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The aim of the paper is to give a criterion of the usual functional type 
for the convergence of iterations generated by a contraction to a fixed point 
of the contraction. The criterion given is quite general and has several 
of the other published criteria as corollaries, but it has the drawback, 
common to most others, of not providing any general error estimate. 

1. MAIN THEOREM 

Let (X, d) be a complete metric space and let f: X + X be a contractive 
mapping or contraction, i.e., 

4fW, f(Y)) < 45 Y) for all x f y in X. 

Let xc, be an initial choice of point in X and let x, = f(x,+r) for n > 0. 
Then it is well-known [l] that if {xn} is a Cauchy sequence, then x, + x, 
for some x, E X and that x, is then the unique fixed point off in X. 

Following Rakotch [2], we define a class of functions T as follows: 

DEFINITION. T is the class of functions ~1: R+ --f [0, l), where R+ = 
(t E R 1 t > O>, such that if t, is monotone decreasing in R+ and ol(t,) + 1, 
then t, -+ 0. 

The reader is asked to note that no continuity is assumed. The only 
assumption is that OL does not possess a certain type of discontinuity. 

THEOREM 1.1. Let f: X -+ X be a contraction on a complete metric space 
(X, d). Assume there exists an oi E T such that 

d(f(4, f(y)) -=z c-d+, y)) 4x, y) for all x f y in X. 
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Then for any choice of x,, E X, letting x, = f (x,+J for n > 0, we have that 
x, + x, , the unique fixed point off in X. 

The proof of this theorem will follow from two lemmas given in the 
next section, one of them an interesting necessary and sufficient condition 
for a particular iteration to converge. The lemmas are a development of 
results alluded to in [3], and are given here because they appear to encompass 
most of the criteria so far published. The results appear to be readily 
extendable to uniform spaces, as in [4]. 

2. Two LEMMAS 

We first provide an explicit proof of the result alluded to in [3]. 

LEMMA 2.1. Let f: X - X be a contraction of a complete metric space. 
Let x,, be fixed in X and set x, = f(xnml) for n > 0. Then the particular 
iteration x, + x, in X, with x, the unique jixed point off, 12 for any two 
subsequences x,,, and xk, , where x?& # xk, , we have d(x,,, , xkm) = d,, monotone 
decreasing and 

A, = d(f (xh,), f (xk”))/dn + 1 

only ;f d,, + 0. 

Proof. First let x, -+ x, in X. Then any subsequences also approach 
x, and so d, -+ 0 for all such pairs of subsequences. So if we have con- 
vergence, the condition is satisfied. 

Now assume the condition is satisfied for the given initial point x0 in X. 
Let xh, = x, and xkn = X,+1 . Then since f is a contraction, d, = d(xn , xn+J 
is a monotonically decreasing sequence of nonnegative numbers. So there 
is some c 3 0 such that d,, + c. Assume that c > 0. Then d,, is monotonically 
decreasing to E, while 

4 = 4x,+, 9 xn+M(x,+~ ,G) - 4~ = 1. 

So the condition is violated. Thus we have that d,, = d(x, , xn+J - 0. 
As was pointed out above, we really need only show that the sequence 

(x3 is Cauchy. Assume it is not Cauchy. Then there is some E > 0 such 
that for all natural numbers N, one can find n, m > N with 

4xn , x,) > E. 

Given this z, we shall construct a pair of subsequences violating the condition 
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of the lemma, i.e., such that d(~ h, , xk ) ” decreases monotonically to this 
E > 0 while d, -+ 1. 

Let n be any natural number. Choose N, so large that for all m > N, , 
we have 

Such an N, exists since d(xm , xm+i) + 0. 

Now if rr = 1, let h, be the least mteger greater than Nr such that for 
some k > hi, we have 

Such a pair exists by the above assumption that {x,} is not Cauchy. Next 
choose k, to be the least such integer above h, . 

If n > 1, in addition to the above, choose N, so large that for all m >, N, , 
we have 

Such an N, still exists since d(xm , xm+i ) -+ 0, and by the mductive assump- 
tion, 

4%,-l 9 Xk,J > 6. 

Next let h, be the least integer greater than N, such that for some k > h, , 

Such an h, exists since {x,> is not Cauchy. Finally set k, to be the least such 
integer k above h, . Then either k, - I = h, or else d(xh, , xknpI) < E. 
In either case we have 

l <dn=d(xh,,x,J<~+l/n. 

Moreover, in either case we have 

E < d, < d,,-I , 

since d(xm , x,+~) < d,,-, - E for m > N,, . 
Applying the triangular inequality, we have 

4 = 4% 9 xd G dh, 9 f(+J) + d(f(xd f&c,)) + d(f(x~,)r x,.) 
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Since f is a contraction, we then have 

Thus d, decreases monotonically to E > 0, while A, + 1, violating the 
condition. This completes the proof of Lemma 2.1. 

It should be observed that the above proof is an extension of that found 
in [4]. The remark made in [5] concerning [4] appears to be in error. 

We now wish to convert the above sequential condition to the more 
customary functional form. 

LEMMA 2.2. Let f: X + X be a contraction on a complete metric space. 
Let x,, be chosen in X and set x, = f (x& for n > 0. Then x, + x, , where 
x, is the unique jxed point off in X as there exists an 01 E T such that for all 
n, m 3 0 with x, # x, , we have 

4f (xn), f (xm)) 6 44xm 3 x,)) - 4xm 3 xd 

Proof. We must show that the existence of such a function OL E T is 
equivalent to the sequential condition of Lemma 2.1. First assume such 
an 01 exists. Let xh and xk: be two subsequences of (xn} with x,, # xk , 
and d, monotonica$y decrekg. Assume that A,, + 1. Then i; follo& 
from the above inequality that Or(d(x,, , x,~)) -+ 1. 

Then since 01 E T, we have d, = d(x*, , xk,) -+ 0, as desired in the condition 
of Lemma 2.1. 

Next assume that the sequential condition of Lemma 2.1 holds. We 
define (Y: R+ + R as follows: 

a(t) = sup I f d(f (Xm)‘f (xn)) / d(xm , xn) > t d(xm , x,) 
0, if there are no such x, , x, . 

Since f is a contraction, the above quotients A, are all below I and so a 
is well defined for t > 0 and 0 < a(t) < 1 for all t. Now assume that 
a(&) + I for some monotonically decreasing sequence t, E Rf. We may 
then assume without loss of generality that 1 - I/n < a(t,J < 1. We 
must show that t, + 0, in order to show that 01 E T. 

Now a(tn) is the above least upper bound (since ct(tn) > 1 - l/n > 0). 
So there is for each 12 > 0 a pair xA, , xk, in {xn} with 
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and 

So the sequence A, + 1. But A, < 1, always. Now we must indicate how 
the sequences x,, and xk may be corrected to be subsequences, i.e., that 
we may choose & and K,” strictly increasing. Clearly at least one sequence 
is unbounded, say k, . So we may choose a subsequence which is strictly 
increasing and again call it k, . Let k, and t, be redefined to be the corre- 
sponding subsequences. Now assume that h, is bounded, while k, is strictly 
increasing. Let h,’ repeat infinitely often. Then 

But xh,* is fixed, while xii, + x, in X. So 

A,‘-+ A, = 
d(fW,f(Xm)) < 1 

4%; , Xm) ’ 

smce xh; # x, . From this contradiction we see that h, is unbounded, 
and so we may select h, strictly increasing also. Let k, and t, again be 
redefined to be the corresponding subsequences. Now since {x,) is Cauchy, 
we then have d, + 0 trivially. But d, 3 t, . So t, ---f 0 also. But this is a 
subsequence of the original sequence t, , which was monotonically decreasing. 
So the original sequence t, also approaches zero, and the proof of Lemma 2.2 
is complete. 

The above definition of OL may be also used to correct a small error in 
the corresponding definition in [3]. It should be clear that Theorem 1.1 
follows immediately from Lemma 2.2. Unfortunately, in the extension 
to an arbitrary initial point, the necessary and sufficient character of the 
condition is lost. It appears to be only sufficient and not necessary that 
there be such an 01 E T for the convergence to follow. 

3. SOME APPLICATIONS 

The more precise criterion provided above enables us to recognize many 
of the published results as corollaries. Among them are the following. 

COROLLARY 3.1 (Rakotch [2, p. 4631). 1ff: X -+ X is u contraction of u 
complete metric space satisfy’ng 

4f (4, f W) d 44x, Y)) - 4x, A for all x Z Y in X 
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where a: R+ + [0, 1) and is monotone decreasing, then for any choice of x0 
in X, the iteration x,, = f (x,-J, n > 0, converges to a unique fixed point 
x, off in X. 

Proof. Such an OL is clearly in the class T. 

COROLLARY 3.2. If f: X -+ X is a contraction of a complete metric space 
satisfring 

d(f (x),f (y)) d a(d(x, Y)) * d(x, Y) for all x # Y in X, 

where 0~: R+ + [0, 1) and is monotone increasing, then for any choice of x0 
in X, the iteration x, = f (x,+J, n > 0, converges to a unique fixed point x, 
off in X. 

Proof. The proof of this corollary indicated in [3] appears to be wrong, 
but it is clear that such an oc is in the class T, and so convergence follows. 

COROLLARY 3.3 (Boyd-Wong [6, p. 3311). Iff: X -+ X is a contraction 
of a complete metrk space satisfying 

d(f (x),f (y)) d 4d(x, Y)) - d(x, Y) for all x Z Y in X 

where CC Rf + [0, 1) and is continuous, then for any choice of x,, in X, the 
iteration x, = f (x,,J, n > 0 converges to a unique jxed point x, off in X. 

Proof. As in Corollary 3.1. 

COROLLARY 3.4 (F. Browder [7, p. 271). Let X be a complete metric space, 
M a bounded subset of X, f a mapping of M into M. Suppose there exists a 
monotone nondecreasing function 4(r) f OY Y > 0, with # continuous on the 
right, such that #(Y) < Y for all Y > 0, while for x and y in M, 

d(f(x), f (y)) < #(d(x, Y)) for all x # Y in X. 

Then for each x,, in M, f n(xO) converges to an element 5 of X, independent 
of x,, , and 

d(f’YxJ, 5) G PVJ, 

where d,, is the diameter of M, tin is the nth iterate of # and d, = @‘(do) --+ 0 
asn+ +oo. 

Proof. We simply define a(t) = #(t)/t, for t > 0. Then 0 < a(t) < 1 
and since it is continuous from the right we have OL E T. Thus f”(x,,) = x, 
converges to x, = 5. The error estimate which accompanies in this case 
follows from the additional assumption that # is monotone nondecreasing. 
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4. REMARKS 

(i) It seems clear from the above that the originally somewhat 
surprising result of Rakotch (Corollary 3.1) actually brought out the main 
point that continuity plays no role in the definition of the class T. 

(ii) It seems that the functional condition given here is not necessary 
and sufficient for the convergence of an arbitrary iteration, but it is not 
yet clear that the provision of such a necessary and sufficient condition 
is impossible. 
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