =NF ᾱ · αn. Let δ := α · β , whence β ≤ δ < α < δ · β . By Lemma 3.15 we have
δ = (δ1, . . . , δl) := ts(δ) <lex ts(α)

i.h.
= α, hence o(ts(δ)) = δ by the i.h. Now, δ cannot be a proper initial sequence of α

since on the one hand β ≤ lf(δ) = lf(δl) ≤ δl according to Lemma 3.14 and on the other hand β > αl in case of l < n.
Hence there exists the minimal l0 ∈ {1, . . . ,min{l − 1, n}} such that δl0 < αl0 . The sequence (δ1, . . . , δl0) cannot be an
initial sequence of ts(δ · β) because ts(α) <lex ts(δ · β) according to Lemma 3.15. Since δl0 ∈ (αl0−1, αl0) and β ∈ (δl0 , δ

+

l0
)

we have tsδl0 (β) = (αl0 , . . . , αn, β) using Lemma 6.5 of [10] and Lemma 3.6, referring to base αl0−1 = δl0−1 where δ0 := 1
in case of l0 = 1. Hence ts(δ · β) = γ .

Case 2.2: β̃ > αn & β̃ ∉ E.
By Lemma 4.5 we have o(γ) =NF o(α⌢β̄) · β ′. The claim is easily verified using that ts(o(α⌢β̄)) = α⌢β̄ by the i.h.

Case 2.3: β̃ ∈ E>αn .
Let δ = (δ1, . . . , δl) := skβ ′(β̃), δ′

:= (δ1, . . . , δl−1), δ0 := 1, and δ := o(α⌢δ). Since α⌢δ <lex γ we have ts(δ) = α⌢δ

by i.h. By Lemma 3.14 we have lf(δ) = lf(δl) ≥ β ′, noticing that in the case β = β ′ > β̃ we have β ∈ M≤µ
β̃ and therefore

l > 1. The desired ts(o(γ)) = γ is directly verified once we prove that

o(γ) =NF δ · β ′.
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The above equality is verified by inspection of Definition 4.4, making use of Lemma 3.12, part (a), Lemma 4.5, parts (d) and
(e), and Lemma 4.7. In case of δl ∈ E>δl−1 and µδl < β ′ we have µδl < δl and therefore (by part (d) of 4.5)

δ < dpα⌢δ′(δl) < δ · µδl · ω < δ · β ′,

which is then also used in showing the last equality of

o(γ) = dpα(δ1) · β ′

= dpα⌢δ1
(δ2) · β ′

= . . .

= dpα⌢(δ1,...,δl−2)
(δl−1) · β ′

= δ · β ′.

This concludes our proof. �

Corollary 4.11. We obtain the following correspondence between RP and RS:

RP = Im(o�RS) and RS = Im(ts�RP),

defining ts(0) := () for convenience. �

Using the set RP and its characterization in the above corollary we are now able to simplify the settings of relativization
in the definition of κα and να.

Definition 4.12. For α ∈ RP we define κα
:= κ ts(α), dpα := dpts(α), and in case of α > 0 we set να

:= νts(α).

In order to formulate the assignment of tracking chains to ordinals in Section 6 we need to introduce a suitable notion of
tracking sequence relative to a given context. We first introduce an evaluation function for relativized tracking sequences.

Definition 4.13. Let α ∈ RP − {0} with ts(α) = (α1, . . . , αn) =: α. We define

TSα
:= {γ ∈ TSαn | γ1 ≤ λ

αn−1
αn }

and for γ⌢β ∈ TSα

oα (γ⌢β) :=


κα

β if γ = ()

ν
α⌢γ
β otherwise.

For convenience we identify o0 with o.

Remark. Note that this is well-defined thanks to part (c) of Lemma 3.12. Notice also that TSα is a <lex-initial segment of
TSαn . We have the following

Lemma 4.14. Let α and α be as in the above definition. Let λ1 := mc(λαn), and whenever λi is defined and λi ∈ E>λi−1 (setting
λ0 := αn), let λi+1 := µλi . If we denote the resulting vector by (λ1, . . . , λk) =: λ then TSα is the initial segment of TSαn with
<lex-maximum λ. We have

oα(λ) = mc(κα
λαn

+ dpα(λαn)).

Proof. The proof is by evaluation of mc(κα
λαn

+ dpα(λαn)) using parts (d) and (e) of Lemma 4.5. �

The analogue to Lemma 4.10 is as follows. Notice that we have to be careful regarding multiples of indices versus their
evaluations.

Lemma 4.15. Let α, α, and γ⌢β ∈ TSα be as in the above definition. Then we have

tsαn(αn · ((1/α) · oα(γ⌢β))) = γ⌢β.

For δ ∈ P ∩ [αn, α
∞
n ) such that tsαn(δ) ∈ TSα we have

oα(tsαn(δ)) = α · ((1/αn) · δ).

Setting λ := αn · ((1/α) · mc(κα
λαn

+ dpα(λαn))) we have

tsαn(λ) = λ ∈ TSα

for λ as defined in Lemma 4.14, and the mapping tsαn is a <-<lex-order isomorphism of

{δ ∈ P ∩ [αn, α
∞

n ) | tsαn(δ) ∈ TSα
} = [αn, λ] ∩ P

with TSα.
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Proof. Once the first claim of the lemma is shown by induction along <lex on TSα, the remaining claims follow using
Lemmas 3.15 and 4.14. In proving the first claim for γ⌢β ∈ TSα, say γ = (γ1, . . . , γm) where m ≥ 0, we proceed
in analogy with the course of proof of Lemma 4.10, replacing α with α⌢γ , αn with γm (setting γ0 := αn), and α with
γ := αn · ((1/α) · o(γ)) in the casem > 0, where by the i.h. we have tsαn(γ ) = γ . �

Definition 4.16. Let α ∈ RP − {0} and α = (α1, . . . , αn) := ts(α). Set α0 := 1 and let β ∈ P ∩ 1∞. The tracking sequence
of β relative to α, ts[α](β), is defined as follows. Let k ∈ {0, . . . , n} be maximal such that α̃k := o(α�k) ≤ β .

ts[α](β) :=


ts(β) if k = 0

tsαk (αk · ((1/α̃k) · β)) if k > 0.

For technical reasons define ts[0](β) := ts(β).

Remark. ts[α] aims at a tracking sequence with starting point α̃k instead of 0. In the above situation for ts[α](β) to make
sense, i.e. to be related to α, we should have β1 ≤ λ

αk−1
αk in case of k > 0 where β1 is the first element of ts[α](β). It is

easy to see (using 3.12, 3.15, and 4.15) that this holds if k ∈ (0, n). However, in case of k = n this holds if and only if
β ≤ κα

λαn
+ dpα(λαn) as shown in 4.14 and 4.15.

Lemma 4.17. Let α be as in the above definition and β, γ ≤ κα
λαn

+ dpα(λαn) be additive principal numbers.

(a) With k as in the above definition and setting αn+1 := λαn + 1 we have

αk ≤ β1 < αk+1

where β1 is the first element of ts[α](β).
(b) If β < γ then

ts[α](β) <lex ts[α](γ ).

Proof. The lemma is proved by straightforward application of Lemmas 3.15 and 4.15, using part (a) to show part (b). �

5. Tracking chains

The preparationsmade in the previous sections have set the grounds to introduce the concept of tracking chains. Tracking
chains will provide us with a grid on the segment of ordinals below 1∞ whose resolution is sufficiently high to allow for a
characterization of the relations ≤1 and ≤2 within the core of R2. Here we will first explicitly define tracking chains and
then assign tracking chains to the ordinals below 1∞. This assignment will be shown to exhaust the set of tracking chains
in a one-one manner.

A tracking chain is a vector of index sequences whose first element always denotes a κ-index (possibly relativized from
the second vector component on) andwhose possible other elements denote ν-indices. Conditions on the indices that occur
in a tracking chain will guarantee a unique and semantically correct representation of ordinals in the core by successively
approaching them through more and more refined (relativized) ≤1-components (the indices given by the first element in
each sequence) and (relativized) ≤2-components nested along the sequences, as was the case for tracking sequences which
indeed characterize single component tracking chains. Thus, moving along the index sequences from left to right and from
the upper sequence (vector component 1) downward to the lower sequences of the vector we obtain a unique ‘‘address’’
for any ordinal in the core. A few normal form conditions are necessary, mainly that non-zero indices on main lines always
have priority over simple κ-indices, while the index 0 may only occur in one case, namely representing 0.

It might be very instructive for the reader to consider the restriction of tracking chains to vectors of single κ ()-indices
below ε0: These characterize the elements of the core of R1 (see [1]) that is, the initial segment of the core of R2 below ε0.
Within such a vector, the upper vector components down to the i-th represent the greatest <1-predecessor of the ordinal
represented by the upper vector components down to the i + 1-st.

The approach of tracking chains can be generalized to a treatment of Rn (or even Rω), rearranging the indices of
relativized≤i-components so that≤i-connected components are listed downward along the i-th columnwhile refinements
to ≤j-components (where j < i) start with a new line with an entry in the j-th column, thus leaving many entries in the
resulting<ω×n-matrix possibly empty. Further considerations into this direction, however, would exceed the topic of the
present paper.

The following two central definitions of this article, tracking chains and their maximal extension, should formally be
considered one simultaneous definition.

Definition 5.1. We define a tracking chain to be a vector α = (α1, . . . ,αn) where n ≥ 1, consisting of sequences
αi = (αi,1, . . . , αi,mi) of ordinals below 1∞ with mi ≥ 1 for 1 ≤ i ≤ n, that satisfies certain conditions. We proceed by
induction along the lexicographic ordering of the index pairs (n,mn).

The initial chains α�(i,j) of α where 1 ≤ i ≤ n and 1 ≤ j ≤ mi are

α�(i,j) := ((α1,1, . . . , α1,m1), . . . , (αi−1,1, . . . , αi−1,mi−1), (αi,1, . . . , αi,j)).

By α�i we abbreviate α�(i,mi). For technical convenience we set α�(1,0) := () and α�(i+1,0) := α�(i,mi−1) for 1 ≤ i < n.
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A necessary condition on α to be a tracking chain is that all its proper initial chains α�(i,j) be tracking chains. We therefore
suppose from now on that all proper initial chains of α are tracking chains. Before we list further conditions on tracking
chains we need to introduce some important terminology.

The vector τ = (τ1, . . . , τn) defined by τi,j := end(αi,j) for 1 ≤ i ≤ n and 1 ≤ j ≤ mi is called the chain associated with α.

For 1 ≤ i ≤ n the i-th reference index pair ref(i) of α is ref(i) := (k,mk −1) if themaximal k ∈ {1, . . . , i} such thatmk > 1
exists, and ref(i) := (1, 0) otherwise. For technical convenience we set τ1,0 := 1 and τi+1,0 := τref(i) for 1 ≤ i < n, and
αi,0 := τi,0 for 1 ≤ i ≤ n.

The i-th unit τ ⋆
i of α and its index pair i⋆ for 1 ≤ i ≤ n is defined as follows. Let i⋆ := (l, j) if there exist l, j where

l ∈ {1, . . . , i − 1} is maximal such that there exists a maximal j ∈ {1, . . . ,ml − 1} with τl,j ≤ τi,1, and i⋆ := (1, 0)
otherwise.5 We then set τ ⋆

i := τi⋆

For 1 ≤ i ≤ n and 1 ≤ j ≤ mi we define the base τ ′

i,j of τi,j in α and its index pair (i, j)′ by τ ′

i,j := τ(i,j)′ where

(i, j)′ :=


i⋆ if j = 1

(i, j − 1) otherwise.

For technical convenience we extend this notation to index pairs (i, 0), 1 ≤ i ≤ n, by

(i, 0)′ :=


(1, 0) if i = 1

(ref(i − 1))′ otherwise.

For 1 ≤ i ≤ nwe define the i-th maximal base τ ′

i of α by

τ ′

i := τ ′

i,mi
.

Weset (i, j)′′ := ((i, j)′)′. By τ ′′

i wedenote τ(i,mi)′′ . In order to increase readabilitywewriteµτi,j ,µτ ′
i
forµ

τ ′
i,j

τi,j ,µ
τ ′′
i

τ ′
i
, respectively,

and λτi,j , λτ ′
i
for λ

τ ′
i,j

τi,j , λ
τ ′′
i

τ ′
i
, respectively, provided those terms are defined.

We define the i-th critical index of α by

ρi :=



log

(1/τ ⋆

i ) · τi,1

+ 1 if mi = 1

ϱ
τ ′
i

τi,mi
+ τ ′

i if mi > 1 & τi,mi < µτ ′
i
& χ τ ′

i (τi,mi) = 0

ϱ
τ ′
i

τi,mi
+ 1 if mi > 1 & τi,mi < µτ ′

i
& χ τ ′

i (τi,mi) = 1

λτ ′
i
+ 1 otherwise

whenever the terms that apply are defined. In order to clarify the tracking chain to which the ρ-notation refers we will
sometimes write ρi(α) instead of ρi which is used when no ambiguity is likely.

The <lex-greatest index pair (i, j) of α after which the elements of α fall onto the main line starting at αi,j is called the
critical main line index pair of α. The formal definition is as follows:

If there exists a maximal i ∈ {1, . . . , n} such that there is a maximal j ∈ {1, . . . ,mi − 1} with αi,j+1 < µτi,j and if (i, j)
satisfies the following conditions:

• χ τi,j(τi,j+1) = 1 and
• α is reached by maximal 1-step extensions starting from α�i,j+1, according to Definition 5.26

then (i, j) is called the critical main line index pair of α, written as cml(α). Otherwise α does not possess a critical main line
index pair.

In order for α to be a tracking chain the following explicitly enumerated conditions must hold:

1. αi,j > 0 for any i ∈ {1, . . . , n} and any j ∈ {1, . . . ,mi}, unless n = 1 and mn = 1 in which unique case α1,1 = 0 is
allowed.

5 Notice that since we are operating on additive principal numbers this is a divisibility condition.
6 Here Definition 5.2 is applied only to tracking chains that have already been defined.
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2. For any i ∈ {1, . . . , n} such thatmi > 1 we have

τi,1, . . . , τi,mi−1 ∈ E and τ ⋆
i < τi,1 < · · · < τi,mi−1.

3. αi,j+1 ≤ µτi,j for all i, j such that 1 ≤ i ≤ n and 1 ≤ j < mi.
4. αi+1,1 < ρi for any i ∈ {1, . . . , n − 1}.
5. αi+1,1 ≠ τi,mi whenever i ∈ {1, . . . , n − 1} and τ ′

i < τi,mi ∈ E.
6. If mn = 1 and if α possesses a critical main line index pair cml(α) = (i, j) then τn,1 ≠ τi,j.

By TC we denote the set of all tracking chains. For α ∈ TC we define dom(α) to be the set of all index pairs of α, that is

dom(α) := {(i, j) | 1 ≤ i ≤ n & 1 ≤ j ≤ mi}.

By (i, j)+ we denote the immediate<lex-successor of (i, j) in dom(α) if that exists and (n+1, 1) otherwise. For convenience
we set (i, 0)+ := (i, 1).

An extension of a tracking chain α is a tracking chain of which α is an initial chain. A 1-step extension is an extension by
exactly one additional ordinal.

Due to frequent future occurrenceswe introduce the following notation for themodification of a tracking chain’s last ordinal.

α[ξ ] :=


α�n−1

⌢(αn,1, . . . , αn,mn−1, ξ) if ξ > 0 ∨ (n,mn) = (1, 1)
α�n−1

⌢(αn,1, . . . , αn,mn−1) if ξ = 0 ∧ mn > 1
α�n−1 if ξ = 0 ∧ n > 1 ∧ mn = 1.

Remark. Note that α[ξ ] might not be a tracking chain. This has to be verified when this notation is used. We have included
cases where ξ = 0 for convenience, especially in the formulation of Theorem 7.9. It follows from the definition that for any
ξ ∈ (0, αn,mn) the following easy criterion holds:

α[ξ ] ∉ TC ⇔ n > 1 & mn = 1 & τ ′

n−1 < τn−1,mn−1 = ξ ∈ E.

In this case we do have α[ζ ] ∈ TC for every ζ ∈ (0, ρn−1) − {τn−1,mn−1} ⊆ τn−1,mn−1 + τ ′

n−1.

The following definition describes a procedure to extend a given tracking chain stepwise in a maximal manner. It will be
shown that this procedure terminates after finitely many steps.

Definition 5.2. Let α ∈ TC with components αi = (αi,1, . . . , αi,mi) for 1 ≤ i ≤ n. The extension candidate for α is defined
via the following case differentiation, setting τ := τn,mn and τ ′

:= τ ′
n:

1. mn = 1: We consider three subcases:
1.1. τ ′

= τ : Then α is already maximal. An extension candidate for α does not exist.
1.2. τ ′ < τ ∈ E: Then α is extended by αn,2 := µτ .
1.3. Otherwise: Then α is extended by αn+1,1 := log


(1/τ ′) · τ


.

2. mn > 1: We consider three subcases.
2.1. τ = 1: Then α is already maximal. An extension candidate for α does not exist.
2.2. τ ′ < τ ∈ E: Here we consider another two subcases.

2.2.1. τ = µτ ′ < λτ ′ : Then we extend α by αn+1,1 := λτ ′ .
2.2.2. Otherwise: Then α is extended by αn,mn+1 := µτ .

2.3. Otherwise: We consider again two subcases.
2.3.1. τ < µτ ′ : Then α is extended by αn+1,1 := ϱτ ′

τ .
2.3.2. Otherwise: Then α is extended by αn+1,1 := λτ ′ .

If the extension candidate for α exists we denote it by ec(α), and if it is a tracking chain then we call it themaximal 1-step
extension of α.

The iterated extension of α starts with t0 := α. Suppose tn has already been defined. If tn is maximal or is not a tracking
chain, then the extension process ends with tn. Otherwise we continue the extension process with the extension candidate
tn+1 for tn.

If after finitely many steps some tn0 is reached which is a tracking chain that cannot be extended any further or whose
extension candidate is not a tracking chain then we call tn0 themaximal extension of α, me(α). We define

me+(α) :=


ec(me(α)) if that exists
me(α) otherwise.

Remark. Notice that any extension candidatewhich itself is not again a tracking chain cannot be extended any further. Note
also that for any α ∈ TC for which cml(α) exists, this same critical main line index pair is maintained along the process of
stepwise maximal extension starting from α.
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The following definition of characteristic sequence for a tracking chain is a characterization of the reversal of the sequence
obtained when, starting with τn,mn ,

′ is applied successively before reaching 1.

Definition 5.3. Let α ∈ TC with components αi = (αi,1, . . . , αi,mi) for 1 ≤ i ≤ n. The characteristic sequence cs(α) of α
is defined by

cs(α) := cs(α�n⋆)⌢(τn,1, . . . , τn,mn)

where cs (()) := (). We define cs′(α) ∈ ISeq as a sequence associated with α crucial for inductive proofs along <lex. If
cs(α) = γ⌢β , setting

δ =


(1/τ ⋆

n ) · β + 1 ifmn = 1

β + 2 if mn > 1

we define cs′(α) to be γ⌢δ.

Lemma 5.4. Let α ∈ TC.

(a) If α+ is a 1-step extension of α then cs′(α+) <lex cs′(α).
(b) The procedure of stepwise extension according to Definition 5.2 terminates after finitely many steps, that is,me(α) exists.
(c) If ec(me(α)) exists then this candidate satisfies all conditions on tracking chains except for the 6th.

Proof. Part (a) is shown by induction on cs′(α) ∈ ISeq along <lex. In the case where α+ has the form
α�n−1

⌢(αn,1, . . . , αn,mn , αn,mn+1) we have τn,1 ∈ E>τ⋆
n , and the claim follows directly. If on the other hand α+ has the form

α⌢(αn+1,1), then we have

cs′(α+) = cs(α�(n+1)⋆)⌢

1/τ(n+1)⋆


· τn+1,1 + 1


.

Case 1:mn = 1.
Then we have τn+1,1 ≤ αn+1,1 ≤ log


1/τ ⋆

n


· τn,1


≤ τn,1, hence (n + 1)⋆ ≤lex n⋆ and cs(α�(n+1)⋆) is an initial sequence

of cs(α�n⋆). Moreover, τn+1,1 < τn,1 since the assumption τn+1,1 = τn,1 would imply τn,1 ∈ E>τ⋆
n and αn+1,1 = τn,1 which is

not possible due to Condition 5 on tracking chains. This shows the claim in case of cs(α�(n+1)⋆) = cs(α�n⋆). The claim is seen
easily if cs(α�(n+1)⋆) is a proper initial sequence of cs(α�n⋆).

Case 2:mn > 1.
Let τ := τn,mn and τ ′

:= τn,mn−1 = τ ′
n. If in this situation τn+1,1 < τ ′ then cs(α�(n+1)⋆) is a proper initial sequence of cs(τ̃ ′)

and the claim follows easily. Suppose finally that τn+1,1 ≥ τ ′, that is, (n + 1)⋆ = (n,mn − 1). In order to then verify that
τ + 2 > (1/τ ′) · τn+1,1 + 1, notice that the contrary assumption τ ′

· τ < τn+1,1 in conjunction with the relation αn+1,1 < ρn

implies, using part (a) of Lemma 3.12 in the case τ = µτ ′ , τn+1,1 ≤ ϱτ ′

τ ≤ τ ′
· τ < τn+1,1: Contradiction.

Part (b) is a consequence of part (a).
In order to see part (c) consider the situation where α has an extension candidate α′

∉ TC. It is easy to verify that α′

satisfies Conditions 1 to 5 for tracking chains. Therefore α′ satisfies all conditions on tracking chains except for Condition
6. �

Lemma 5.5. Let α ∈ TC be such that cml(α) =: (i, j) exists.

(a) If (i, j + 1) = (n,mn) then ec(α) exists and is a tracking chain.
(b) If (i, j + 1) <lex (n,mn) then the following invariance properties hold (using terminology as in Definition 5.2)

• τi,j ≤ τ ′,
• in case of mn = 1: τ > τi,j and χ τi,j(τ ) = 1,
• in case of mn > 1: τ = µτ ′ and χ τi,j(τ ′) = 1,
and ec(α) exists. If ec(α) ∉ TC then ec(α) is an extension of α by some αn+1,1, and the last unit of ec(α) has the index pair
(n + 1)⋆ = (i, j).

Proof. Note that by assumption α is an initial chain of me(α�(i,j+1)). In order to show part (a) we use Lemma 5.4. If
τi,j < τi,j+1 ∈ E then case 2.2.2 of Definition 5.2 applies and the extension is clearly a tracking chain, otherwise case 2.3.1
applies. In this latter caseα is extended byαi+1,1 = ϱ

τi,j
τi,j+1 = τi,j ·λwhereλ := log(τi,j+1) is a limit ordinal since τi,j+1 ∈ L≥τi,j

due to the assumption χ τi,j(τi,j+1) = 1. Hence τi+1,1 > τi,j = τ ′

i+1,1, implying that ec(α) ∈ TC. Using Lemma 3.3 we have
χ τi,j(τi,j+1) = χ τi,j(λ) = χ τi,j(end(λ)) = 1 and hence also χ τi,j(τi+1,1) = 1.

By inspection ofDefinition 5.2we cannowclarify howme+(α) looks like. Consider indexpairs (k, l) such that (i, j+2) ≤lex

(k, l) in case of τi,j < τi,j+1 ∈ E and (i + 1, 1) <lex (k, l) otherwise. We have the following cases.

• If l > 1 then αk,l = µτk,l−1 which in the case l < mk is an epsilon number and equal to λτk,l−1 .
• If l = 1 andmk−1 > 1 then αk,l = λτk−1,mk−1−1 .
• Otherwise we have αk,l = log


1/τ(k−1)⋆


· τk−1,1


.
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Part (b) is nowshownby induction on the indexpairs (n,mn)ordered lexicographically. For the initial stepα = ec(α�(i,j+1))
part (a) yields the invariance properties. Suppose that the invariance properties hold for α. We verify that ec(α) exists and
show that in case of ec(α) ∈ TC the invariance properties also hold for ec(α). In the case ec(α) ∉ TC the respective claim
follows from Lemma 5.4 and the inductive hypothesis which shows that there is no τk,l ≤ τi,j with (i, j) <lex (k, l).

Case 1:mn = 1.
We need to show why τ = τ ′ is not possible. In order to derive a contradiction let us assume this were the case. Then

τ ′
∈ E>τi,j , hence τ ′

= τk,l for some (k, l) such that (i, j) <lex (k, l) <lex (n,mn) with l < mk. Now we either have
λτ ′ = µτ ′ = αk,l+1 or λτ ′ = αk+1,1, and using Lemma 3.3 we see that since χ τ ′

(τ ) = 1 we have χ τ ′

(λτ ′) = 1, which
in turn implies χ τi,j(τ ′) = 0 using Lemma 3.3. Contradiction. Thus ec(α) exists, and we proceed to verify the invariance
properties for ec(α) assuming that ec(α) ∈ TC. If case 1.2 of Definition 5.2 applies, that is, τ ′ < τ ∈ E, and ec(α) is obtained
by appending αn,mn+1 = µτ , we have τi,j ≤ τ ′ < τ = τ ′

n,mn+1 and χ τi,j(τ ) = 1. If on the other hand case 1.3 applies then
αn+1,1 = log


(1/τ ′) · τ


is appended to α. Here χ τi,j(τ ) = 1 implies χ τi,j(τn+1,1) = 1, hence τn+1,1 ≥ τi,j and thus also

τ ′

n+1,1 ≥ τi,j using the i.h. Now, by the assumption ec(α) ∈ TC the equality of τn+1,1 and τi,j is excluded.

Case 2:mn > 1.
Then the existence of ec(α) is clear since τ = µτ ′ > 1. We verify the invariance properties for ec(α) assuming that it is

a tracking chain. If case 2.2 of Definition 5.2 applies, that is, τ ′ < τ ∈ E, and in particular case 2.2.1, that is τ = µτ ′ < λτ ′ ,
then ec(α) is obtained by appending αn+1,1 = λτ ′ , and we argue as above where case 1.3 applied. If otherwise case 2.2.2
applies, that is τ = µτ ′ = λτ ′ ∈ E, then αn,mn+1 = µτ is appended to α and we have τ ′

n,mn+1 = τ > τ ′
≥ τi,j as well as

χ τi,j(τ ) = χ τi,j(λτ ′) = χ τi,j(τ ′) = 1. Finally, if case 2.3 and thus in particular case 2.3.2 applies, αn+1,1 = λτ ′ is appended to
α, and we argue as we did when cases 1.3 and 2.2.1 applied. �

Corollary 5.6. Let α ∈ TC be maximal, i.e. α = me(α), with maximal index pair (n,mn). If cml(α) =: (i, j) exists then ec(α)
exists, and the extending index with index pair (n + 1, 1) is a successor multiple of τi,j with (n + 1)⋆ = (i, j). �

The following lemma clarifies, on a technical level, basic properties of tracking chains. It will be needed in proving
Lemma 5.8 which in turn is needed for Lemma 5.10. These lemmas then reveal a crucial structural uniformity property
of tracking chains (see parts (c) of 5.8 and 5.10).

Lemma 5.7. Let α ∈ TC with components αi = (αi,1, . . . , αi,mi) for 1 ≤ i ≤ n.

(a) If ref(i) ≠ (1, 0) then ρi ≤ λτref(i) + 1.
(b) τ ⋆

i ≤ τi,0. For i ∈ {1, . . . , n − 1} we have (i + 1)⋆ ≤lex ref(i).

Proof. Part (a) is shown inspecting the definition of ρi casewise from i = 1 up to i = n. Assume that ref(i) ≠ (1, 0).

Case 1:mi = 1. Then i > 1 and ref(i) = ref(i− 1). We then have ρi ≤ τi,1 + 1 ≤ ρi−1 ≤ λτref(i) + 1 using the already shown
instance i − 1 of the claim.

Case 2:mi > 1 and τi,mi < µτ ′
i
. Then τref(i) = τ ′

i . By Lemma 3.12 part (b) we obtain ρi ≤ λτref(i) + 1.

Case 3: Otherwise. Then again τref(i) = τ ′

i and the claim follows.

Part (b) is obvious from the definition. �

Lemma 5.8. Let α ∈ TC with components αi = (αi,1, . . . , αi,mi) for 1 ≤ i ≤ n.

(a) cs(α�i⋆) is an initial sequence of cs(α�(i,0)) which is proper if τ ⋆
i < τi,0.

(b) If τ ⋆
i > 1 then τi,1 ≤ λτi⋆ .

(c) We have cs(α) ∈ ISeq, more precisely, if cs(α) = γ⌢δ then

γ ∈ RS and δ = τn,mn ∈


dom(κγ) if mn = 1
dom(νγ) otherwise.

For i ∈ {1, . . . , n} and 0 ≤ j < mi we even have cs(α�(i,j)) ∈ RS.

Proof. Part (a) is clear if i⋆ = (1, 0). Otherwise we apply part (b) of the previous lemma to see that τ ⋆
i is an element of

cs(α�(i,0)), and the claim follows.
Part (b) is shown for i = 1 up to i = n successively. For i = 1 we have i⋆ = (1, 0), so there is nothing to show. Now

suppose i ∈ (1, n) and τ ⋆
i+1 > 1. By part (b) of the previous lemma this implies ref(i) ≠ (1, 0), hence τi+1,1 ≤ λτref(i) by part

(a) of the previous lemma. We are done if τ ⋆
i+1 = τref(i), otherwise we apply part (a) and use part (c) of Lemma 3.12 as well

as the already shown instances of part (b) to conclude the claim.
Part (c) holds due to Conditions 2, 3, 4, using part (c) of Lemma 3.12 and part (b). �
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Definition 5.9. Let α = (α1, . . . ,αn) where αi = (αi,1, . . . , αi,mi) be a tracking chain with associated chain τ.

The evaluations τ̃i,j and α̃i,j for 1 ≤ i ≤ n and 0 ≤ j ≤ mi are defined by7

τ̃1,0 := α̃1,0 := 0,
τ̃i+1,0 := α̃i+1,0 := τ̃i,mi−1 for 1 ≤ i < n,

and for 1 ≤ i ≤ n and 1 ≤ j < mi

τ̃i,1 := κ
τ̃i,0
τi,1 , τ̃i,j+1 := ν

τ̃i,j
τi,j+1

and

α̃i,1 := κ
τ̃i,0
αi,1 , α̃i,j+1 := ν

τ̃i,j
αi,j+1 .

The initial values {oi,j(α) | 1 ≤ i ≤ n, 1 ≤ j ≤ mi} of α are defined – setting for conveniencem0 := 0 and o0,0(α) := 0 – for
i = 1, . . . , n by

oi,1(α) := oi−1,mi−1(α) + α̃i,1

and

oi,j+1(α) := oi,j(α) + (−τ̃i,j + α̃i,j+1) for 1 ≤ j < mi.

We define the value of α by o(α) := on,mn(α) which is the terminal initial value of α.

Remark. The correction −τ̃i,j in the above definition avoids double summation: Consider the easy example of the chain
((ε0, 1)) which codes ε0 · 2. Notice that −τ̃i,j + α̃i,j+1 is always a non-zero multiple of τ̃i,j. We clearly have oi,j(α) = o(α�(i,j)).

Notice that by definition the evaluation of a tracking chain whose single component is a tracking sequence is equal to
the evaluation of that tracking sequence, which justifies the use of the same notation. Clearly, all evaluations defined above
yield ordinals below 1∞.

Lemma 5.10. (a) The evaluations of the above definition are well-defined.
(b) In the situation of Definition 5.9 for all i ∈ {1, . . . , n} we have

τ̃i,1 = κ
τ̃i⋆
τi,1 .

(c) For all i ∈ {1, . . . , n} and j ∈ {1, . . . ,mi} such that τi,1 ∈ E>τ⋆
i and τi,j > 1 we have

ts(τ̃i,j) =


(τi,1, . . . , τi,j) if τ ⋆

i = 1

ts(τ̃i⋆)⌢(τi,1, . . . , τi,j) otherwise


= cs(α�(i,j)).

(d) Suppose (i, j) ≤lex (k, l) where j < mi and l < mk for index pairs from dom(α). If ts(τ̃i,j) = ts(τ̃k,l) then (i, j) = (k, l).

Proof. The verification of all claims of the lemma proceeds simultaneously along <lex on the index pairs (i, j) where
1 ≤ i ≤ n and 0 ≤ j ≤ mi.

Part (a) uses already proved instances of the lemma, if necessary, and Lemma 5.8, part (c), in order to see that τ̃i,j ∈ RP
when j < mi. Condition 4 of Definition 5.1 together with Lemma 5.7, part (a), implies that αi,1 ∈ dom(κ τ̃i,0) whereas
Condition 3 guarantees that αi,j+1 ∈ dom(ν τ̃i,j) for j = 1, . . . ,mi − 1.

For part (b) we use the already shown instance (i, 0) of part (c) of the lemma together with Lemma 5.8, part (a), to verify
that, in case of τ ⋆

i > 1, ts(τ̃i⋆) is an initial sequence of ts(τ̃i,0). If both sequences are equal we are done, otherwise the
immediate successor of (the <lex-maximal occurrence of) τ ⋆

i in ts(τ̃i,0) is an epsilon number greater than τ ⋆
i (by definition

of i⋆). Using Lemma 5.8, part (b), we obtain τi,1 ≤ λτ⋆
i
if τ ⋆

i > 1. Hence τi,1 ∈ dom(κτ⋆
i ).

In order to prove part (c) assume that τi,j > 1 as well as τi,1 ∈ E>τ⋆
i (which is implicit in the case mi > 1 where it holds

by Condition 2 of Definition 5.1). The second equality of part (c) follows immediately using the already shown instance i⋆ of
the lemma. If τ ⋆

i = 1 we are done due to the already shown well-definedness of τ̃i,j and Lemma 4.10. Otherwise, by part (c)
of Lemma 5.8 we have ts(τ̃i⋆) ∈ RS and by Lemma 5.8, part (b), together with Lemma 3.12, part (c), we obtain τi,1 ≤ µτ⋆

i
,

whence by definition ν
τ̃i⋆
τi,1 = κ

τ̃i⋆
τi,1 = τ̃i,1, using part (b). We now see that τ̃i,j = o(cs(α�(i,j))), and Lemma 4.10 yields part (c).

Part (d) follows from part (c) by comparing the index pairs involved starting from the first elements of ts(τ̃i,j) and
ts(τ̃k,l). �

7 The well-definedness of these evaluations follows from the conditions on tracking chains together with the next lemma. Notice that the notation τ̃i,j
depends on the underlying tracking chain which will always be understood from the context in which the -̃notation is used.
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We continue with estimations on the values of tracking chains that will allow us to establish an order isomorphism
between tracking chains and their evaluations. It is convenient to use the following notion of depth for tracking chains that
will turn out to characterize the ≤1-reach of the ordinal, say α, coded by the tracking chain unless α <1-connects to some
η + νξ+1 where η + νξ ≤1 α is maximal such that ξ is not the maximum index of that ν-function, in which case this notion
of depth characterizes the distance between α and η + νξ+1.

Definition 5.11. Let α < 1∞ and α = (α1, . . . ,αn) ∈ TC where αi = (αi,1, . . . , αi,mi). We call α a tracking chain for α if
α = o(α).

dp(α) is defined as follows: Let τ := τn,mn and τ ′
:= τ ′

n.

dp(α) :=


dpτ̃ ′(τ ) ifmn = 1

κ τ̃ ′

ϱτ
+ dpτ̃ ′(ϱτ ) + χ̌ τ ′

(τ ) · τ̃ ′ ifmn > 1 & τ < µτ ′

κ τ̃ ′

λτ ′
+ dpτ̃ ′(λτ ′) ifmn > 1 & τ = µτ ′ .

Remark. In case ofmn > 1 and τ < µτ ′ we have

o(α) + dp(α) = o(α[αn,mn + 1])

as follows from the definition of the ν-functions.

We now proceed with a lemma that will allow us to establish an order isomorphism between tracking chains and their
evaluations in 5.14. The explicit computations in parts (c), (d), and (e) of the following lemma will be used in proving
Lemma 6.2.

Lemma 5.12. Let α = (α1, . . . ,αn) ∈ TC where αi = (αi,1, . . . , αi,mi) and set α := o(α). If there is no extension of α then

dp(α) = 0.

Otherwise let α+ be a 1-step extension of α, or ec(α) if that exists. Then α is of a form either

α+
= α⌢(αn+1,1) or α+

= (α1, . . . ,αn−1, αn
⌢αn,mn+1),

and we set αn,mn+1 := 0 if α+ is of the former, and αn+1,1 := 0 if α+ is of the latter form.

If α+
∉ TC then

τn+1,1 = τcml(α) and end(dp(α)) = τ̃cml(α).

Otherwise let the vector α′ be obtained from α+ by adding 1 to its last ordinal (that is either αn+1,1 or αn,mn+1). Setting τ := τn,mn
and τ ′

:= τ ′
n we obtain an estimation of o(α+) + dp(α+) depending on the following cases:

1. α+
≠ ec(α):

(a) α′
∉ TC: In this case we have mn > 1, τ = µτ ′ ∈ E ∩ (τ ′, λτ ′), αn,mn+1 = µτ , and

o(α+) + dp(α+) < o(α⌢((τ + 1))) ≤ α + dp(α).
(b) α′

∈ TC: Then we have
o(α+) + dp(α+) ≤ o(α′) ≤ α + dp(α) and o(α+) + dp(α+) < α + dp(α).

2. α+
= ec(α):

(a) mn > 1 and τ < µτ ′ :
i. χ τ ′

(τ ) = 0: Then
o(α+) + dp(α+) < o(α⌢((ϱτ + 1))) < α + dp(α).

ii. χ τ ′

(τ ) = 1: Then cml(me(α)) = (n,mn − 1), me+(α) ∉ TC, and
o(α+) + dp(α+) = α + dp(α).

(b) Otherwise: Then again
o(α+) + dp(α+) = α + dp(α).

For any extension β of α we have

(a) o(β) + dp(β) ≤ α + dp(α).
(b) o(β) < α + dp(α) if mn > 1 and τ < µτ ′ .
(c) If mn > 1, τ < µτ ′ , and χ τ ′

(τ ) = 1 we have

o(me(α)) + dp(me(α)) = α + dp(α) = o(α[αn,mn + 1]).

(d) If α does not possess a critical main line index pair cml(α) then dp(me(α)) = 0 and

o(me(α)) =


α + dpτ̃ ′(τ ) if mn = 1

α + κ τ̃ ′

ϱτ ′

τ

+ dpτ̃ ′(ϱτ ′

τ ) if mn > 1 & τ < µτ ′

α + κ τ̃ ′

λτ ′
+ dpτ̃ ′(λτ ′) otherwise

which only deviates from α + dp(α) in the case mn > 1 & τ < µτ ′ .
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(e) If cml(α) =: (i, j) exists then

o(me(α)) + dp(me(α)) = α + dp(α)

=


α + dpτ̃ ′(τ ) if mn = 1

α + κ τ̃ ′

ϱτ ′

τ

+ dpτ̃ ′(ϱτ ′

τ ) if (n,mn) = (i, j + 1)

α + κ τ̃ ′

λτ ′
+ dpτ̃ ′(λτ ′) otherwise

= o(α�(i,j+1)[αi,j+1 + 1]),

and

dp(me(α)) = κ
τ̃ ′
r

τi,j(ξ+1)

where, say, (r, kr) is the <lex-greatest index pair of me(α) and τi,j(ξ + 1) for suitable ξ ≥ 0 is the extending index of
ec(me(α)) according to Corollary 5.6.

Proof. First of all we verify the two statements made at the beginning of the lemma. If there is no extension of α it follows
from the definitions of TC and dp that dp(α) = 0. In case of α+

∉ TC we have α+
= ec(α), and by Corollary 5.6 we have

τn+1,1 = τcml(α) ≤ τ ′ and τcml(α) ∈ ts(τ̃ ′) using part (c) of Lemma 5.10. In the case mn = 1 we must have τ ′ < τ ∉ E and
αn+1,1 = log((1/τ ′) · τ). Hence

dp(α) = dpτ̃ ′(τ ) = κ τ̃ ′

αn+1,1

because dpτ̃ ′(αn+1,1) = dpτ̃ ′(τn+1,1) = 0, and

end(κ τ̃ ′

αn+1,1
) = κ τ̃ ′

τcml(α)
= τ̃cml(α).

If on the other hand mn > 1, the assumption τ < µτ ′ would imply that cml(α) = (n,mn − 1), which according to part (a)
of Lemma 5.5 would entail α+

∈ TC. We therefore have τ = µτ ′ and αn+1,1 = λτ ′ . Thus

dp(α) = κ τ̃ ′

λτ ′
+ dpτ̃ ′(λτ ′) = κ τ̃ ′

αn+1,1
and end(κ τ̃ ′

αn+1,1
) = τ̃cml(α)

as above. From now on we assume that α+
∈ TC and proceed by showing the assertions concerning α+.

Ad 1 (a). The assumptions imply mn > 1, τ = µτ ′ ∈ E ∩ (τ ′, λτ ′), and αn,mn+1 = µτ as stated. We easily compute
o(α+) = α+ν τ̃

µτ
, dp(α+) = κ τ̃

λτ
+dpτ̃ (λτ ), o(α⌢((τ +1))) = α+dpτ̃ ′(τ )+1, and dp(α) = κ τ̃ ′

λτ ′
+dpτ̃ ′(λτ ′). Since τ < λτ ′

Lemma 4.5 yields ‘‘≤’’, and ‘‘<’’ follows by definition of dpτ̃ ′(τ ).

Ad 1 (b). In the case τ ∈ E>τ ′

&0 < αn,mn+1 < µτ we have o(α+)+ dp(α+) = o(α′) < α + dp(α) where ‘‘<’’ again follows
from Lemma 4.5, which also applies in the remaining cases where we have o(α+) + dp(α+) < o(α′) ≤ α + dp(α).

Ad 2 (a) i. Here both cases concerning the form of α+ are possible, that is, αn,mn+1 = µτ and αn+1,1 = ϱτ . The claim follows
again inspecting the definitions and using Lemma 4.5.

Ad 2 (a) ii. The assertions cml(me(α)) = (n,mn − 1) and me+(α) ∉ TC follow by definition of the maximal extension and
Corollary 5.6. The stated equation is easy to verify.

Ad 2 (b). This again follows directly from the involved definitions.
We now show first part (a), then parts (b) and (c), by induction on cs′(α) along<lex since any proper extension β of α can

be broken up into the first 1-step extension α+ of α and the extension of α+ to β. Part (a) is then immediate. Part (b) is easily
seen in the case χ τ ′

(τ ) = 0. Now assume χ τ ′

(τ ) = 1. We observe that only successive maximal 1-step extensions, calling δ
one such, can and domaintain the equality o(δ)+dp(δ) = α+dp(α), a procedure that according to Corollary 5.6 leads to the
final extension candidate me+(α) which is not a tracking chain. We thus have o(me(α)) + dp(me(α)) = α + dp(α), which
is equal to o(α[αn,mn + 1]), and for any proper extension, say, δ of me(α) we have o(δ) + dp(δ) < o(me(α)) + dp(me(α)).
Thus parts (b) and (c) follow.

In order to see part (d) first observe that since me(α) does not have an extension candidate ec(me(α)), it follows that
dp(me(α)) = 0. In all cases except for the situation wheremn > 1 and τ < µτ ′ we know from the already shown parts that
o(me(α)) = α + dp(α). Now, in the case mn > 1 and τ < µτ ′ we have χ τ ′

(τ ) = 0. If α is already maximal, we are done.
Otherwise we have me(α) = me(ec(α)) and face two cases:

Case 1: τ ′ < τ ∈ E. Then ec(α) extends α by an additional index αn,mn+1 = µτ , and using that ϱτ ′

τ = τ we obtain

o(me(α)) = o(me(ec(α)))

= o(ec(α)) + dp(ec(α))

= α + ν τ̃
µτ

+ κ τ̃
λτ

+ dpτ̃ (λτ )

= α + κ τ̃ ′

ϱτ ′

τ

+ dpτ̃ ′(ϱτ ′

τ ).



T.J. Carlson, G. Wilken / Annals of Pure and Applied Logic 163 (2012) 23–67 45

Case 2: Otherwise. Then ec(α) extends α by an additional index αn+1,1 = ϱτ ′

τ , and directly obtain the claim.
For part (e) we know by the already shown parts that in the cases where (n,mn) ≠ (i, j + 1) we have α + dp(α) =

o(me(α)) + dp(me(α)). Now, in the situation (n,mn) = (i, j+ 1) we know by part (a) of Lemma 5.5 that ec(α) exists and is
a tracking chain. We can then conclude α + dp(α) = o(ec(α)) + dp(ec(α)) = o(me(α)) + dp(me(α)). The claim regarding
dp(me(α)) follows from the definitions using Corollary 5.6. �

We now define a well-ordering <TC on TC such that the evaluation function o on TC becomes order preserving, as shown
in the sequel.

Definition 5.13. We define a linear ordering <TC on TC as follows. Let α, β ∈ TC be given, say, of the form

α = ((α1,1, . . . , α1,m1), . . . , (αn,1, . . . , αn,mn))

and

β = ((β1,1, . . . , β1,k1), . . . , (βl,1, . . . , βl,kl)).

Let (i, j) where 1 ≤ i ≤ min{n, l} and 1 ≤ j ≤ min{mi, ki} be <lex-maximal such that α�(i,j) = β�(i,j), if that exists, and
(i, j) := (1, 0) otherwise.

α <TC β :⇔ (i, j) = (n,mn) ≠ (l, kl)
∨(j < min{mi, ki} & αi,j+1 < βi,j+1)

∨(j = mi < ki & i < n & αi+1,1 < τi,j)

∨(j = ki < mi & i < l & τi,j < βi+1,1)

∨(j = ki = mi & i < min{n, l} & αi+1,1 < βi+1,1)

α ≤TC β :⇔ α <TC β ∨ α = β.

Lemma 5.14. For all α, β ∈ TC we have

α <TC β ⇔ o(α) < o(β).

Proof. Let α, β ∈ TC such that α <TC β be given. We show o(α) < o(β). The lemma then follows since it is easy to check
that <TC is a linear ordering of TC. The evaluation of a tracking chain is strictly increasing along its initial values. The claim
follows from the strict monotonicity of the κ- and ν-functions shown in Lemma 4.5 using Lemma 5.12. �

Corollary 5.15. For any α < 1∞ there exists at most one tracking chain for α. �

In the next section we will establish that the evaluation o on tracking chains is a mapping onto 1∞ and define its inverse,
which will be called tc. We will thus obtain an order isomorphism between (1∞, <) and (TC, <TC).

6. Assignment of tracking chains to the ordinals below 1∞

By the following definition we assign finite sequences of ordinal vectors to the ordinals below 1∞ which meet all
conditions for tracking chains stated in Definition 5.1. Moreover, it will be shown that TC from 5.1 is a characterization
of the set {tc(α) | α < 1∞

} as defined below.

Definition 6.1. For α < 1∞ we define the tracking chain assigned to α, tc(α), recursively as follows. We define tc(0) :=

((0)), and ifα ∈ Pwe set tc(α) := (ts(α)). Now suppose tc(α) = α = (α1, . . . ,αn) to be the tracking chain already assigned
to some α > 0, where αi = (αi,1, . . . , αi,mi) for 1 ≤ i ≤ n, and let β ∈ P≤end(α). For technical reasons we set αn+1,1 := 0
and mn+1 := 1. The definition of tc(α + β), the tracking chain assigned to α + β , requires the following preparations.

• For 1 ≤ i ≤ n and 0 ≤ j < mi let

(β
i,j
1 , . . . , β i,j

ri,j) := ts[τ̃i,j](β),

writing simply (β1, . . . , βr) in the case (i, j) = (1, 0).
• Let (i0, j0), where 1 ≤ i0 ≤ n and 1 ≤ j0 < mi0 , be <lex-maximal with

αi0,j0+1 < µτi0,j0

if that exists, otherwise set (i0, j0) := (1, 0).
• Let (k0, l0) be either (1, 0) or satisfy 1 ≤ k0 ≤ n + 1 and 1 ≤ l0 ≤ mk0 , so that (k0, l0) is <lex-minimal with

(i0, j0) ≤lex (k0, l0) and

1. for all k ∈ {k0, . . . , n} we have

αk+1,1 + β
k,mk−1
1 ≥ ρk
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2. for all k ∈ {k0, . . . , n} and all l ∈ {1, . . . ,mk − 2} such that (k0, l0) <lex (k, l) we have

τk,l+1 + β
k,l
1 > λτk,l .

Case 1: (i0, j0) = (k0, l0). Then there are three subcases:

1.1: β < τ̃i0,j0 . Then tc(α + β) is defined to be

α�(i0,j0+1)
⌢

ϱ

τi0,j0
τi0,j0+1 + β

i0,j0
1 , β

i0,j0
2 , . . . , β i0,j0

ri0,j0


.

1.2: β = τ̃i0,j0 . Then tc(α + β) is defined by

α�(i0,j0+1)[αi0,j0+1 + 1].

1.3: β > τ̃i0,j0 . Then there is an r0 < r such that, setting β0 := 1, βr0 = τi0,j0 , and tc(α + β) is defined

α�i0−1
⌢(αi0,1, . . . , αi0,j0 , αi0,j0+1 + βr0+1, βr0+2, . . . , βr).

Case 2: (i0, j0) <lex (k0, l0). Then there are the following subcases:

2.1: k0 = n + 1 and β
n,mn−1
1 = τn,mn ∈ E>τ ′

n . Then β = τ̃n,mn , and tc(α + β) is defined by

α�n−1
⌢(αn,1, . . . , αn,mn , 1).

2.2: k0 ≤ n, l0 ∈ {1, . . . ,mk0 − 2} and τk0,l0+1 + β
k0,l0
1 ≤ λτk0,l0

, we define tc(α + β) by

α�(k0,l0+1)
⌢

τk0,l0+1 + β

k0,l0
1 , β

k0,l0
2 , . . . , βk0,l0

rk0,l0


,

provided this vector satisfies Condition 6 of Definition 5.1, otherwise we have β = τ̃i0,j0 , and tc(α + β) is defined as in
case 1.2.

2.3: Otherwise. Then k0 > i0 and αk+1,1 + β
k,mk−1
1 < ρk for k := k0 − 1, and tc(α + β) is defined by

α�k
⌢

αk0,1 + β

k,mk−1
1 , β

k,mk−1
2 , . . . , βk,mk−1

rk,mk−1


,

provided this vector satisfies Condition 6 of Definition 5.1, otherwise we have β = τ̃i0,j0 , and tc(α + β) is defined as in
case 1.2.

Remark. Case 1.3 uniformly covers twoquite different situations: The situation (i0, j0) = (1, 0)will be shown to correspond
to the scenario where adding β to α means to jump into a larger ≤1-connectivity component, whereas the situation
(i0, j0) ≠ (1, 0) corresponds to jumping into a larger ≤2-connectivity component on the surrounding main line. Notice
that we could have incorporated Case 1.2 into Case 1.3, say, by setting βr+1 := 1. Case 2.1 takes care of Condition 5 of
Definition 5.1.

Lemma 6.2. Let α < 1∞.

(a) tc(α) ∈ TC, i.e. tc(α) meets all conditions of Definition 5.1.
(b) There exists exactly one tracking chain for α, namely tc(α) satisfies o(tc(α)) = α.

Proof. Weprove both parts of the lemma simultaneously by induction on α. The case α = 0 is trivial, and using Lemma 4.10
we see that the claims hold whenever α ∈ P. Now suppose the claims have been shown for some α > 0 with assigned
tracking chain tc(α) = α as in the definition and suppose β ≤ end(α) so that we have the inductive hypothesis available
for any ordinal below α +β . We adopt the terminology of the previous definition and commence proving the inductive step
for α + β by showing the following claims.

Claim 6.3. If β ≤ τ̃i0,j0 then β
i0,j0
1 ≤ τi0,j0 . If additionally χ τi0,j0 (τi0,j0+1) = 1 and (i0, j0) ≤lex (k, l) for some index pair (k, l) of

me(α�(i0,j0+1)) with l < mk then βk,l
≤ τi0,j0 . In both assertions equality holds if and only if β = τ̃i0,j0 .

In order to show the claim let us assume that β ≤ τ̃i0,j0 . This assumption implies that (i0, j0) ≠ (1, 0). In the case
β

i0,j0
1 = τi0,j0 the assumption implies ri0,j0 = 1 and β = τ̃i0,j0 . On the other hand, in case of β = τ̃i0,j0 we clearly have

ts[τ̃i0,j0 ](β) = (τi0,j0). The assertion concerning (k, l) can easily be recuced to the one concerning (i0, j0): By Lemma 5.5
ts(τ̃i0,j0) is an initial sequence of ts(τ̃k,l) and therefore

ts[τ̃k,l](β) = (β
k,l
1 , . . . , βk,l

rk,l) = (β
i0,j0
1 , . . . , β i0,j0

ri0,j0
) = ts[τ̃i0,j0 ](β).

Now assume β < τ̃i0,j0 . By Lemma 3.15 we have ts(β) <lex ts(τ̃i0,j0) =: (γ1, . . . , γs). By part (a) of Lemma 4.17 for some
0 ≤ k < swe have, setting γ0 := 1, γk ≤ β

i0,j0
1 < γk+1 ≤ τi0,j0 . This concludes the proof of Claim 6.3.
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Claim 6.4. If (i0, j0) ≠ (1, 0) and χ τi0,j0 (τi0,j0+1) = 1 then β ≤ τ̃i0,j0 implies (i0, j0) <lex (k0, l0).

For the proof of this claim assume β ≤ τ̃i0,j0 and let (i, j) be the ≤lex-maximal index pair such that α�(i,j) is a common
initial chain of α and me(α�i0,j0+1), hence (i0, j0 + 1) ≤lex (i, j). By Corollary 5.6 we know that ec(α�(i,j)) exists. In order to
derive a contradiction we now assume that (i0, j0) = (k0, l0) and discuss the possible cases in the definition of ec(α�(i,j)). For
convenience of notation we set τ := τi,j and τ ′

:= τ ′

i,j.

Case 1: j = 1. Then we havemi = 1 by the maximality of (i, j), i > i0 and thus (i0, j0 + 1) <lex (i, j).

Subcase 1.1: τ ′ < τ ∈ E. By Lemma 5.5 and the assumption k0 = i0 < iwe then have

τi0,j0 ≤ τ = log((1/τ ′) · τ) < ρi ≤ αi+1,1 + β
i,mi−1
1 .

But according to Claim 6.3 we have β
i,mi−1
1 ≤ τi0,j0 , and by Condition 5 for tracking chains we have αi+1,1 < τ , whence

αi+1,1 + β
i,mi−1
1 < ρi. Contradiction.

Subcase 1.2:Otherwise. Thenαi+1,1 is strictly less than log((1/τ ′)·τ)which is the extending index of ec(α�(i,j)) and according
to Lemma 5.5 and Corollary 5.6 a proper multiple of τi0,j0 . We run into the same contradiction as in Subcase 1.1.

Case 2: j > 1. Then τ ′
= τi,j−1.

Subcase 2.1: τ ′ < τ ∈ E.

2.1.1: τ = µτ ′ < λτ ′ . Then (i0, j0 +1) <lex (i, j) which implies (k0, l0) <lex (i, j−1). The extending index of ec(α�(i,j)) is then
λτ ′ . If j < mi weobtain the contradiction τ+β

i,j−1
1 < λτ ′ , otherwiseweobtain the contradictionαi+1,1+β

i,j−1
1 < ρi = λτ ′+1

in a similar fashion as in Case 1.

2.1.2: Otherwise. The extending index of ec(α�(i,j)) is then µτ , and mi = j. By Condition 5 for tracking chains αi+1,1 ≠ τ . By
the assumptions of this case and using Lemma 5.5 we have τi0,j0 < τ . We first consider the case (i, j) = (i0, j0 + 1). Then
αi+1,1 < τ and ρi = τ + 1. We obtain the contradiction αi+1,1 + β i,j−1 < ρi, again using the previous claim. Now assume
(i0, j0 + 1) <lex (i, j). Again we have ρi = τ + 1, αi+1,1 < τ , and we run into the same contradiction.

Subcase 2.2: Otherwise. Then againmi = j.

2.2.1: τ < µτ ′ . This can only occur if (i, j) = (i0, j0 + 1), thus τ ′
= τi0,j0 and τ = τi0,j0+1. The extending index of ec(α�(i,j)) is

ϱτ ′

τ , and ρi = ϱτ ′

τ + 1. Lemma 5.5 yields χ τ ′

(ϱτ ′

τ ) = 1. We are then confronted with the contradiction αi+1,1 + β
i,j
1 < ρi.

2.2.2: Otherwise, that is, τ = µτ ′ . This implies (i0, j0 + 1) <lex (i, j), and the extending index of ec(α�(i,j)) is λτ ′ which again
is a proper multiple of τi0,j0 . Thus αi+1,1 + β i,j−1

≤ λτ ′ < λτ ′ + 1 = ρi. Contradiction. Our assumption (i0, j0) = (k0, l0)
therefore cannot hold true, which concludes the proof of Claim 6.4.

We are now prepared to verify the lemma for each of the six clauses of the assignment of tc(α +β) to α +β . However, a
uniform argument exploiting the careful choice of the index pair (k0, l0)will be given in the last part of this proof to complete
the treatment of the single clauses.

Case 1: (i0, j0) = (k0, l0).

Subcase 1.1: β < τ̃i0,j0 . Then clearly (i0, j0) ≠ (1, 0), by Claim 6.3 β
i0,j0
1 < τi0,j0 , and Claim 6.4 yields χ τi0,j0 (τi0,j0+1) = 0.

Using Lemma 4.17 we obtain tc(α + β) ∈ TC, and since αi0+1,1 + β
i0,j0
1 ≥ ρi0 we must have mi0 > j0 + 1 and hence

ϱ
τi0,j0
τi0,j0+1 = τi0,j0+1. According to part (d) 2 of Lemma 4.5, Lemma 4.15, and part (d) of Lemma 5.12 we have

o(tc(α + β)) = o(α�(i0,j0+1)) + dpτ̃i0,j0
(τi0,j0+1) + β

= o(me(α�(i0,j0+1))) + β.

It remains to be shown that this is equal to α + β .

Subcase 1.2:β = τ̃i0,j0 . Again, (i0, j0) ≠ (1, 0), by Claim 6.3we haveβ i0,j0 = (τi0,j0), and Claim 6.4 yieldsχ τi0,j0 (τi0,j0+1) = 0.
tc(α + β) ∈ TC is immediate. We compute similarly as above

o(tc(α + β)) = o(α�(i0,j0+1)) + κ
τ̃i0,j0
ϱτi0,j0+1

+ dpτ̃i0,j0
(ϱτi0,j0+1

) + β

= o(me(α�(i0,j0+1))) + β,

and again it remains to be shown that this is equal to α + β .

Subcase 1.3: β > τ̃i0,j0 . Making use of Lemma 5.12 we observe that

τ̃i0,j0 < β ≤ end(α) = end(α̃n,mn) < ν
τ̃i0,j0
µτi0,j0

,
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which, realizing that due to Lemma 4.10 ts(ν
τ̃i0,j0
µτi0,j0

) = ts(τ̃i0,j0)
⌢µτi0,j0

, according to Lemma 3.15 implies

ts(τ̃i0,j0) <lex ts(β) <lex ts(τ̃i0,j0)
⌢µτi0,j0

,

whence ts(τ̃i0,j0) is a proper initial segment of ts(β). Thus there is an r0 < r such that τi0,j0 = βr0 , leaving the possibility
r0 = 0 for the case (i0, j0) = (1, 0). We now see that tc(α + β) ∈ TC. Using again Lemmas 4.10 and 5.12 we obtain

o(tc(α + β)) = o(me(α�(i0,j0+1))) + β,

and leave showing that this is equal to α + β for later.

Case 2: (i0, j0) <lex (k0, l0).

Subcase 2.1: k0 = n + 1 and β
n,mn−1
1 = τn,mn ∈ E>τ ′

n . Since β ≤ τ̃n,mn we then have β = τ̃n,mn , and tc(α + β) ∈ TC is clear.
Since k0 = n + 1 we have τn,mn < ρn, and realizing that −τ̃n,mn + ν

τ̃n,mn
1 = τ̃n,mn we obtain

o(tc(α + β)) = α + β.

Subcase 2.2: k0 ≤ n, l0 ∈ {1, . . . ,mk0 − 2} and τk0,l0+1 + β
k0,l0
1 ≤ λτk0,l0

.

2.2.1: α�(k0,l0+1)
⌢

τk0,l0+1 + β

k0,l0
1 , β

k0,l0
2 , . . . , β

k0,l0
rk0,l0


satisfies Condition 6 for tracking chains. Then tc(α + β) is defined

by this vector which is easily seen to be a tracking chain. Note that since τk0,l0+1 = µτk0,l0
∈ E>τk0,l0 ∩ λτk0,l0

we have
α�k0,l0+2 <TC ec(α�k0,l0+1), implying that α�k0,l0+2 does not possess a critical main line index pair. Part (d) of Lemma 5.12
therefore yields

o(me(α�k0,l0+2)) = o(α�k0,l0+2) + κ
τ̃k0,l0+1
λτk0,l0+1

+ dpτ̃k0,l0+1
(λτk0,l0+1).

We now compute using Lemma 4.15

o(tc(α + β)) = o(α�k0,l0+1) + dpτ̃k0,l0
(τk0,l0+1) + β

= o(α�k0,l0+1) + ν
τ̃k0,l0+1
τk0,l0+2 + κ

τ̃k0,l0+1
λτk0,l0+1

+ dpτ̃k0,l0+1
(λτk0,l0+1) + β

= o(α�k0,l0+2) + κ
τ̃k0,l0+1
λτk0,l0+1

+ dpτ̃k0,l0+1
(λτk0,l0+1) + β

= o(me(α�k0,l0+2)) + β

and leave the task of showing this to be equal to α + β for later.

2.2.2: Otherwise. Then tc(α + β) = α�(i0,j0+1)[αi0,j0+1 + 1] ∈ TC. The assumptions making up this case imply rk0,l0 = 1,
β

k0,l0
1 = τi0,j0 , τk0,l0+1 + β

k0,l0
1 = λτk0,l0

, which is the extending index of ec(α�k0,l0+1) ∉ TC, and thus me(α�i0,j0+1) = α�k0,l0+1.
Noticing that dpτ̃k0,l0

(λτk0,l0
) = 0 part (e) of Lemma 5.12 now conveys the computation

o(tc(α + β)) = o(α�i0,j0+1) + κ
τ̃i0,j0
ϱτi0,j0+1

+ dpτ̃i0,j0
(ϱτi0,j0+1

)

= o(α�k0,l0+1) + κ
τ̃k0,l0
λτk0,l0

= o(α�k0,l0+1) + dpτ̃k0,l0
(τk0,l0+1) + β

= o(α�k0−1
⌢(αk0,1, . . . , αk0,l0+1, µτk0,l0+1)) + κ

τ̃k0,l0+1
λτk0,l0+1

+ dpτ̃k0,l0+1
(λτk0,l0+1) + β

= o(me(α�k0,l0+2)) + β

where the last equality holds, since the tracking chain α�k0−1
⌢(αk0,1, . . . , αk0,l0+1, µτk0,l0+1) does not possess a critical main

line index pair, according to part (d) of Lemma 5.12. That this is equal to α + β will be shown later.

Subcase 2.3: Otherwise. Then k0 > i0, l0 = 1, and αk+1,1 + β
k,mk−1
1 < ρk for k := k0 − 1.

2.3.1: The vector α�k
⌢

αk0,1 + β

k,mk−1
1 , β

k,mk−1
2 , . . . , β

k,mk−1
rk,mk−1


satisfies Condition 6 for tracking chains. Then tc(α + β) is

defined by this vectorwhich using part a) of Lemma5.7 is easily seen to be a tracking chain. Let us first assume that k0 = n+1.
Using Lemma 4.15 we then have

o(tc(α + β)) = α + β.
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Now we suppose k0 ≤ n. We observe that α�k0,1 does not possess a critical main line index pair since αk0,1 < ρk −· 1 where
τk,mk < µτ ′

k
is possible only if (k,mk) = (i0, k0 + 1). Now Lemmas 4.15 and 5.12, part (d), yield

o(tc(α + β)) = o(α�k0,1) + dpτ̃k,mk−1
(τk0,1) + β

= o(me(α�k0,l0)) + β

which will be shown to be equal to α + β .

2.3.2: Otherwise. Then tc(α + β) = α�(i0,j0+1)[αi0,j0+1 + 1] ∈ TC. In this final case we have rk,mk−1 = 1, βk,mk−1
= (τi0,j0),

αk0,1 + τi0,j0 = ρk −· 1, and me(α�i0,j0+1) = α�k. By part (a) of Lemma 5.5 we either have ρk −· 1 = log((1/τ ′

k) · τk,1) in the
casemk = 1 where k > i0, or we have ρk −· 1 = λτ ′

k
in the casemk > 1 where τk,mk = µτ ′

k
. αk0,1 must be a (possibly zero in

the case k0 = n + 1) multiple of τi0,j0 since if not, by part (a) of Lemma 5.12 we would have

o(α�k) < α < o(α�k) + κ
τ̃ ′
k0

τk0,1+1 < o(α�k) + β

where we have used that our assumption would entail τk0,1 < τi0,j0 whence τ ′

k0
would be an element of ts(τ̃i0,j0) and

therefore dpτ̃ ′
k0

(τk0,1) = dpτ̃i0,j0
(τk0,1) < κ

τ̃i0,j0
τi0,j0

= τ̃i0,j0 = β . This would mean that end(α) < β which is not the case.
We are now prepared for another twofold application of Lemma 5.12, first part (e), then part (d). In the case k0 = n + 1 we
are finished with the second equation while otherwise we continue the computation as shown.

o(tc(α + β)) = o(α�i0,j0+1) + κ
τ̃i0,j0
ϱτi0,j0+1

+ dpτ̃i0,j0
(ϱτi0,j0+1

)

= o(α�k) + κ
τ̃k,mk−1
αk0,1 + dpτ̃k,mk−1

(αk0,1) + β

= o(α�k0,1) + dpτ̃ ′
k0

(τk0,1) + β

= o(me(α�k0,l0)) + β

which in the case k0 ≤ n will be shown below to be equal to α + β .

We are now going to show the equalities left open in the single cases. Notice that all cases where k0 = n+ 1 are finished
already. We therefore assume k0 ≤ n from now on, whence β

n,mn−1
1 ≥ ρn. In the first step we show that

o(me(α)) + β = α + β. (1)

This is clear if me(α) = α. If α <TC me(α) we have to consider three cases in each of which we use Lemma 5.12.
If mn = 1 then α < o(me(α)) ≤ α + dpτ̃ ′

n
(τn,1), and referring to Lemmas 5.8 and 5.10 we have

dpτ̃ ′
n
(τn,1) = κ

τ̃n,0
log((1/τ ′

n)·τn,1)
+ dpτ̃n,0

(log((1/τ ′

n) · τn,1)).

By part (b) of Lemma 4.17 the assumption β ≤ dpτ̃ ′
n
(τn,1) would imply β

n,0
1 < log((1/τ ′

n) · τn,1) + 1 = ρn which is not the
case.

Now assume mn > 1 and τn,mn < µτ ′
n
. This is only possible if (n,mn) = (i0, j0 + 1). We then have α < o(me(α)) ≤

α + κ
τ̃i0,j0
ϱτi0,j0+1

+ dpτ̃i0,j0
(ϱτi0,j0+1

). Here the assumption β ≤ κ
τ̃i0,j0
ϱτi0,j0+1

+ dpτ̃i0,j0
(ϱτi0,j0+1

) would entail the contradiction

β
i0,j0
1 < ρn.

Otherwise we have mn > 1 and τn,mn = µτ ′
n
. Then we have α < o(me(α)) ≤ α + κ

τ̃ ′
n

λ
τ ′
n

+ dpτ̃ ′
n
(λτ ′

n
), and the assumption

β ≤ κ
τ̃ ′
n

λ
τ ′
n
+dpτ̃ ′

n
(λτ ′

n
)would lead to the contradictionβ

n,mn−1
1 < λτ ′

n
+1 = ρn. Thus in all caseswehave o(me(α))+β = α+β

as claimed.
We now have to show that for index pairs (i, j) ∈ dom(α) − {(n,mn)} which are lexicographically greater than or equal

to the index pair occurring in the respective case above we have

o(me(α�(i,j))) + β = o(me(α�(i,j)+)) + β. (2)

Thismeans that regarding the equations to be proven in Case 1we assume (i0, j0+1) ≤lex (i, j), regarding those to be shown
in Case 2.2 we assume (k0, l0 + 2) ≤lex (i, j), and regarding Case 2.3 we assume (k0, l0) ≤lex (i, j). Let such an index pair
(i, j) be given. We may assume that me(α�(i,j)+) <TC me(α�(i,j)) since in the case of equality there is nothing to show, while
me(α�(i,j)) <TC me(α�(i,j)+) is not possible, for if this were the case we would have (i, j) = (i0, j0 + 1), χ τi0,j0 (τi0,j0+1) = 0,
ρi0 = ϱτi0,j0+1

+ τi0,j0 , (i, j)
+

= (i + 1, 1), and αi+1,1 = ϱi0,j0+1 + ξ for some ξ ∈ (0, τi0,j0), which by Lemma 5.12 would

imply that β ≤ end(α) < τ̃i0,j0 whence we would be in Case 1.1, running into the contradiction αi0+1 + β
i0,j0
1 < ρi0 . We

therefore have α�(i,j)+ <TC ec(α�(i,j)) and consider the two possibilities for (i, j)+:
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• (i, j)+ = (i, j+ 1). Then we have αi,j+1 = µτi,j , since (i0, j0) <lex (i, j). Due to the fact that α�(i,j+1) is not a maximal 1-step
extension of α�(i,j) we have j > 1, τi,j = µτi,j−1 ∈ E ∩ (τi,j−1, λτi,j−1), ec(α�(i,j)) = α�(i,j)

⌢(λτi,j−1), and (i0, j0 + 1) <lex (i, j).
In particular, α�(i,j+1) does not possess a critical main line index pair. Part (d) of Lemma 5.12 yields

o(me(α�(i,j+1))) = o(α�(i,j+1)) + κ
τ̃i,j
λτi,j

+ dpτ̃i,j
(λτi,j)

= o(α�(i,j)) + ν
τ̃i,j
µτi,j

+ κ
τ̃i,j
λτi,j

+ dpτ̃i,j
(λτi,j)

= o(α�(i,j)) + dpτ̃i,j−1
(τi,j).

Another extensive application of Lemma 5.12 provides us with

o(α�(i,j)) + dpτ̃i,j−1
(τi,j) < o(me(α�(i,j))) ≤ o(α�(i,j)) + κ

τ̃i,j−1
λτi,j−1

+ dpτ̃i,j−1
(λτi,j−1).

Now setting δ := −τi,j + λτi,j−1 , the assumption β ≤ κ
τ̃i,j−1
δ + dpτ̃i,j−1

(δ) would imply, by Lemma 4.17, that β
i,j−1
1 ≤ δ

and hence τi,j +β
i,j−1
1 ≤ λτi,j−1 which is not the case: In Cases 1 and 2.2 we always have (k0, l0) <lex (i, j− 1), while Case

2.3 presupposes that τk0,l0+1 + β
k0,l0
1 > λτk0,l0

, which covers the only possibility where (k0, l0) = (i, j − 1).
• (i, j)+ = (i + 1, 1). We then have j = mi and consider three subcases.

If mi = 1 then αi+1,1 < log((1/τ ′

i ) · τi,1) = ρi −· 1, hence α�i+1,1 does not possess a critical main line index pair. By
Lemma 5.12 we have

o(me(α�(i+1,1))) = o(α�(i+1,1)) + dpτ̃ ′
i+1

(τi+1,1)

= o(α�(i,1)) + κ
τ̃i,0
αi+1,1 + dpτ̃i,0

(τi+1,1)

< o(me(α�(i,1)))

≤ o(α�(i,1)) + dpτ̃ ′
i
(τi,1)

= o(α�(i,1)) + κ
τ̃i,0
log((1/τ ′

i )·τi,1)
+ dpτ̃i,0

(log((1/τ ′

i ) · τi,1)).

By setting δ := −αi+1,1 + log((1/τ ′

i ) · τi,1) and assuming β ≤ κ
τ̃i,0
δ + dpτ̃i,0

(δ) we would obtain αi+1,1 + β
i,0
1 < ρi which

because of i ≥ k0 is not the case. Thus Eq. (2) holds in the casemi = 1.
If (i,mi) = (i0, j0 + 1) then only Case 1 is possible, and it follows that αi+1,1 < ϱτi0,j0+1

< ρi0 . Lemma 5.12 supplies
us with

o(me(α�i+1,1)) = o(α�(i0,j0+1)) + κ
τ̃i0,j0
αi+1,1 + dpτ̃i0,j0

(αi+1,1)

< o(me(α�(i0,j0+1)))

≤ o(α�(i0,j0+1)) + κ
τ̃i0,j0
ϱτi0,j0+1

+ dpτ̃i0,j0
(ϱτi0,j0+1

),

and setting δ := −αi+1,1 +ϱτi0,j0+1
the assumption β ≤ κ

τ̃i0,j0
δ +dpτ̃i0,j0

(δ)would have the consequence αi+1,1 +β
i0,j0
1 <

ρi0 which is not the case. We therefore have (2) in this special case.
Finally, ifmi > 1 and (i0, j0 + 1) <lex (i,mi) then αi+1,1 < λτi,mi−1 = ρi −· 1. Lemma 5.12 yields

o(me(α�(i+1,1))) = o(α�(i,mi)) + κ
τ̃i,mi−1
αi+1,1 + dpτ̃i,mi−1

(αi+1,1)

< o(me(α�(i,mi)))

≤ o(α�(i,mi)) + κ
τ̃i,mi−1
λτi,mi−1

+ dpτ̃i,mi−1
(λτi,mi−1),

and setting δ := −αi+1,1 + λτi,mi−1 the assumption β ≤ κ
τ̃i,mi−1
δ + dpτ̃i,mi−1

(δ) would imply the contradictory

αi+1,1 + β
i,mi−1
1 < ρi. Consequently, Eq. (2) follows also in this situation.

This concludes the proof of (2). From the Eqs. (1) and (2) all claimed equalities follow, completing the proof of Lemma 6.2. �

Corollary 6.5. tc is a <-<TC-order isomorphism between 1∞ and TC with inverse o. We thus have

tc(o(α)) = α

for any α ∈ TC and

α < β ⇔ tc(α) <TC tc(β)

for all α, β < 1∞. �
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Corollary 6.6. Let α < 1∞ and tc(α) =: α = (α1, . . . ,αn), where αi = (αi,1, . . . , αi,mi) for 1 ≤ i ≤ n. Then we have

tc(α + dp(α)) =


α[αn,mn + 1] if mn > 1 & τn,mn < µτn,mn−1

me(α) otherwise.

Let β < 1∞. Then tc(β) is a proper extension of tc(α) if and only if

β ∈


(α, α + dp(α)) if mn > 1 & τn,mn < µτn,mn−1

(α, α + dp(α)] otherwise.

Proof. Using the above corollary the first claim now follows by Definition 5.11 of dp (see the remark there) and Lemma 5.12.
The left-to-right direction of the second claim follows from Lemma 5.12. For the right-to-left direction assume that β lies
within the respective interval. By the above corollary we have tc(α) <TC tc(β).

Case 1:mn > 1 & τn,mn < µτn,mn−1 . Then by the above corollary

tc(β) <TC α[αn,mn + 1].

Case 2: Otherwise. Then by the above corollary tc(β) ≤TC me(α). �

7. Arithmetical characterization of ≤1 and ≤2

It is only now that we are prepared to compute the relations ≤1 and ≤2 below the least α ∈ Ord such that every pure
pattern of order 2 has a covering below α, which will be shown to be equal to 1∞, the proof-theoretic ordinal of KPℓ0.

First of all we provide criteria for elementary substructurehood that allow us to avoid dealing with formulas. As already
applied in [1,9,11] we have the following folklore criterion for Σ1-elementary substructure for finite relational languages.

Proposition 7.1. Let A and B be structures for a finite language without function symbols. A is a Σ1-elementary substructure
of B if and only if A is a substructure of B and whenever X is a finite subset of |A| and Y is a finite subset of |B|− |A| then there
exists a subset Ỹ of |A| such that

X ∪ Y ∼=X X ∪ Ỹ .

Proof. The proof is elementary and given in full detail in [8]. �

Lemma 7.2. 1. In R1 we have (see [1])

α ≤1 α + 1 ⇔ α ∈ Lim.

2. In R2 we have

α ≤1 α + 1 ⇔ α ∈ Lim & ∀β(β <2 α ⇒ α = sup{γ < α | β ≤2 γ }).

Proof. We show part 2. Recall Lemma 1.2. Let us first assume that α <1 α + 1. It is easy to see that α ∈ Lim. If there were
some β such that β <2 α and δ := sup{γ < α | β ≤2 γ } < α then we would have β ≤2 δ, and α + 1 |H ∃x > δ β <2 x
while α |̸H ∃x > δ β <2 x. Hence the right hand side of the equivalence holds whenever α <1 α + 1.

Now suppose the right hand side of the equivalence holds. We use 7.1 to show that α <1 α + 1. Let X ⊆fin α be given
and let Y := {α}. We set X ′

i := {x ∈ X | x ≮i α} for i = 1, 2. There is µ < α such that

∀x ∈ X ′

i ∀ξ ∈ (µ, α) x ≮i ξ, i = 1, 2.

In the case X ′

2 = X wemay choose any ordinal α̃ ∈ (µ, α) and set Ỹ := {α̃} while otherwise there exists β := max(X − X ′

2)

so that we have γ ≤2 β for all γ ∈ X − X ′

2, then choose some δ ∈ (µ, α) such that β <2 δ and set Ỹ := {δ}. It is now easy
to see that we have X ∪ Y ∼= X ∪ Ỹ . �

For the readers’ convenience we recall results shown in [1]. Let lhRi
1 (α) be max{β | α ≤

Ri
1 β} if that exists and ∞

otherwise.

Theorem 7.3 ([1]). 1. R1 ∼= R1 ∩ [α + 1, ∞) for all α.
2. lhR1

1 (ε0 · (1 + η)) = ∞ for all η.
3. For α =CNF ωα1 + · · · + ωαn (n > 0) with αn =ANF ρ1 + · · · + ρm < α we have

lhR1
1 (α) = α + lhR1

1 (ρ1) + · · · + lhR1
1 (ρm).

The approach to obtain the above result is to consider the connectivity components of ≤1 in R1 and to compute the
enumeration function α → κα of the ≤1-minimal ordinals. In this computation the translation invariance of R1 (see the
first claim of the theorem) plays an essential role.
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A criterion for the relation ≤2 that will turn out to actually characterize ≤2 in R2 is

Proposition 7.4. Suppose α < β . If for all X ⊆fin α and all Y ⊆fin [α, β) there exists Ỹ such that:

1. X < Ỹ < α and
2. ∃h : X ∪ Ỹ

∼=
−→ X ∪ Y such that for all finite Ỹ+ with Ỹ ⊆ Ỹ+

⊆ α

∃Y+
⊆ β, h+

⊇ h s.t. h+
: X ∪ Ỹ+

∼=
−→ X ∪ Y+

then α <2 β .

Proof. Let ordinals α, β such that α < β be given and assume the criterion of the lemma holds. Using 7.1 we obtain α <1 β .
Let ϕ(x, y, z) be a quantifier free formula of L(R2) with all free variables shown and let ξ ⊆ α be a list of parameters
matching the length of x. Assume first that

α |H ∃y ∀z ϕ(ξ, y, z).

Let η ⊆ α be a list of witnesses for y so that α |H ∀z ϕ(ξ, η, z). Thanks to α <1 β we have β |H ∀z ϕ(ξ, η, z), whence
β |H ∃y ∀z ϕ(ξ, y, z). Now let us assume that

β |H ∃y ∀z ϕ(ξ, y, z)

and let η ⊆ β bewitnesses for y. Without loss of generality wemay assume that η ⊆ [α, β) sincewe could regardwitnesses
below α as parameters in the list ξ. Set X := {ξ | ξ ∈ ξ}, Y := {η | η ∈ η}. By the criterion there exists a set Ỹ such that
conditions 1 and 2 of the criterion hold. Let h : X ∪ Ỹ

∼=
−→ X ∪ Y be according to condition 2 and let η̃ := h−1

[η]. We claim

α |H ∀z ϕ(ξ, η̃, z).

In order to show this claim let ζ̃ ⊆ α matching z be given. Set Ỹ+
:= Ỹ ∪ ζ̃ and let h+ and Y+ be according to the criterion

so that for ζ := h+
[ζ̃]. Since β |H ϕ(ξ, η, ζ) and X ∪ Ỹ+ ∼= X ∪ Y+ we then have α |H ϕ(ξ, η̃, ζ̃) and thus

α |H ∃y ∀z ϕ(ξ, y, z)

concluding the proof of the criterion. �

Remark. The above type of criterion can be generalized to the higher levels as well as to structures with underlying
arithmetic. Notice that if the criterion holds for pairs of ordinals α, β and β, γ , showing that α <2 β <2 γ then the
criterion also holds for α, γ . Also, if the criterion holds for pairs α, γι, where ι ∈ I for some nonempty set I , showing that
α <2 γι for all ι ∈ I , then the criterion also holds for α, sup{γι | ι ∈ I}.

Example. In R2 we have ε0 · ω <2 ε0 · (ω + 1). This is the least such pair of ordinals in R2. The least ≤1-predecessor of
ε0 · ω is ε0 which is the least element of the <1-chain of the multiples of ε0 up to ε0 · (ω + 1). In general, as an elementary
observation, any ordinal that has a proper <2-successor is the supremum of an infinite <1-chain:

Lemma 7.5. If α <2 β then α is the sup of an infinite <1-chain.

Proof. For any ρ < α we have β |H ∃x ∀y > x (ρ < x <1 y). Hence the same holds true in α. We obtain
ρ1 <1 ρ2 <1 ρ3 <1 · · · <1 α. �

Another useful elementary observation is the following

Lemma 7.6. Suppose α <2 β , X ⊆fin α, and ∅ ≠ Y ⊆fin [α, β).

1. There exist cofinally many Ỹ ⊆ β such that X ∪ Ỹ ∼= X ∪ Y . More generally, for any Z ⊆fin α with X < Z, if
α |H ∀x∃Z̃ (x < Z̃ ∧ ‘‘X ∪ Z ∼= X ∪ Z̃ ’’) then this also holds in β .

2. Cofinally in α, copies Ỹ ⊆ α of Y can be chosen which besides X < Ỹ and X ∪ Ỹ ∼= X ∪ Y also ‘‘maintain ≤1-connections to
β ’’: For any y ∈ Y such that y <1 β the corresponding ỹ satisfies ỹ <1 α.

Proof. By α <1 β we have α |H ∀r ∃Ỹ (r < Ỹ ∧ ‘‘X ∪ Ỹ ∼= X ∪ Y ’’) where ‘‘X ∪ Ỹ ∼= X ∪ Y ’’ means that the diagram of X ∪ Y
in the language of R2 holds accordingly for X ∪ Ỹ . By α <2 β this also holds in β . This shows the first part of the lemma.
The second part follows from α <2 β by letting {y ∈ Y | y <1 β} = {y1, . . . , yk} and noting that for any parameter ξ < α

β |H ∃Ỹ > ξ ∀r > Ỹ


‘‘X ∪ Ỹ ∼= X ∪ Y ’’ ∧

k
i=1

ỹi <1 r


which then also holds in α. Notice that we used ỹi to indicate the element of Ỹ corresponding to yi ∈ Y which can be done
by using e.g. increasing enumerations of the elements in Y and Ỹ . �

We now introduce some terminology which will be helpful in the statement of Theorem 7.9.
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Definition 7.7. Let α ∈ Ord. We define Predi(α) to be the set of all <i-predecessors of α for i = 1, 2.

Predi(α) := {β | β <i α}.

We define terms for the greatest <i-predecessor of α, i = 1, 2, if such exist.

predi(α) :=


max (Predi(α)) if that exists

0 otherwise.

The class of all ≤i-successors of α is denoted by

Succi(α) := {β | α ≤i β},

in analogy to lhR1
1 we define

lhi(α) :=


max (Succi(α)) if that exists

∞ otherwise,

and we will make use of the abbreviation lh := lh1.

Definition 7.8. Given substructures X and Y of R2, a mapping h : X ↩→ Y is a covering of X into Y , if

1. h is an injection of X into Y that preserves ≤, and
2. hmaintains ≤i-connections for i = 1, 2, i.e. ∀α, β ∈ X (α ≤i β ⇒ h(α) ≤i h(β)).

We call h a covering of X if it is a covering from X into R2. We call Y a cover of X if there is a covering of X with image Y .

Recall the definition of cml(α), the critical main line index pair of α ∈ TC, in 5.1, as well as the notion of maximal
extension me(α) of a tracking chain α, defined in 5.2. Also recall the notations τ̃i,j and oi,j(α) for the (i, j)-th initial value of
α from Definition 5.9 as well as the notations i⋆ for the index pair of the i-th unit τ ⋆

i of α and α[ξ ] for modification of the last
entry of a tracking chain from Definition 5.1.

Theorem 7.9. Let α < 1∞ and tc(α) = α where αi = (αi,1, . . . , αi,mi) for 1 ≤ i ≤ n.

(a) We have

α is ≤1-minimal ⇔ (n,mn) = (1, 1)

and

pred1(α) =


on−1,mn−1(α) if mn = 1 and n > 1

o(α[ξ ]) if mn > 1, αn,mn = ξ + 1, and χ τ (ξ) = 0

o (me (α[ξ ])) if mn > 1, αn,mn = ξ + 1, and χ τ (ξ) = 1

0 otherwise.

In the case where mn > 1 and αn,mn ∈ Lim we have

Pred1(α) =


ξ<αn,mn

Pred1 (o(α[ξ ])) .

(b) We have

α is ≤2-minimal ⇔ mn ≤ 2 and τ ⋆
n = 1,

and in terms of pred2 we have, setting (i0, j0) := n⋆,

pred2(α) =


on,mn−1(α) if mn > 2

oi0,j0+1(α) if mn ≤ 2 and τ ⋆
n > 1

0 otherwise.

The criterion of Proposition 7.4 holds for any pair γ , α such that γ <2 α.
(c) Along <lex�dom(α)

oi,j(α)

(i,j)∈dom(α)

is a strictly increasing ≤1-chain. For any i ≤ n such that mi > 1 the sequence
oi,2(α), . . . , oi,mi(α)


is a strictly increasing ≤2-chain, and for any j ∈ (1,mi] and ξ < αi,j we have

o(α�(i,j)[ξ ]) <1 oi,j(α).
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(d) If mn = 1, αn,1 = ξ + 1 for some ξ , let δ := on−1,mn−1(α), β be such that α = β + 1, and X := Pred2(δ) ∪ {δ}. There exists
a finite set Z ⊆ (δ, α) such that there is no cover X ∪ Z̃ of X ∪ Z with X < Z̃ and X ∪ Z̃ ⊆ β .

Proof. The proof is by induction on α, where part (c) is an easy consequence of parts (a) and (b). We will make frequent use
of Corollary 6.5. In the case α = 0, equivalently α = ((0)), there is nothing to show, so let us assume that α > 0, whence
αn,mn > 0. We distinguish between cases concerningmn and whether αn,mn is a limit or a successor ordinal.

Case 1:mn = 1.

Subcase 1.1: αn,1 is a successor ordinal, say αn,1 = ξ + 1.
We then have τn,1 = 1, τ ⋆

n = 1, and α is a successor ordinal, say α = β + 1. By 7.6 α is clearly ≤2-minimal. Let
δ := on−1,mn−1(α) and notice that β = δ + κ

τ̃n,0
ξ + dpτ̃n,0

(ξ). Note further that the tracking chain of any ordinal in the
interval [δ, β] has the initial chain α�(n−1,mn−1). In the case n = 1 we have to show that α is ≤1-minimal. This will be the
special case δ = 0. Generally, for n ≥ 1 we now show that α is δ-≤1-minimal, which follows from part (d). In order to prove
part (d) let us first consider the case ξ = 0. Then δ = β and α is clearly δ-≤1-minimal. We trivially choose Z := ∅.

Now let us assume that ξ =ANF ξ1 + · · · + ξr > 0. Since α ∈ TC, we then have α[ξ ] ∈ TC if and only if Condition 5 of
Definition 5.1 holds, and accordingly set

γ :=


α�n−2

⌢(αn−1,1, . . . , αn−1,mn−1 , µτn−1,mn−1
) if n > 1 and ξ = τn−1,mn−1 ∈ E>τ ′

n−1

α[ξ ] otherwise.

Let tc(β) =: β, where βi = (βi,1, . . . , βi,ki) for i = 1, . . . , l, which by Lemma 5.12, part (d), is equal to me(γ) since, again
because of α ∈ TC, we know that γ (and hence also β) does not possess a critical main line index pair. Let σ be the chain
associated with β and set k0 := 0. The i.h. yields δ < γ := o(γ) ≤1 β , δ <1 γ if δ > 0, and we clearly have kl = 1 by the
choice of γ and the definition of me. Hence there exists a≤lex-minimal index pair (p, 1) ∈ dom(β) such that both p ≥ n > 1
and βp,1 ∉ E>σ ⋆

p . Let η := op−1,kp−1(β). Notice that due to the minimality of p the case kp−1 = 1 can only occur when p = n,
mn−1 = 1, and hence δ = η. Setting β′

:= β�(p,1) and β ′
:= o(β′), in general have

δ ≤ η, γ ≤ β ′
= η + κ

σ̃p,0
βp,1

, and β ′
+ dpσ̃p,0

(βp,1) = β

using part (b) of Lemma 5.10, which implies that dpσ̃p,0
(βp,1) = dpσ̃ ⋆

p
(σp,1), and again Lemma 5.12, part (d). Setting

Xη := Pred2(η) ∪ {η}, note that Xη ∩ δ ⊆ X . We now consider cases regarding βp,1 in order to define in each case a
finite set Zη ⊆ (η, α) such that there does not exist any cover Xη ∪ Z̃η of Xη ∪ Zη with Xη < Z̃η and Xη ∪ Z̃η ⊆ β .

• σp,1 = 1. Then l = p, and by the i.h. applied to β ′
= β , which is of the form β = β ′′

+ 1, there is Z ′
⊆fin (η, β), with the

property that there is no cover Xη ∪ Z̃ ′ of Xη ∪ Z ′ such that Xη < Z̃ ′ and Xη ∪ Z̃ ′
⊆ β ′′. Let

Zη := Z ′
∪ {β}.

Clearly, if there were a set Z̃η ⊆ (η, β) such that Xη ∪ Z̃η is a cover of Xη ∪ Zη then Xη ∪ (Z̃η ∩ max(Z̃η)) would be a cover
of Xη ∪ Z ′ which is contained in β ′′.

• βp,1 = σ ⋆
p ∈ E. Then β′ is maximal, implying that l = p and β ′

= β . Note that by Lemma 4.5 and in awareness of the
remark following Definition 5.1

β = sup{o(β′
[ζ ]) | 0 < ζ < βp,1}.

By the i.h. and using Lemma 7.2 we see that β is a successor-<2-successor of its greatest<2-predecessor oi,j+1(β)where
(i, j) := p⋆. Clearly, oi,j+1(β) ∈ Xη . Accordingly,

Zη := {β}

has the requested property.
• βp,1 =NF ζ + σp,1 where ζ , σp,1 > 1. Since ζ + 1, σp,1 + 1 < βp,1 we can apply the i.h. to β ′′

:= o(β′
[ζ + 1]) and

β ′′′
:= o(β′

[σp,1 + 1]), obtaining sets Z ′ and Z ′′ according to the claim, respectively. We then set

Zη := Z ′
∪

β ′′

+

−η + Z ′′


.

Zη has the desired property due to the fact that

β ′′′ ∼= η + 1 ∪ [β ′′, α)

which in turn follows from the i.h. Clearly, we exploit the i.h. regarding β ′′ in order to see that a hypothetical cover of
Xη ∪ Zη would imply the existence of a cover of Xη ∪ Z ′′.
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• Otherwise. Then βp,1 = σp,1 ∉ E1, and we have kp = 1, (p + 1, 1) ∈ dom(β), and

0 < βp+1,1 = log((1/σ ⋆
p ) · σp,1) < σp,1.

By the i.h. applied to β′
[βp+1,1 + 1] we obtain a set Z ′

⊆ (η, o(β′
[βp+1,1 + 1])) according to the claim. We set

Zη := {β ′
} ∪


β ′

+ (−η + Z ′)

.

Arguing toward contradiction let us assume there were a set Z̃η ⊆ (η, β) with Xη < Z̃η such that Xη ∪ Z̃η ⊆ β is a cover
of Xη ∪ Zη . Since by the i.h. β ′

≤1 β , thus β ′
≤1 Zη and hence µ := min(Z̃η) ≤1 Z̃η , using criterion 7.1 we find cofinally

many copies of Z̃η below β ′. We may therefore assume that Z̃η ⊆ (η, β ′) and moreover for some ν ∈ (0, βp,1) such that
ν ≥ σ ⋆

p and log((1/σ ⋆
p ) · ν) < βp+1,1 (clearly satisfying β′

[ν] ∈ TC)

Z̃−

η := Z̃η − {µ} ⊆

β ′′′, β ′′


where β ′′′

:= o(β′
[ν]) and β ′′

:= o(β′
[ν + 1]). Setting

Z̃ ′
:= η + (−β ′′′

+ Z̃−

η )

and using that due to the i.h. we have

η + 1 ∪

β ′′′, β ′′


∼= η + (−β ′′′

+ β ′′)

we obtain a cover Xη ∪ Z̃ ′ of Xη ∪ Z ′ with Xη < Z̃ ′ and Xη ∪ Z̃ ′
⊆ o(β′

[βp+1,1]), which contradicts the i.h.

Now, in the case δ = ηwe are done, choosing Z := Zη . Let us therefore assume that δ < η. We claim that for every index pair
(i, j) ∈ dom(β) with (n−1,mn−1) ≤lex (i, j) <lex (p, 1), setting for convenience ηi,j := oi,j(β), there is Zi,j ⊆fin (ηi,j, α) such
that, setting Xi,j := Pred2(ηi,j)∪{ηi,j}, there does not exist any cover Xi,j∪ Z̃i,j of Xi,j∪Zi,j with Xi,j < Z̃i,j and Xi,j∪ Z̃i,j ⊆ β . This
is shown by induction on the finite number of 1-step extensions from β�(i,j) to β′. The initial step where (i, j) = (p− 1, kp−1)
and ηi,j = η has been shown above. Now assume (i, j) <lex (p−1, kp−1) and let (s, t) := (i, j)+. Let Xs,t := Pred2(ηs,t)∪{ηs,t}

and Zs,t ⊆ (ηs,t , α) be according to the i.h. The i.h. provides us with knowledge of the <i-predecessors of ηs,t (i = 1, 2),
which in turn is in ≤1-relation with any element in Zs,t . We consider cases regarding (s, t).

• If (s, t) = (i, j+ 1), letting σ := σi,j and σ ′
:= σ ′

i,j we have βi,j+1 = µσ . The i.h. applied to8 o(β�(i,j)
⌢(σ̄ + 1)) yields a set

Zσ̄ ⊆ (ηi,j, o(β�(i,j)
⌢(σ̄ + 1))) according to the claim. We now define

Zi,j := {ηs,t} ∪ (ηs,t + (−ηi,j + Zσ̄ )) ∪ {o(β�(s,t)
⌢(σ ))} ∪ Zs,t

and assume that there were a cover Xi,j ∪ Z̃i,j of Xi,j ∪ Zi,j with Xi,j < Z̃i,j and Xi,j ∪ Z̃i,j ⊆ β . Notice that since
ηs,t <2 o(β�(s,t)

⌢(σ )) the imageµ := min(Z̃i,j) of ηs,t must have a<2-successor and therefore, by the i.h. and Lemma 7.5,
a tracking chain ending with a limit ν-index. Using criterion 7.1 the assumption can be fortified to assuming (noticing
that we have κ σ̃ ′

σ = σ̃ and tc(ηi,j + σ̃ ) = β�i−1
⌢(βi,1, . . . , βi,j, 1))

Z̃i,j ⊆ [ηi,j + κ σ̃ ′

ζ , ηi,j + κ σ̃ ′

ζ+1) =: I

for a least ζ , which using the i.h. can easily be seen to satisfy ζ ∈ E ∩ (σ̄ , σ ) and

µ <1 o(me(β�(i,j)
⌢(ζ ))) = ηi,j + κ σ̃ ′

ζ + dpσ̃ ′(ζ ) = max(Z̃i,j).

The minimality of ζ moreover allows us to assume that o(β�(i,j)
⌢(ζ , ν)) ≤2 µ for some index ν ≤ µζ for the following

reasons: In case ofµ < o(β�(i,j)
⌢(ζ , µζ )) there is a least ν > 0 such thatµ <1 o(β�(i,j)

⌢(ζ , ν+1)), and by the i.h. we have
(making use of Lemma 5.5) o(β�(i,j)

⌢(ζ , ν)) ≤2 pred1(o(β�(i,j)
⌢(ζ , ν+1))). If on the other handµ ≥ o(β�(i,j)

⌢(ζ , µζ )) the
assumption o(β�(i,j)

⌢(ζ , µζ )) ≰2 µ would imply, using the i.h. regarding ≤2-predecessors of µ, that there is a least q > i
such that oq,1(me(β�(i,j)

⌢(ζ ))) <1 µ with a corresponding index ρ such that end(ρ) < ζ — contradicting the minimality
of ζ . We may furthermore strengthen the assumption o(β�(i,j)

⌢(ζ , ν)) ≤2 µ for some index ν ≤ µζ to actual equality of
µ and o(β�(i,j)

⌢(ζ , ν)) since it is easy to check that this still results in a cover of Xi,j ∪ Zi,j with the assumed properties.
Since ζ ∈ (σ̄ , σ ), setting ϕ := π−1

ζ ,σ we have ϕ(λζ ) < λσ (cf. Lemma 8.2 of [10]) and ϕ(µζ ) ≤ µσ by Lemma 3.8. The
vectors in the <TC-segment tc[I] of TC have a form

ι = β�(i,j)
⌢(ζ, ξ1, . . . , ξg)

8 Here we use the ·̄ operator in the context Tσ ′

, hence σ̄ ≥ σ ′ .
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where ζ = (ζ , ζ1, . . . , ζh) with g, h ≥ 0. Let

ζ′
:=


(βi,1, . . . , βi,j, 1) if h = 0
(βi,1, . . . , βi,j, 1 + ϕ(ζ1), ϕ(ζ2), . . . , ϕ(ζh)) otherwise.

Let g0 ∈ {1, . . . , g} be minimal such that ξg0,1 < ζ if that exists, and g0 = g + 1 otherwise. We can now define the base
transformation of ι by

t(ι) := β�i−1
⌢

ζ′, ϕ(ξ1), . . . , ϕ(ξg0−1), ξg0 , . . . , ξg


.

In order to clarify the definition note that t(ι) = β�i−1
⌢

ζ′

in case of g = 0. The part


ξg0 , . . . , ξg


, which is empty in

case of g0 = g +1, refers to the addition of a parameter below o(β�(i,j)
⌢(ζ )) which is the reason why the relevant indices

are not subject to base transformation. It is easy to see that t(ι) ∈ TC and therefore

t : tc[I] → TC, with o[Im(t)] ⊆ [ηi,j + σ̃ , β).

Using t and applying the i.h. in combination with the commutativity of ϕ with all operators acting on the indices, as
shown in 7.10 of [10] and Section 3, we obtain

ηi,j + 1 ∪ I ∼= ηi,j + 1 ∪ o[Im(t)]

since thanks to σ ′ < ζ < σ it is easy to see that ηi,j+κ σ̃ ′

ζ and ηi,j+ σ̃ have the same greatest<2-predecessor (which then

is less than or equal to ηi,j) unless both are ≤2-minimal. The set ˜̃Z i,j := o ◦ t ◦ tc[Z̃i,j] therefore gives rise to another cover

of Xi,j ∪ Zi,j with the assumed properties. We have min(
˜̃Z i,j) = o(β�(s,t)[ϕ(ν)]), corresponding to µ = o(β�(i,j)

⌢(ζ , ν)). In

the case ϕ(ν) < µσ = βs,t , thanks to criterion 7.1 we firstly may assume that ˜̃Z i,j is contained in the interval

[o(β�(s,t)[ϕ(ν)]), o(β�(s,t)[ϕ(ν) + 1])) =: J,

and finally we may as well assume that ˜̃Z i,j ⊆ [ηs,t , β) since otherwise, as seen directly from the i.h., we exploit the
isomorphism

ηi,j + 1 ∪ J ∼= ηi,j + 1 ∪ (ηs,t + (−o(β�(s,t)[ϕ(ν)]) + J))

which shifts J into the interval [ηs,t , β). We have now transformed the originally assumed cover Xi,j ∪ Z̃i,j to a cover

Xi,j ∪
˜̃Z i,j of Xi,j ∪ Zi,j which fixes ηs,t = min(

˜̃Z i,j) and still has the assumed property Xi,j ∪
˜̃Z i,j ⊆ β .

Now, defining Z̃s,t to be the subset corresponding to Zs,t in
˜̃Z i,j we obtain a cover Xs,t ∪ Z̃s,t of Xs,t ∪ Zs,t that satisfies

Xs,t < Z̃s,t and Xs,t ∪ Z̃s,t ⊆ β . Contradiction.
• If otherwise (s, t) = (i + 1, 1) then we have βs,t = σs,t ∈ E>σ ⋆

s (by the minimality of p) and (s, t)+ = (i + 1, 2) with
βi+1,2 = µσs,t . We define

Zi,j := Zs,t

and assume there were a cover Xi,j ∪ Z̃i,j of Xi,j ∪ Zi,j with Xi,j < Z̃i,j and Xi,j ∪ Z̃i,j ⊆ β . By the i.h. and, if necessary, an
application of criterion 7.1, wemay assume that Z̃i,j ⊆ (ηi,j, ηs,t). The i.h. shows that we have the following isomorphism

ηs,t ∼= ηi,j + 1 ∪ (ηs,t , o(β�i
⌢(βs,t , 1))),

which shows that defining ˜̃Z i,j := ηs,t + (−ηi,j + Z̃i,j) we obtain another cover Xi,j ∪
˜̃Z i,j of Xi,j ∪ Zi,j with the assumed

properties. We now claim that Xs,t ∪
˜̃Z i,j is a cover of Xs,t ∪ Zs,t with Xs,t <

˜̃Z i,j and Xs,t ∪
˜̃Z i,j ⊆ β , contradicting the i.h.

Indeed, we have ηs,t <1 Zi,j,
˜̃Z i,j and ηs,t ≰2 ν for any ν ∈ Zi,j ∪

˜̃Z i,j, and for any ν such that ν <2 ηs,t we have ν ≤ ηi,j
and either ν = ηi,j, which belongs to Xi,j, or ν < ηi,j, implying that ν <2 ηi,j and hence also ν ∈ Xi,j.

This finishes the proof of part (d). Assuming n > 1 from now on we show using criterion 7.1 that δ <1 α as claimed in part
(a). Let finite sets X ⊆ δ and Y ⊆ [δ, α) be given. Without loss of generality we may assume that δ ∈ Y . We are going to
define a set Ỹ such that X < Ỹ < δ and X ∪ Ỹ ∼= X ∪ Y , distinguishing between two cases, the second of which will require
base transformation.

Subcase 1.1.1:mn−1 = 1. Since αn,1 < ϱn−1 = log((1/τ ⋆
n−1) · τn−1,1) + 1 we see that αn−1,1 is a limit of ordinals η < αn−1,1

such that log((1/τ ⋆
n−1) · end(η)) ≥ ξ . Now choose such an index η large enough so that η > αn−1,1 −· end(αn−1,1),

τ ⋆
n−1 ≤ end(η) < τn−1,1, and X < o(α�n−1,1[η]) =: γ . Notice using the i.h. that γ and δ have the same <i-predecessors
(i = 1, 2). We will define a translation mapping t in terms of tracking chains resulting in an isomorphic copy of the interval
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[δ, β] starting from γ . The tracking chain of an ordinal ζ ∈ [δ, β] has a form ι := α�(n−1,1)
⌢ζ where ζ = (ζ1, . . . , ζg), g ≥ 0,

and ζi = (ζi,1, . . . , ζi,wi) for 1 ≤ i ≤ g . Let

ζ′
:=

((η, 1), ζ2, . . . , ζg) if g > 0 & ζ1,1 = end(η) ∈ E>τ⋆
n−1 & w1 = 1

((η, 1 + ζ1,2, ζ1,3, . . . , ζ1,w1), ζ2, . . . , ζg) if g > 0 & ζ1,1 = end(η) ∈ E>τ⋆
n−1 & w1 > 1

((η), ζ1, . . . , ζg) otherwise

where the first two cases take care of Condition 5 of Definition 5.1 since the situation end(η) ∈ E>τ⋆
n−1 cannot be avoided,

and define

t(ι) := α�(n−2,mn−2)
⌢ζ′.

The mapping t gives rise to the translation mapping o ◦ t ◦ tc : [δ, β] → [γ , γ + κ
τ̃n,0
ξ + dpτ̃n,0

(ξ)], and by the i.h. we have

[0, γ + κ
τ̃n,0
ξ + dpτ̃n,0

(ξ)] ∼= [0, γ ) ∪ [δ, β].

This shows that in order to obtain X ∪ Ỹ ∼= X ∪ Y we may choose

Ỹ := γ + (−δ + Y ).

Subcase 1.1.2:mn−1 > 1. Let σ := τn−1,mn−1−1 and σ ′
:= τ ′

n−1,mn−1−1. If αn−1,mn−1 ∈ Lim let α′ be a successor ordinal below
it, large enough to satisfy o(α�n−1[α′

]) > X , otherwise let α′
:= αn−1,mn−1 −· 1. Notice that we have ρn−1 ≥ σ and ξ < λσ .

We consider the following subcases:

• ξ < σ . Here we can argue comfortably as in the treatment of Subcase 1.1.1, however, in the special case where
χσ (α′) = 1 consider γ := me(α�n−1[α′

]). Using Corollary 5.6 and part (e) of Lemma 5.12 we know that ec(γ) exists
and is of a form σ · (ζ + 1) for some ζ as well as that the maximal extension of α�n−1[α′

] to γ does not add epsilon bases
(in the sense of Definition 5.1) between σ ′ and σ . In the cases where χσ (α′) = 0 we set γ := α�n−1[α′

]. Clearly, σ is a
limit of ordinals η such that log((1/σ ′) · end(η)) = ξ +1, which guarantees that end(η) > σ ′, and η can be chosen large
enough so that setting

ν :=


σ · ζ + η if χσ (α′) = 1
ϱσ

α′ + η if α′
∈ Lim & χσ (α′) = 0

η otherwise

we obtain X < o(γ⌢(ν)) =: δ̃. Observe that by the i.h. δ̃ and δ then have the same <2-predecessors and the same
<1-predecessors below δ̃. The i.h. shows that

δ̃ + κ σ̃
ξ + dpσ̃ (ξ) + 1 ∼= δ̃ ∪ [δ, β]

whence choosing

Ỹ := δ̃ + (−δ + Y )

satisfies our needs.
• ξ ≥ σ . Then we consequently have αn−1,mn−1 ∈ Lim, σ ∈ Lim(E), and according to Lemma 8.1 of [10] σ is a limit of

ρ ∈ E with ϕ(λσ ′

ρ ) ≥ ξ where ϕ := π−1
ρ,σ . Note that for any y ∈ Y the tracking chain tc(y) is an extension of tc(δ), and is

of a form

tc(y) = α�n−2
⌢(αn−1,1, . . . , αn−1,mn−1 , ζ

y
0,1, . . . , ζ

y
0,k0(y)

)⌢ζy

where k0(y) ≥ 0, ζy
= (ζ

y
1, . . . , ζ

y
r(y)), r(y) ≥ 0, and ζ

y
i = (ζ

y
i,1, . . . , ζ

y
i,ki(y)

) with ki(y) ≥ 1 for i = 1, . . . , r(y). Notice
that k0(y) > 0 implies that τn−1,mn−1 ∈ E>σ and ξ ≥ τn−1,mn−1 . We now define r0(y) ∈ {1, . . . , r(y)} to be minimal such
that ζ

y
r0(y),1

< σ if that exists, and r0(y) := r(y) + 1 otherwise. For convenience let ζ
y
r(y)+1,1 := 0. Using Lemma 8.1 of

[10] we may choose an epsilon number ρ ∈ (σ ′, σ ) satisfying ξ ∈ Tσ [ρ] and λρ ≥ π(ξ), where π := πρ,σ , large enough
so that

ζ
y
r0(y),1

, ζ
y
i,j ∈ Tσ [ρ]

for every y ∈ Y , every i ∈ [0, r0(y)), and every j ∈ {1, . . . , ki(y)}. We may now map δ to δ̃ := o(α�n−1[α′
]
⌢(ρ, µρ)),

easily verifying using the i.h. that δ and δ̃ have the same <2-predecessors in Ord and the same <1-predecessors in X .
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The additional requirement ρ > σ̄ yields the bounds ϕ(λρ) < λσ (cf. Lemma 8.2 of [10]) and ϕ(µρ) ≤ µσ by Lemma 3.8.
Let ρ̃ := κ σ̃ ′

ρ and

I := [δ̃, δ̃ + κ
ρ̃

π(ξ) + dpρ̃(π(ξ))].

As in the proof of part (d) we are now going to define

t : tc[I] → TC, with o[Im(t)] ⊆ [δ, α)

as follows. Any tracking chain ι ∈ tc[I] has a form

α�n−1[α′
]
⌢

(ρ, µρ, ζ0,1, . . . , ζ0,k0), ζ1, . . . , ζr


where k0 ≥ 0, r ≥ 0, and ζi = (ζi,1, . . . , ζi,ki) with ki ≥ 1 for 1 ≤ i ≤ r . Let r0 ∈ {1, . . . , r} be minimal such that
ζr0,1 < ρ if that exists and r0 := r + 1 otherwise. We distinguish between two groups of cases, as follows:

1. k0 = 0: If k1 > 0 and ϕ(ζ1,1) = τn−1,mn−1 ∈ E>σ we define the auxiliary vector

ζ′

1 :=


(1) if k1 = 1
(1 + ϕ(ζ1,2), ϕ(ζ1,3), . . . , ϕ(ζ1,k1)) otherwise

and then define

t(ι) := α�n−2
⌢

αn−1

⌢ζ′

1, ϕ(ζ2), . . . , ϕ(ζr0−1), ζr0 , . . . , ζr


,

whereas otherwise we smoothly set

t(ι) := α�n−1
⌢

ϕ(ζ1), . . . , ϕ(ζr0−1), ζr0 , . . . , ζr


.

2. k0 > 0: Clearly, this can occur only if µρ ∈ E>ρ . If ϕ(µρ) = τn−1,mn−1 ∈ E>σ we smoothly define

t(ι) := α�n−2
⌢

αn−1

⌢ϕ(ζ0), ϕ(ζ1), . . . , ϕ(ζr0−1), ζr0 , . . . , ζr


,

whereas otherwise

t(ι) := α�n−1
⌢

ζ′

0, ϕ(ζ1), . . . , ϕ(ζr0−1), ζr0 , . . . , ζr


where

ζ′

0 :=


(ϕ(µρ)) if ζ0,1 = 1
(ϕ(µρ), −1 + ϕ(ζ0,1), ϕ(ζ0,2), . . . , ϕ(ζ0,k0)) otherwise.

By our choice of ρ we now have Y ⊆ o[Im(t)], and defining

Ỹ := o ◦ t−1
◦ tc[Y ]

we obtain the desired copy of Y , since using the i.h. it is easy to check that, setting A := o(α�n−1[α′
]) + 1,

A ∪ I ∼= A ∪ o[Im(t)].

Subcase 1.2: αn,1 ∈ Lim.
In the case n = 1 using Lemma 4.5 we have

α = sup{o(((ξ))) | ξ < α1,1}

which by the i.h. is a proper supremum of <1-minimal ordinals. Hence α is ≤i-minimal for i = 1, 2 and we are done.
Let us now assume that n > 1, and let δ := on−1,mn−1(α). By Lemma 4.5 we have

α = sup{o(α[ξ ]) | 0 < ξ < αn,1 & α[ξ ] ∈ TC},

and part (a) of the claim for α follows from the i.h. applied to the o(α[ξ ]) for ξ ∈ (0, αn,1) such that α[ξ ] ∈ TC. δ is therefore
the greatest <1-predecessor of α.

We now turn to the proof of part (b). In the case τ ⋆
n = 1 we have to show that α is ≤2-minimal. Arguing toward

contradiction let us assume that there exists γ such that γ <2 α. Then clearly γ ≤2 δ and hence tc(γ ) is seen to be a
proper initial chain of α, say γ = oi,j+1(α) for some i, j such that (i, j + 1) ∈ dom(α) and i < n. Due to the i.h. and
Lemma 7.5 we know that mn−1 > 1 in case of γ = δ. In case of τn,1 < αn,1 let η be such that αn,1 =NF η + τn,1, otherwise
let η := 0. Let β := δ + κ

τ̃n,0
η + dpτ̃n,0

(η) so that β + τ̃n,1 = α. Notice that according to our assumptions τi,j > τn,1 > 1. Let

ζ := oi,j(α). Applying part (d) of the i.h. to X := Pred2(ζ ) ∪ {ζ } there exists a finite set Z ⊆ (ζ , ζ + κ
τ̃i,j
τn,1+1) such that there

is no cover X ∪ Z̃ of X ∪ Z with X < Z̃ and X ∪ Z̃ ⊆ ζ + τ̃n,1 (note that κ
τ̃i,j
τn,1 = τ̃n,1 and dpτ̃i,j

(τn,1) = 0). By the i.h. we know
that

ζ + 1 + τ̃i,j ∼= ζ + 1 ∪ (o(α�(i,j+1)[ξ ]), o(α�(i,j+1)[ξ ]) + τ̃i,j)
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for every ξ ∈ (0, αi,j+1). In the case αi,j+1 ∈ Lim we directly see that below γ there are cofinally many copies Z̃γ such that

X ∪ Z ∼= X ∪ Z̃γ . In the case αi,j+1 ∉ Lim we have by the i.h. (cf. Subcase 1.1.2, ξ < σ , above) γ = pred1(γ ) + κ
τ̃i,j
τi,j·(ν+1) for

some ν and, setting γ ′
:= pred1(γ ) + κ

τ̃i,j
τi,j·ν+1,

ζ + 1 + τ̃i,j ∼= ζ + 1 ∪ [γ ′, γ ),

and within the interval [γ ′, γ ) we find cofinally many intervals of the form

(γ ′
+ κ

τ̃i,j
λ , γ ′

+ κ
τ̃i,j
λ+τn,1+1]

where λ < τi,j such that λ + τn,1 is in normal form, isomorphic to (ζ , ζ + τ̃n,1 + 1] over ζ + 1. Hence in any case there are
copies Z̃γ of Z cofinally in γ such that X ∪ Z ∼= X ∪ Z̃γ . By Lemma 7.6 and our assumption γ <2 α we now obtain copies Z̃α

of Z cofinally below α (and hence above β) such that X ∪ Z ∼= X ∪ Z̃α . The i.h. reassures us of the isomorphism

ζ + 1 + τ̃n,1 ∼= ζ + 1 ∪ (β, α),

noting that the ordinals of the interval (β, α) cannot have any <2-predecessors in (ζ , β] and that the tracking chains of the
ordinals in (ζ , ζ + τ̃n,1)∪ (β, α) have the proper initial chain α�(i,j). This provides us, however, with a copy Z̃ ⊆ (ζ , ζ + τ̃n,1)

of Z such that X ∪ Z ∼= X ∪ Z̃ , contradicting our choice of X and Z , whence γ <2 α is impossible. In the case τ ⋆
n = 1 the

ordinal α is therefore ≤2-minimal.
From now on let us assume that τ ⋆

n > 1, and let (i, j) ∈ dom(α) be such that n⋆
= (i, j). We have to show that

pred2(α) = oi,j+1(α) =: γ . The above argument showing the ≤2-minimality of α in the case τ ⋆
n = 1 relativizes

straightforwardly to showing that α is γ -≤2-minimal. The next step is to verify that γ <2 α. In the situation τ ⋆
n < τn,1

the ordinal α is a limit of <2-successors of γ (whose greatest <2-predecessor is γ ). This follows from the i.h. noticing that
αn,1 is a limit of indices which are successor multiples of τ ⋆

n . We are left to consider the situation τ ⋆
n = τn,1. Here we show

γ <2 α using criterion 7.4. To this end letX ⊆fin γ and Y ⊆fin [γ , α)be given.Without loss of generalitywemay assume that
γ ∈ Y . Set τ := τi,j and τ̃ := τ̃i,j. Let (k, l) be the<lex-maximum index pair in dom(α) such that (i, j+1) <lex (k, l) <lex (n, 1)
and αk+1,1 < ρk −· 1 in case of (k, l)+ = (k + 1, 1) and τk,l < ρk(α�(k,l)) −· 1 in case of (k, l)+ = (k, l + 1), if that exists, and
(k, l) := (i, j + 1) otherwise. We then have αs,t+1 = µτs,t whenever (k, l) <lex (s, t + 1) ∈ dom(α) due to Corollary 5.6
since τn,1 = τ and α is maximal. Moreover, we have α = me(α�(k,l)+). In case of τk,l < αk,l let η be such that αk,l =NF η + τk,l,
otherwise set η := 0. Let β := ok,l(α). For the reader’s convenience we are going to discuss the following cases in full detail.
Subcase 1.2.1.2 below will treat the situation where a genuinely larger ≤2-connectivity component arises.

Subcase 1.2.1: (k, l) = (i, j + 1). Let ϱ := αi+1,1 if (i, j + 1)+ = (i + 1, 1) and ϱ := τi,j+1 (which then is an epsilon number
greater than τ ) otherwise. Lemma 3.3 allows us to conclude χ τ (ϱ) = 1, and by Lemma 5.12 we have

α = γ + κ τ̃
ϱ + dpτ̃ (ϱ).

Let λ ∈ Lim ∪ {0} and p < ω be such that logend(αi,j+1) = λ + p. Then we have ϱτ
αi,j+1

= τ · (λ + p −· χ τ (λ)). It follows
from end(α) = τ̃ that ϱ must have the form ϱ = τ · ξ for some ξ ∈ (0, λ + p −· χ τ (λ)].

1.2.1.1: ϱ < ϱτ
αi,j+1

. In this case it is easy to check that αi,j+1 is a supremum of indices η + ν such that ϱ ≤ ϱτ
η+ν and

χ τ (ν) = 0: If χ τ (λ) = 1 we distinguish between p ≤ 1, where we have ϱτ
αi,j+1

= τ · λ and ξ < λ, and p > 1, where
αi,j+1 = sup{η + ωλ+p−1

· r | r ∈ (0, ω)}, ϱτ
αi,j+1

= τ · (λ + p − 1), and ϱτ

η+ωλ+p−1·r
= τ · (λ + p − 2). If on the other hand

χ τ (λ) = 0 we have ϱ < τ · λ in case of p = 0, while for p > 0 we again obtain αi,j+1 = sup{η + ωλ+p−1
· r | r ∈ (0, ω)},

however with ϱ ≤ ϱτ

η+ωλ+p−1·r = τ · (λ + p − 1). By the i.h. we have

γν := o(α�(i,j+1)[η + ν]) <2 γν + κ τ̃
ϱ + dpτ̃ (ϱ)

and

αν := γν + κ τ̃
ϱ + dpτ̃ (ϱ) ∼= γν ∪ [γ , α) (3)

for the ν specified above. Choose ν as specified above large enough so that X ⊆ γν and let Yν be the isomorphic copy of Y
according to (3). By the i.h. we obtain a copy Ỹ ⊆ γν according to criterion 7.4. Let Ỹ+ with Ỹ ⊆ Ỹ+

⊆ γ be given, and
set U := X ∪ Ỹ+

∩ γν , V := Ỹ+
− γν . Since by the i.h. clearly γν <1 γ we obtain a copy Ṽ such that U < Ṽ ⊆ γν and

U ∪ Ṽ ∼= U ∪ V . Setting Ỹ+
ν := (Ỹ+

∩ γν) ∪ Ṽ , hence Ỹ ⊆ Ỹ+
ν ⊆ γν , the criterion yields an appropriate extension Y+

ν ⊆ αν

such that X ∪ Ỹ+
ν

∼= X ∪Y+
ν extends X ∪ Ỹ ∼= X ∪Yν . Now let Y+ be the isomorphic copy of Y+

ν according to (3). This provides
us with the extension of Y according to Ỹ+ as required by criterion 7.4.

1.2.1.2: ϱ = ϱτ
αi,j+1

. Recalling that we have χ τ (ϱ) = 1 this implies (i, j + 1)+ = (i + 1, 1) according to Corollary 5.6 which
also shows that here the case p = 0 does not occur. We now have αi,j+1 = sup{η + ωλ+p−1

· r | r ∈ (0, ω)}, and in the case
χ τ (λ) = 1&p = 1 we have ϱ = ϱτ

η+ωλ·r , while in the remaining cases ϱ = ϱτ

η+ωλ+p−1·r + τ . In case of χ τ (λ) = 0 the ordinal
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ϱ is equal to τ · (λ + p) whereas it is equal to τ · (λ + p − 1) if χ τ (λ) = 1. Let r ∈ (0, ω) be large enough so that X ⊆ γν

where ν := ωλ+p−1
· r and γν := o(α�(i,j+1)[η + ν]). Setting αν := o(α�(i,j+1)[η + ν + 1]) we obtain αν = γν + κ τ̃

ϱ + dpτ̃ (ϱ)

by Lemma 5.12 in the case χ τ (λ) = 1 & p = 1, while otherwise αν = γν + κ τ̃
ϱτ
η+ν

+ dpτ̃ (ϱ
τ
η+ν) + τ̃ = γν + κ τ̃

ϱ . Now the i.h.
yields

αν
∼= γν ∪ [γ , α), (4)

and we choose Ỹ to be the isomorphic copy of Y under this isomorphism. Let Ỹ+ with Ỹ ⊆ Ỹ+
⊆ γ be given. Let

U := X ∪ Ỹ+
∩αν and V := Ỹ+

−αν . Since by the i.h. we have αν <1 γ there exists Ṽ with U < Ṽ < αν and U ∪ Ṽ ∼= U ∪V .
Now let Y+ be the copy of (Ỹ+

∩ αν) ∪ Ṽ under (4). This choice satisfies the requirements of criterion 7.4.

Subcase 1.2.2: (i, j + 1) <lex (k, l). We argue similarly as in Subcases 1.1.1 and 1.1.2 above.

1.2.2.1: l = 1. This subcase corresponds to Subcase 1.1.1. Here we have (k, l)+ = (k + 1, 1) and αk+1,1 < ρk −· 1 =

log((1/τ ⋆
k ) ·τk,1). We see that αk,1 is a limit of ordinals η+ν < αk,1 such that τ ⋆

k < end(ν) < τk,1 and log((1/τ ⋆
k ) ·end(ν)) ≥

αk+1,1, and choosing ν large enough we may assume that Y ∩ β ⊆ o(α�(k,1)[η + ν]) =: βν . Using the i.h. and setting
αν := βν + κ

τ̃k,0
αk+1,1 + dpτ̃k,0

(αk+1,1) we now obtain the isomorphism

αν
∼= βν ∪ [β, α) (5)

via a mapping of the corresponding tracking chains defined similarly as in Subcase 1.1.1. In fact, since γ <2 αν by the i.h.,
proving that γ <2 α shows that this isomorphism extends to the suprema, that is, mapping αν to α. Exploiting (5) and using
that the criterion holds for γ , αν we can now straightforwardly show that the criterion holds for γ , α.

1.2.2.2: l > 1. Here we proceed in parallel with Subcase 1.1.2. Let ξ := αk+1,1 in case of (k, l)+ = (k + 1, 1) and ξ := τk,l
otherwise, whence

α = ok,l(α) + κ σ̃
ξ + dpσ̃ (ξ).

Let further σ := τk,l−1 and σ ′
:= τ ′

k,l−1. In the case αk,l ∈ Lim let α′
∈ (η, αk,l) be a successor ordinal large enough so that

Y ∩ [o(α�(k,l)[α′
]), β) = ∅, otherwise let α′

:= αk,l −· 1. Notice that we have ρk(α�(k,l)) ≥ σ and ξ < λσ .

• ξ < σ . In the special casewhereχσ (α′) = 1 considerα′
:= me(α�(k,l)[α′

]). Using Corollary 5.6 and part (e) of Lemma 5.12
we know that ec(α′) exists and is of a form σ · (ζ + 1) for some ζ as well as that the maximal extension of α�(k,l)[α′

] to α′

does not add epsilon bases between σ ′ and σ . In the cases where χσ (α′) = 0 we set α′
:= α�(k,l)[α′

]. Clearly, σ is a limit
of ordinals ρ such that log((1/σ ′) · end(ρ)) = ξ + 1, which guarantees that end(ρ) > σ ′, and ρ can be chosen large
enough so that setting

ν :=


σ · ζ + ρ if χσ (α′) = 1
ϱσ

α′ + ρ if α′
∈ Lim & χσ (α′) = 0

ρ otherwise

we obtain, setting βν := o(α′⌢(ν)), Y ∩ [βν, β) = ∅. Observe that by the i.h. βν and β then have the same
<2-predecessors and the same <1-predecessors below βν . The i.h. shows that

αν := βν + κ σ̃
ξ + dpσ̃ (ξ) ∼= βν ∪ [β, α) and γ <2 αν

which we can exploit to show that criterion 7.4 holds for γ , α from its validity for γ , αν , implying that the above
isomorphism extends to mapping αν to α.

• ξ ≥ σ . Then we consequently have αk,l ∈ Lim, σ ∈ Lim(E), and according to Lemma 8.1 of [10] σ is a limit of ρ ∈ E
with ϕ(λσ ′

ρ ) ≥ ξ where ϕ := π−1
ρ,σ . Note that for any y ∈ Y − β the tracking chain tc(y) is an extension of tc(β), and is

of a form

tc(y) = α�k−1
⌢(αk,1, . . . , αk,l, ζ

y
0,1, . . . , ζ

y
0,k0(y)

)⌢ζy

where k0(y) ≥ 0, ζy
= (ζ

y
1, . . . , ζ

y
r(y)), r(y) ≥ 0, and ζ

y
i = (ζ

y
i,1, . . . , ζ

y
i,ki(y)

)with ki(y) ≥ 1 for i = 1, . . . , r(y). Notice that
k0(y) > 0 implies that τk,l ∈ E>σ and ξ ≥ τk,l. We now define r0(y) ∈ {1, . . . , r(y)} to be minimal such that ζ

y
r0(y),1

< σ

if that exists, and r0(y) := r(y)+1 otherwise. For convenience let ζ y
r(y)+1,1 := 0. Using Lemma 8.1 of [10] wemay choose

an epsilon number ρ ∈ (σ ′, σ ) satisfying ξ ∈ Tσ [ρ] and λρ ≥ π(ξ), where π := πρ,σ , large enough so that

ζ
y
r0(y),1

, ζ
y
i,j ∈ Tσ [ρ]

for every y ∈ Y , every i ∈ [0, r0(y)), and every j ∈ {1, . . . , ki(y)}. We may now map β to βρ := o(α�(k,l)[α′
]
⌢(ρ, µρ)),

easily verifying using the i.h. that β and βρ have the same <2-predecessors in Ord and the same <1-predecessors in
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X ∪ (Y ∩ βρ). The additional requirement ρ > σ̄ yields the bounds ϕ(λρ) < λσ (cf. Lemma 8.2 of [10]) and ϕ(µρ) ≤ µσ

by Lemma 3.8. Let ρ̃ := κ σ̃ ′

ρ , αρ := βρ + κ
ρ̃

π(ξ) + dpρ̃(π(ξ)), and

I := [βρ, αρ).

In the same way as in Subcase 1.1.2 we can now define

t : tc[I] → TC, with o[Im(t)] ⊆ [β, α)

so that, setting A := o(α�(k,l)[α′
]) + 1, by the i.h.

A ∪ I ∼= A ∪ o[Im(t)] and γ <2 αρ .

By our choice ofα′ we have X∪(Y ∩β) ⊆ o(α�(k,l)[α′
]), and by our choice of ρ we have Y −β ⊆ o[Im(t)], hence exploiting

the mapping o◦ t−1
◦ tc we can now derive the validity of criterion 7.4 for γ , α from its validity for γ , αρ , again implying

that the above isomorphism extends to mapping αρ to α.

Case 2:mn > 1.

Subcase 2.1: αn,mn is a successor ordinal, say αn,mn = ξ + 1.
Let τ := τn,mn−1 and α′

:= o(α[ξ ]). We consider cases for χ τ (ξ):

Subcase 2.1.1: χ τ (ξ) = 0. In order to verify part (a) we have to show that pred1(α) = α′. By Lemma 4.5 we have

α = sup{o(α[ξ ]
⌢(ϱτ

ξ + η) | η ∈ (0, τ )},

which by the i.h. is a proper supremum over ordinals whose greatest <1-predecessor is α′.
We now proceed to prove part (b). We first consider the special case ξ = 0. By part (a) α′

= on,mn−1(α) is the greatest
<1-predecessor of α. Then ifmn = 2 by the i.h. α′ is either ≤1-minimal or has a greatest <1-predecessor, and thus α′ ≮2 α
by Lemma 7.5, as claimed. Clearly, any <2-predecessor of α then must be a <2-predecessor of α′ as well. If pred2(α

′) > 0
then using the i.h. α is seen to be the supremum of <2-successors of pred2(α

′) like α′ itself, hence pred2(α) = pred2(α
′),

as claimed. If on the other hand mn > 2 then α′ <2 α as according to the i.h. α then is the supremum of <2-successors of
α′, hence pred2(α) = α′, as claimed.

From now on let us assume that ξ > 0. If ξ is a successor ordinal then by the i.h. α′ has a greatest<1-predecessor, is itself
the greatest <1-predecessor of α, and Lemma 7.5 therefore yields α′ ≮2 α. In the casemn = 2 & τ ⋆

n = 1 the ≤2-minimality
follows then from the ≤2-minimality of α′, while in the remaining cases α is easily seen to be the supremum of ordinals
with the same greatest <2-predecessor as claimed for α.

We are left with the case that ξ ∈ Lim. Then α′ is the greatest <1-predecessor, hence α is α′-≤2-minimal, and
showing that α′ ≮2 α will imply the claim as above. Arguing toward contradiction let us assume that α′ <2 α. Let
X := Pred2(α

′) ∪ {α′
} and Z ⊆ (α′, α′

+ κ τ̃
ϱτ
ξ +1) be sets according to part (d) of the i.h. for which there does not exist

any cover X ∪ Z̃ such that X < Z̃ and X ∪ Z̃ ⊆ α′
+ κ τ̃

ϱτ
ξ

+ dpτ̃ (ϱ
τ
ξ ). We set X ′

:= X − {α′
} and Z ′

:= {α′
} ∪ Z . By

Lemma 7.6 we obtain cofinally many copies Z̃ ′ below α′ such that X ′ < Z̃ ′ and X ′
∪ Z̃ ′ ∼= X ′

∪ Z ′ with the property that
α̃′

:= min Z̃ ′ <1 α′. Let ν ∈ (0, ξ) be such that o(α[ν]) ≤ α̃′ < o(α[ν + 1]). Choosing Z̃ ′ large enough we may assume
that X ′ < o(α[ν]) and logend(ν) < logend(ξ), hence ϱτ

ν ≤ ϱτ
ξ . Notice that if o(α[ν]) < α̃′ the i.h. yields χ τ (ν) = 1

and pred1(o(α[ν + 1])) = me(o(α[ν])) ≥ α′ and thus o(α[ν]) ≤2 α̃′. We may therefore assume that α̃′
= o(α[ν]) since

exchanging these ordinalswould still result in a cover of X ′
∪Z ′. Because o(α[ν+1]) <1 α′ by the i.h. wemay further assume

that Z̃ ′
⊆ o(α[ν + 1]). Noticing that in the case ϱτ

ν = ϱτ
ξ we must have χ τ (ν) = 1 and by the i.h. o(α[ν]

⌢(ϱτ
ν )) <1 α′ we

finally may assume that X ′
∪ Z̃ ′

⊆ o(α[ν]
⌢(ζ )) for some ζ < ϱτ

ξ with min Z̃ ′
= o(α[ν]) so that X ′

∪ Z̃ ′ is a cover of X ′
∪ Z ′.

Since by i.h.

o(α[ν]
⌢(ζ )) ∼= o(α[ν]) ∪ [α′, o(α[ξ ]

⌢(ζ ))),

setting

Z̃ := (α′
+ (−o(α[ν]) + Z̃ ′)) − {α′

}

results in a cover X ∪ Z̃ of X ∪ Z with X < Z̃ and X ∪ Z̃ ⊆ α′
+ κ τ̃

ϱτ
ξ

+ dpτ̃ (ϱ
τ
ξ ). Contradiction.

Subcase 2.1.2: χ τ (ξ) = 1. Part (a) claims that, setting δ := me(α[ξ ]), pred1(α) = o(δ) =: δ. By part (e) of Lemma 5.12 the
extending index of ec(δ) is of a form τ · (η + 1) for some η. Notice that cml(δ) = (n,mn − 1). By Lemma 4.5 we then have

α = sup{o(δ⌢(τ · η + ζ )) | ζ ∈ (0, τ )},

which by the i.h. is a proper supremum over ordinals whose greatest <1-predecessor is δ.
As to part (b) we first show that α is α′-≤2-minimal, arguing similarly as in the proof of (relativized) ≤2-minimality

in Subcase 1.2., but providing the argument explicitly again for the reader’s convenience. We will then prove α′ ≮2 α
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which as above implies the claim. Recall that we have pred1(α) = o(δ) = δ according to part (a). Any <2-predecessor
γ of α then satisfies γ ≤2 δ, so that by the i.h. γ := tc(γ ) is an initial chain of δ extending α[ξ ]. Let δ = (δ1, . . . , δr)
where δi = (δi,1, . . . , δi,ki) for 1 ≤ i ≤ r with associated chain σ. Then r ≥ n, kn ≥ mn, δn,mn = ξ , and δi,j = αi,j for
all (i, j) ∈ dom(δ) such that (i, j) <lex (n,mn). According to Lemma 5.5 we have (n,mn) <lex (r, kr), and by part (e) of
Lemma 5.12 we have

α = δ + κ
σ̃ ′
r

τ ·(η+1).

By Lemma 5.5 and the i.h. we know that α′ <2 δ. Arguing toward contradiction let us assume that γ > α′, thus γ = oi,j+1(δ)
for some (i, j + 1) ∈ dom(δ) with (n,mn) <lex (i, j + 1). We then have σi,j > τ , and set ζ := oi,j(δ) as well as

β := δ + κ
σ̃ ′
r

τ ·η + dpσ̃ ′
r
(τ · η), so that α = β + τ̃ . Applying part (d) of the i.h. to X := Pred2(ζ ) ∪ {ζ } there exists a finite set

Z ⊆ (ζ , ζ + τ̃ + 1) such that there is no cover X ∪ Z̃ of X ∪ Z with X < Z̃ and X ∪ Z̃ ⊆ ζ + τ̃ . By the i.h. we know that

ζ + 1 + σ̃i,j ∼= ζ + 1 ∪ (o(δ�(i,j+1)[ν]), o(δ�(i,j+1)[ν]) + σ̃i,j)

for every ν ∈ (0, δi,j+1). Since δi,j+1 = µσi,j ∈ P we directly see that below γ there are cofinally many copies Z̃γ such that
X ∪ Z ∼= X ∪ Z̃γ . By Lemma 7.6 and our assumption γ <2 α we now obtain copies Z̃α of Z cofinally below α (and hence
above β) such that X ∪ Z ∼= X ∪ Z̃α . The i.h. reassures us of the isomorphism

ζ + 1 + τ̃ ∼= ζ + 1 ∪ (β, α),

noting that the ordinals of the interval (β, α) cannot have any <2-predecessors in (ζ , β] and that the tracking chains of the
ordinals in (ζ , ζ + τ̃ ) ∪ (β, α) have the proper initial chain δ�(i,j). This provides us, however, with a copy Z̃ ⊆ (ζ , ζ + τ̃ ) of Z
such that X ∪ Z ∼= X ∪ Z̃ , contradicting our choice of X and Z , whence γ <2 α is impossible. Therefore α is α′-≤2-minimal.

We now show that α′ ≮2 α. In order to reach a contradiction let us assume to the contrary that α′ <2 α. Under this
assumption we can prove the following variant of part (d):

Claim 7.10. Suppose α′ <2 α and let X := Pred2(α
′) ∪ {α′

}. There exists a finite set Z ⊆ (α′, α] such that there is no cover
X ∪ Z̃ of X ∪ Z with X < Z̃ and X ∪ Z̃ ⊆ α.

The proof of the above claim both builds upon part (d) and is similar to its proof, but for the reader’s convenience we give
it in detail. We are going to show that for every index pair (i, j) ∈ dom(δ) such that (n,mn) ≤lex (i, j) ≤lex (r, kr), setting
ηi,j := oi,j(δ) and Xi,j := Pred2(ηi,j) ∪ {ηi,j}, there exists a finite set Zi,j ⊆ (ηi,j, α] such that there is no cover Xi,j ∪ Z̃i,j of
Xi,j ∪ Zi,j with Xi,j < Z̃i,j and Xi,j ∪ Z̃i,j ⊆ α. We proceed by induction on the finite number of 1-step extensions from δ�(i,j)

to δ: The initial step is (i, j) = (r, kr), hence ηi,j = δ. Recalling that α = δ + κ
σ̃ ′
r

τ ·(η+1), we can apply part (d) of the i.h. to

δ + κ
σ̃ ′
r

τ ·η+1 to obtain a set Z ′
⊆ (δ, δ + κ

σ̃ ′
r

τ ·η+1) such that there does not exist any cover Xi,j ∪ Z̃ ′ of Xi,j ∪ Z ′ with Xi,j < Z̃ ′ and

Xi,j ∪ Z̃ ′
⊆ δ + κ

σ̃ ′
r

τ ·η + dpσ̃ ′
r
(τ · η). Defining

Zi,j := Z ′
∪ {α}

and noticing that by our assumption we have α′ <2 α and that by the i.h. there are no <2-successors of α′ in the interval
(δ, α), it is easy to check that Zi,j has the required property. Let us now assume that (i, j) <lex (r, kr) and set (s, t) := (i, j)+.

• (s, t) = (i + 1, 1). By Lemma 5.5 we have σs,t > τ ∈ E and hence σ ⋆
s ≥ τ . Notice that the case σs,t = σ ⋆

s cannot occur
since then ec(δ�(s,t)) would not exist. We discuss the remaining possibilities for δs,t :

1. δs,t ∈ E>σ ⋆
s . We then argue as in the corresponding case in the proof of part (d). We therefore define

Zi,j := Zs,t .

That this choice is adequate is shown as in the proof of part (d).
2. Otherwise. Let σ := σi+1,0 and σ̃ := σ̃i+1,0. In case of δs,t > σs,t let ζ be such that δs,t =NF ζ + σs,t , otherwise set

ζ := 0. If ζ > 0 let Zζ ⊆ (ηi,j, ηi,j + κ σ̃
ζ+1) be the set according to part (d) of the i.h. so that there does not exist any

cover Xi,j ∪ Z̃ζ of Xi,j ∪ Zζ with Xi,j < Z̃ζ and Xi,j ∪ Z̃ζ ⊆ ηi,j + κ σ̃
ζ + dpσ̃ (ζ ), otherwise set Zζ := ∅. We now define

Zi,j := Zζ ∪ {ηs,t} ∪ Zs,t .

In order to show that this choice of Zi,j satisfies the claim let us assume to the contrary the existence of a set Z̃i,j such
that Xi,j ∪ Z̃i,j is a cover of Xi,j ∪ Zi,j with Xi,j < Z̃i,j and Xi,j ∪ Z̃i,j ⊆ α. Let Z ′

:= {ηs,t} ∪ Zs,t and Z̃ ′ be the subset of Zi,j
corresponding to Z ′. Due to the property of Zζ in the case ζ > 0 we have

Z̃ ′
⊆ [ηi,j + κ σ̃

ζ+1, α),

and by an application of Proposition 7.1 to ηs,t <1 α we obtain that – keeping the same <2-predecessors – there are
cofinally many copies

Z̃ ′
⊆ [ηi,j + κ σ̃

ζ+1, ηs,t)
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below ηs,t . The ordinal µ := min Z̃ ′ corresponds to ηs,t in Zi,j, and since µ ≤1 Z̃ ′ we see that there exists ν ∈ (ζ , δs,t)
such that

Z̃ ′
− {µ} ⊆ (η′, η′′)

where η′
:= ηi,j + κ σ̃

ν and η′′
:= ηi,j + κ σ̃

ν+1, which again we may assume to satisfy ν ≥ σ ⋆
s and log((1/σ ⋆

s ) · ν) <
log((1/σ ⋆

s ) · σs,t). By the i.h. we have
η′′ ∼= η′

∪ [ηs,t , ηs,t + (−η′
+ η′′))

since ηs,t and η′ have the same <2-predecessors. Exploiting this isomorphism and noticing that Xs,t − {ηs,t} ⊆ Xi,j we
obtain a copy Z̃s,t of Z̃ ′

−{µ} such that Xs,t ∪ Z̃s,t is a cover of Xs,t ∪Zs,t with Xs,t < Z̃s,t and Xs,t ∪ Z̃s,t ⊆ α. Contradiction.

• (s, t) = (i, j + 1). Setting σ := σi,j and σ ′
:= σ ′

i,j we then have δi,j+1 = µσ and proceed as in the corresponding case in
the proof of part (d). Applying part (d) of the i.h. to o(δ�(i,j)

⌢(σ̄ + 1)) yields a set Zσ̄ ⊆ (ηi,j, ηi,j + κ σ̃ ′

σ̄+1) such that there
does not exist a cover Xi,j ∪ Z̃σ̄ of Xi,j ∪ Zσ̄ with Xi,j < Z̃σ̄ and Xi,j ∪ Z̃σ̄ ⊆ ηi,j + κ σ̃ ′

σ̄ + dpσ̃ ′(σ̄ ). We now define

Zi,j := {ηs,t} ∪ (ηs,t + (−ηi,j + Zσ̄ )) ∪ {o(δ�(s,t)
⌢(σ ))} ∪ Zs,t .

In order to show that Zi,j has the desired property we assume that there were a cover Xi,j ∪ Z̃i,j of Xi,j ∪ Zi,j with Xi,j < Z̃i,j
and Xi,j ∪ Z̃i,j ⊆ α and then argue as in the corresponding case in the proof of part (d) in order to drive the assumption
into a contradiction.

The final instance (i, j) = (n,mn) establishes Claim 7.10.
We can now derive a contradiction similarly as in the previous subcase. Let X, Z be as in the above claim. Without loss of

generality memay assume that pred1(α) = δ ∈ Z . We set X ′
:= X −{α′

} and Z ′
:= {α′

}∪ Z −{α}. By Lemma 7.6 we obtain
cofinally many copies Z̃ ′ below α′ such that X ′ < Z̃ ′ and X ′

∪ Z̃ ′ ∼= X ′
∪ Z ′ with the property that all ≤1-connections to α are

maintained. Let α̃′
:= min Z̃ ′ and notice that α̃′

≤2 γ for all γ ∈ Z̃ ′ such that γ <1 α′. Let ν ∈ (0, ξ) be such that o(α[ν]) ≤

α̃′ < o(α[ν + 1]). Choosing Z̃ ′ large enough wemay assume that X ′ < o(α[ν]) and logend(ν) < logend(ξ), hence ϱτ
ν ≤ ϱτ

ξ .
Notice that the i.h. yieldsχ τ (ν) = 1 and pred1(o(α[ν+1])) = me(o(α[ν])) ≥ α′ and thus o(α[ν]) ≤2 α̃′. Wemay therefore
assume that α̃′

= o(α[ν]) since exchanging these ordinalswould still result in a cover ofX ′
∪Z ′. Because o(α[ν+1]) <1 α′ by

the i.h. wemay further assume that Z̃ ′
⊆ o(α[ν +1]). Noticing that since χ τ (ν) = χ τ (ξ) = 1we have ν ·ω < ξ , and setting

˜̃α := o(α[ν · ω]) + κ τ̃
ϱτ
ν·ω

+ dpτ̃ (ϱ
τ
ν·ω)

we can use the isomorphism

o(α[ν + 1]) ∼= o(α[ν]) ∪ [o(α[ν · ω]), ˜̃α),

which is established by the i.h., in order to shift Z̃ ′ by the translation ˜̃Z
′

:= o(α[ν · ω]) + (−o(α[ν]) + Z̃ ′). This results in

the cover X ′
∪

˜̃Z
′

of X ′
∪ Z ′. By the i.h. we know that

o(α[ν · ω]) <2 ˜̃α = o(α[ν · ω]) + (−o(α[ν]) + o(α[ν + 1]))

and that for all γ ∈ Z̃ ′ such that γ <1 α′ the corresponding element in ˜̃Z
′

satisfies

o(α[ν · ω]) + (−o(α[ν]) + γ ) <1 ˜̃α.

Since ϱτ
ν·ω < ϱτ

ξ , setting α̃ := α′
+ κ τ̃

ϱτ
ν·ω

+ dpτ̃ (ϱ
τ
ν·ω), we may finally exploit the isomorphism

˜̃α + 1 ∼= o(α[ν · ω]) ∪ [α′, α̃]

so that setting

Z̃ := (α′
+ (−o(α[ν · ω]) + (

˜̃Z
′

∪ { ˜̃α}))) − {α′
}

we obtain the cover X ∪ Z̃ of X ∪ Z which satisfies X < Z̃ and X ∪ Z̃ ⊆ α. Contradiction.

Subcase 2.2: αn,mn ∈ Lim.
Part (a) follows from the i.h. by part (b) of Lemma 4.5 which shows that

α = sup{o(α[ξ ]) | ξ ∈ (0, αn,mn)}.

In order to see part (b) we simply observe that according to part (a) and the i.h. (o(α[ξ ]))ξ<αn,mn is a <1-chain of ordinals
either ≤2-minimal as claimed for α or with the same greatest <2-predecessor as claimed for α. �

Corollary 7.11. 1∞ is ≤1-minimal.
Proof. That 1∞ is ≤1-minimal immediately follows from part (a) of Theorem 7.9 since clearly

sup{κ0
ξ | ξ < 1∞

} = 1∞

is a non-attained supremum of ≤1-minimal ordinals. �
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Definition 7.12. Let α ∈ TC where αi = (αi,1, . . . , αi,mi) for 1 ≤ i ≤ n and set

α⋆
:=


α ifmn = 1
α[µτn,mn−1 ] otherwise.

We define the greatest branch-off index pair of α, gbo(α), by

gbo(α) :=


gbo(α�(i,j+1)) if (i, j) := cml(α⋆) exists

(n,mn) otherwise.

Corollary 7.13. Let α < 1∞ with tc(α) = α where αi = (αi,1, . . . , αi,mi) for 1 ≤ i ≤ n.

(a) If mn = 1 then

Succ2(α) = {α} and lh2(α) = α.

In the case mn > 1 let ν, ξ be such that κ τ̃
ϱ + dpτ̃ (ϱ) = τ̃ · ν + ξ and ξ < τ̃ where τ := τn,mn−1, τ̃ := τ̃n,mn−1, and

ϱ := ϱτ
τn,mn

. Then setting

ηmax := ν −· χ τ (τn,mn)

we have

Succ2(α) = {α + τ̃ · η | η ≤ ηmax} and lh2(α) = α + τ̃ · ηmax.

(b) Setting (n0,m0) := gbo(α) and m := m0 −· 2 + 1 we have

lh(α) = on0,m(α) + dpτ̃n0,m−1
(τn0,m).

Proof. For the proof of part (a) we first observe that by Theorem 7.9 and Corollary 7.11, for any β , if α <1 β then β < 1∞.
Next we notice that the case mn = 1 is trivial, since according to part (b) of Theorem 7.9 α cannot be the <2-predecessor
of any ordinal. Let us now assume that mn > 1. By Theorem 7.9 we know that for any β such that α <2 β tc(α) is a proper
initial chain of tc(β) and β lies within the interval specified in Corollary 6.6. We argue by induction on β , where according
to Corollary 6.6

β ∈


(α, α + dp(α)) ifmn > 1 & τn,mn < µτn,mn−1

(α, α + dp(α)] otherwise,

and show that α <2 β if and only if β ∈ {α+ τ̃ ·η |0 < η ≤ ηmax}. It is easy to check that α+ τ̃ ·ηmax is the greatest multiple
of τ̃ in the interval provided by Corollary 6.6 which also yields that tc(β) is a proper extension of tc(α) for any β in the
interval. Let (r, kr) be the <lex-maximal index pair of the proper extension β := tc(β) of α. Notice that (n,mn) <lex (r, kr)
and end(β) = end(τ̃r,kr ). Clearly, we then have n ≤ r , ki = mi for i < n, and mn ≤ kn (which is strict in case of r = n). In
the case kr = 2 & τr,2 = 1 we obtain the claimed equivalence from the i.h. using Theorem 7.9. We may therefore exclude
this special case in the following argumentation.

Case 1: kr > 2. Then according to part (b) of Theorem 7.9 the greatest <2-predecessor of β is or,kr−1(β) which is greater
than or equal to α. It follows that τ̃r,kr is a multiple of τ̃r,kr−1. In order to derive a contradiction we assume that

τ̃r,kr−1 < τ̃ ≤ τ̃r,kr .

This implies τr,kr > 1 and ts(τ̃r,kr−1) <lex ts(τ̃ ) ≤lex ts(τ̃r,kr ) by 3.15, and using part (c) of Lemma 5.10 we obtain that
ts(τ̃r,kr−1) is a proper initial sequence of ts(τ̃ ) which contradicts part (d) of Lemma 5.10 since (n,mn − 1) <lex (r, kr − 1).
We therefore either have τ̃ ≤ τ̃r,kr−1, which implies that α ≤2 or,kr−1(β) <2 β using the i.h. if needed, or we have
τ̃r,kr−1, τ̃r,kr < τ̃ , whence by the i.h. α ≰2 or,kr−1(β), implying that also α ≰2 β; see Lemma 1.2.

Case 2: kr ≤ 2 and τ ⋆
r > 1. This implies n < r . Let (i, j) := r⋆, σ := τi,j, and σ̃ := τ̃i,j. Then by part (b) of Theorem 7.9 the

greatest <2-predecessor of β is oi,j+1(β). We have σ = τ ⋆
r ≤ τr,1, σ̃ ≤ τ̃r,1 (by part (b) of Lemma 5.10), and if kr = 2 then

τ̃r,2 is a multiple of τ̃r,1.

Subcase 2.1: (i, j) = (n,mn − 1). Then σ̃ = τ̃ ≤ τ̃r,1 ≤ end(β) and oi,j+1(β) = α.

Subcase 2.2: (i, j) <lex (n,mn − 1). Then we have σ ≤ τr,1 < τ , σ̃ ≤ τ̃r,1 = κ σ̃
τr,1

< τ̃ by parts (b) and (c) of Lemma 5.10,
and oi,j+1(β) < α. We have to show that end(τ̃r,kr ) < τ̃ . In the case kr = 1 we are done, otherwise we have σ < τr,1, and
τr,2 > 1 according to our argumentation above, hence ts(τ̃r,2) = ts(σ̃ )⌢(τr,1, τr,2) using part (c) of Lemma 5.10. In order
to derive a contradiction let us assume that τ̃ ≤ τ̃r,2. Then we have ts(τ̃r,1) <lex ts(τ̃ ) ≤lex ts(τ̃r,2) by Lemma 3.15. As in
Case 1 we obtain that ts(τ̃r,1) is a proper initial sequence of ts(τ̃ ). Since (n,mn − 1) <lex (r, 1) this contradicts part (d) of
Lemma 5.10.

Subcase 2.3: (n,mn−1) <lex (i, j). We then haveα < oi,j+1(β) <2 β . In the case τ̃ ≤ τ̃i,j+1 by the i.h. we haveα <2 oi,j+1(β)
and have to verify that τ̃ ≤ τ̃r,kr . Assuming σ̃ < τ̃ we obtain that ts(σ̃ ) is a proper initial sequence of ts(τ̃ ), again due
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to Lemma 3.15 and part (c) of Lemma 5.10, which since (n,mn − 1) <lex (i, j) contradicts part (d) of Lemma 5.10. Thus
τ̃ ≤ σ̃ ≤ τ̃r,1 ≤ τ̃r,kr .

Otherwise we have τ̃ > τ̃i,j+1 > σ̃ , and by the i.h. we have α ≰2 oi,j+1(β) and hence α ≰2 β . We have to show that
τ̃r,kr < τ̃ . Let us assume to the contrary that τ̃ ≤ τ̃r,kr . Notice that in the special case kr = 1 & τr,1 ∉ E>σ we have

τ̃r,1 ≤ ν σ̃
µσ

,

which using Lemma 3.12 is seen as follows: τr,1 is a multiple of σ , hence τr,1 ≤ ϱσ
µσ

. If µσ ∉ E>σ then by part (e) of
Lemma 4.5

τ̃r,1 = κ σ̃
τr,1

≤ κ σ̃
ρµσ

≤ ν σ̃
µσ

,

while otherwise directly τr,1 ≤ µσ = ρµσ and

τ̃r,1 ≤ κ σ̃
µσ

= ν σ̃
µσ

.

Since ts(ν σ̃
µσ

) = ts(σ̃ )⌢µσ by Lemma 4.10 we then obtain from our assumptions that

ts(σ̃ ) <lex ts(τ̃ ) ≤lex ts(σ̃ )⌢µσ ,

whence ts(σ̃ ) is a proper initial sequence of ts(τ̃ ), contradicting part (d) of Lemma 5.10 since (n,mn − 1) <lex (i, j). In the
remaining cases we again obtain that ts(σ̃ ) is a proper initial sequence of ts(τ̃ ) contradicting part (d) of Lemma 5.10.

Case 3: Otherwise. Then we have kr ≤ 2, τ ⋆
r = 1, and again n < r . According to part (b) of Theorem 7.9 β does not have

any <2-predecessor. We have to show that τ̃r,kr < τ̃ . Since τ ⋆
r = 1 we have τr,1 < τ and hence τ̃r,1 = κ0

τr,1
< κ0

τk,l
≤ τ̃

where (k, l) is the index pair of the first element of ts(τ̃ ) according to part (c) of Lemma 5.10, which implies that τr,1 < τk,l.
In the case kr = 1 we are done, otherwise we have τr,2 > 1 according to our earlier assumption. By part (c) of Lemma 5.10
we have ts(τ̃r,2) = (τr,1, τr,2). The assumption τ̃ ≤ τ̃r,2 then implies that ts(τ̃r,1) is a proper initial sequence of ts(τ̃ ) which
because of (n,mn − 1) <lex (r, 1) contradicts part (d) of Lemma 5.10.

In order to show part (b) let α′
:= (α�(n0,m0))⋆ using the ⋆-notation from Definition 7.12, according to which the vector α′

does not possess a critical main line index pair. Using Lemma 5.12 part (d) we obtain

on0,m(α) + dpτ̃n0,m−1
(τn0,m) = o(me(α′)).

We first show that

α ≤1 o(me(α′)). (6)

Since in the casem0 = 1we have (n0,m0) = (n,mn)whence there is nothing to show, wemay assume thatm0 > 1. By part
(c) of Theorem 7.9 we have α ≤1 o(α⋆) ≤1 o(me(α⋆)). If cml(α⋆) does not exist, that is α′

= α⋆, we are done with showing
(6). Otherwise let cml(α⋆) =: (i1, j1) and let l0 be maximal so that for all l ∈ (0, l0) cml((α�(il,jl+1))⋆) =: (il+1, jl+1) exists.
Clearly, the sequence of index pairs we obtain in this way is <lex-decreasing and by Definition 7.12 (il0 , jl0 + 1) = (n0,m0).
Using parts (a) and (c) of Theorem 7.9 we now obtain the chain of inequations

α ≤1 o(α⋆) ≤1 o((α�(i1,j1+1))⋆) ≤1 . . . ≤1 o((α�(il0 ,jl0+1))⋆) = o(α′) ≤1 o(me(α′)).

We claim that

pred1(o(me(α′)) + 1) < o(α′). (7)

To this end note that tc(o(me(α′)) + 1) must be of a form α�i
⌢(αi+1,1 + 1) where i ≤ n0, and by part (a) of Theorem 7.9

o(me(α′)) + 1 either does not have any <1-predecessor or the greatest <1-predecessor is o(αi−1,mi−1). Hence (7) follows,
which implies that α ≰1 o(me(α′)) + 1. We thus have lh(α) = on0,m(α) + dpτ̃n0,m−1

(τn0,m). �

Corollary 7.14. Any pure pattern of order 2 has a covering below 1∞, the least such ordinal.

Proof. Consider the maximal extensions of the tracking chains tc(| IDn |) = ((| IDn |)) of the proof-theoretic ordinals of the
theories IDn where n ∈ (0, ω). Omitting the first initial value | IDn | we obtain a <2-chain connecting n + 2 ordinals when
considering me(tc(| IDn |)). This shows that any pure pattern of order 2 has a covering below 1∞. By part (d) of Theorem 7.9
we obtain pure patterns of order 2 contained in the ordinals

κ0
| IDn |+1 = o(me(tc(| IDn |))) + 1 = | IDn | + dp0(| IDn |) + 1

for which there does not exist a covering contained in | IDn | + dp0(| IDn |). �

8. Conclusion

Asmentioned in the introduction this article provides the basis for both a full arithmetical characterization ofR2, thereby
showing that the sequence (τξ )ξ∈Ord as defined in [10], that is, τ0 = 1∞, τξ+1 = τ∞

ξ , and τλ = lim{τξ | ξ < λ}, starts with
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τ0 <1 τ1 and then connects τξ <2 τη for any ξ, η such that 0 < ξ < η where the greatest <2-predecessor of any τξ+1
is τξ for ξ > 0, while τ1 is ≤2-minimal. The method to be applied in order to generalize the results of this article is base
transformation in the sense of [10].

The characterization of isominimal substructures and the core of R2 will be supplied by effective assignments between
pure patterns of order 2 and finite sets of ordinals in hull notations, following the style of [12,4]. The key to such assignments
will be the concept of tracking chains that was introduced in the present article.

Futureworkwill extend themethods introduced here to variants ofR2 such asR+

2 and higher orders. A considerable gain
in strength beyond the proof-theoretical ordinal of KPI is claimed. The starting point for a more powerful ordinal arithmetic
is given in [7].
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