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Abstract

A sequence of functionsF = {fn(q)}∞n=1 satisfies the functional equation for multiplication
of quantum integers iffmn(q) = fm(q)fn(q

m) for all positive integersm and n. This paper
describes the structure of all sequences of rational functions with coefficients inQ that satisfy
this functional equation.
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1. The functional equation for multiplication of quantum integers

Let N = {1,2,3, . . .} denote the positive integers. For everyn ∈ N, we define the
polynomial

[n]q = 1 + q + q2 + · · · + qn−1.
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This polynomial is called thequantum integer n. The sequence of polynomials{[n]q}∞n=1
satisfies the following functional equation:

fmn(q) = fm(q)fn(q
m) (1)

for all positive integersm andn. Nathanson[1] asked for a classification of all sequences
F = {fn(q)}∞n=1 of polynomials and of rational functions that satisfy the functional
equation (1).

The following statements are simple consequences of the functional equation. Proofs
can be found in Nathanson[1].

Let F = {fn(q)}∞n=1 be any sequence of functions that satisfies (1). Then f1(q) =
f1(q)

2 = 0 or 1. If f1(q) = 0, then fn(q) = f1(q)fn(q) = 0 for all n ∈ N, and F
is a trivial solution of (1). In this paper, we consider only nontrivial solutions of the
functional equation, that is, sequencesF = {fn(q)}∞n=1 with f1(q) = 1.

Let P be a set of prime numbers, and letS(P ) be the multiplicative semigroup ofN
generated byP. ThenS(P ) consists of all integers that can be represented as a product
of powers of prime numbers belonging toP. Let F = {fn(q)}∞n=1 be a nontrivial
solution of (1). We define the support

supp(F) = {n ∈ N : fn(q) = 0}.

There exists a unique setP of prime numbers such that supp(F) = S(P ). Moreover,
the sequenceF is completely determined by the set{fp(q) : p ∈ P }. Conversely,
if P is any set of prime numbers, and if{hp(q) : p ∈ P } is a set of functions such
that

hp1(q)hp2(q
p1) = hp2(q)hp1(q

p2) (2)

for all p1, p2 ∈ P, then there exists a unique solutionF = {fn(q)}∞n=1 of the functional
equation (1) such that supp(F) = S(P ) and fp(q) = hp(q) for all p ∈ P.

For example, for the setP = {2,5,7}, the reciprocal polynomials

h2(q) = 1 − q + q2,

h5(q) = 1 − q + q3 − q4 + q5 − q7 + q8,

h7(q) = 1 − q + q3 − q4 + q6 − q8 + q9 − q11 + q12

satisfy the commutativity condition (2). Since

hp(q) = [p]q3

[p]q for p ∈ P ,
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it follows that

fn(q) = [n]q3

[n]q for all n ∈ S(P ). (3)

Moreover,fn(q) is a polynomial of degree 2(n − 1) for all n ∈ S(P ).

Let F = {fn(q)}∞n=1 be a solution of the functional equation (1) with supp(F) =
S(P ) If P = ∅, then supp(F) = {1}. It follows that f1(q) = 1 andfn(q) = 0 for all
n�2. Also, for any primep and any functionh(q), there is a unique solution of the
functional equation (1) with supp(F) = S({p}) andfp(q) = h(q). Thus, we only need
to investigate solutions of (1) for card(P )�2.

If F = {fn(q)}∞n=1 andG = {gn(q)}∞n=1 are solutions of (1) with supp(F)=supp(G),
then, for any integersd, e, r, ands, the sequence of functionsH = {hn(q)}∞n=1, where

hn(q) = fn(q
r)dgn(q

s)e,

is also a solution of the functional equation (1) with supp(H) = supp(F). In particular,
if F = {fn(q)}∞n=1 is a solution of (1), then H = {hn(q)}∞n=1 is another solution of
(1), where

hn(q) =
{

1/fn(q) if n ∈ supp(F),

0 if n ∈ supp(F).

The functional equation also implies that

fm(q)fn(q
m) = fn(q)fm(q

n) (4)

for all positive integersm and n, and

fmk (q) =
k−1∏
i=0

fm(q
mi

). (5)

Let F = {fn(q)}∞n=1 be a solution in rational functions of the functional equation
(1) with supp(F) = S(P ). Then there exist a completely multiplicative arithmetic
function �(n) with supportS(P ) and rational numberst0 and t1 with t0(n − 1) ∈ Z
and t1(n − 1) ∈ Z for all n ∈ S(P ) such that, for everyn ∈ S(P ), we can write the
rational functionfn(q) uniquely in the form

fn(q) = �(n)qt0(n−1) un(q)

vn(q)
, (6)

whereun(q) and vn(q) are monic polynomials with nonzero constant terms, and
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deg(un(q)) − deg(vn(q)) = t1(n − 1) for all n ∈ supp(F).

For example, letP be a set of prime numbers with card(P )�2. Let �(n) be a completely
multiplicative arithmetic function with supportS(P ), and let t0 be a rational number
such thatt0(n− 1) ∈ Z for all n ∈ S(P ). Let R be a finite set of positive integers and
{tr}r∈R a set of integers. We construct a sequenceF = {fn(q)}∞n=1 of rational functions
as follows: Forn ∈ S(P ), we define

fn(q) = �(n)qt0(n−1)
∏
r∈R

[n]trqr . (7)

For n ∈ S(P ) we setfn(q) = 0. Then
∏

r∈R[n]trqr is a quotient of monic polynomials
with coefficients inQ and nonzero constant terms. The sequenceF = {fn(q)}∞n=1
satisfies the functional equation (1), and supp(F) = S(P ).

We shall prove that every solution of the functional equation (1) in rational functions
with coefficients inQ is of the form (7). This provides an affirmative answer to Problem
6 in [1] in the case of the fieldQ.

2. Roots of unity and solutions of the functional equation

Let K be an algebraically closed field, and letK∗ denote the multiplicative group
of nonzero elements ofK. Let � denote the group of roots of unity inK∗, that is,

� = {� ∈ K∗ : �n = 1 for somen ∈ N}.

Since� is the torsion subgroup ofK∗, every element inK∗ \� has infinite order. We
define thelogarithm group

L(K) = K∗/�

and the map

L : K∗ → L(K)

by

L(a) = a� for all a ∈ K∗.

We write the group operation inL(K) additively

L(a) + L(b) = a� + b� = ab� = L(ab).
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Lemma 1. Let K be an algebraically closed field, andL(K) its logarithm group. Then
L(K) is a vector space over the fieldQ of rational numbers.

Proof. Let a ∈ K∗ andm/n ∈ Q. SinceK is algebraically closed, there is an element
b ∈ K∗ such that

bn = am.

We define

m

n
L(a) = L(b).

Supposem/n = r/s ∈ Q, and that

cs = ar

for somec ∈ K∗. Sincems = nr, it follows that

cms = amr = bnr = bms,

and soc/b ∈ �. Therefore,

m

n
L(a) = L(b) = b� = c� = L(c) = r

s
L(a)

and (m/n)L(a) is well defined. It is straightforward to check thatL(K) is a Q-vector
space. �

Lemma 2. Let P be a set of primes, card(P )�2, and let S(P ) be the multiplicative
semigroup generated by P. For every integerm ∈ S(P ) \ {1} there is an integern ∈
S(P ) such that log m and log n are linearly independent overQ. Equivalently, for
every integerm ∈ S(P )\ {1} there is an integern ∈ S(P ) such that there exist integers
r and s withmr = ns if and only if r = s = 0.

Proof. If m = pk is a prime power, letn be any prime inP \ {p}. If m is divisible by
more than one prime, letn be any prime inP. The result follows immediately from
the fundamental theorem of arithmetic.�

Let K be a field. A function on K is a mapf : K → K ∪ {∞}. For example,f (q)

could be a polynomial or a rational function with coefficients inK. We call f−1(0)
the set ofzerosof f and f−1(∞) the set ofpolesof f.
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Theorem 1. Let K be an algebraically closed field. Let F = {fn(q)}∞n=1 be a sequence
of functions on K that satisfies the functional equation(1). Let P be the set of primes
such that supp(F) = S(P ). If card(P )�2 and if, for everyn ∈ supp(F), the function
fn(q) has only finitely many zeros and only finitely many poles, then every zero and
pole of fn(q) is either 0 or a root of unity.

Proof.The proof is by contradiction. Let� be the group of roots of unity inK. Suppose
that

fn(a) = 0 for somen ∈ supp(F) and a ∈ K∗ \ �.

By Lemma 2, there is an integerm ∈ S(P ) such that logm and logn are linearly
independent overQ. Since a has infinite order in the multiplicative groupK∗ and
f−1
n (0) is finite, there are positive integersk andM = mk such thataM is not a zero

of the functionfn(q). By (4), we have

fM(q)fn(q
M) = fn(q)fM(qn).

Therefore,

fM(a)fn(a
M) = fn(a)fM(an) = 0.

Sincefn(a
M) = 0, it follows from (5) that

0 = fM(a) = fmk (a) =
k−1∏
i=0

fm(a
mi

)

and so

fm(a
mi

) = 0 for somei such that 0� i�k − 1.

Let

b = am
i

.

Then

fm(b) = 0,

b ∈ K∗ \ �,
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and

L(b) = miL(a) (8)

Sincef−1
m (0) is finite, there are positive integers andN = n such thatzN is not

a zero offm(q) for everyz ∈ f−1
m (0) with z ∈ K∗ \�. SinceK is algebraically closed,

we can choosec ∈ K such that

cN = b.

Then

fm(c) = 0,

c ∈ K∗ \ �

and

NL(c) = L(b). (9)

Again applying (4), we have

fm(q)fN(qm) = fN(q)fm(q
N)

and so

fm(c)fN(cm) = fN(c)fm(c
N) = fN(c)fm(b) = 0.

It follows that

0 = fN(cm) = fn (c
m) =

 −1∏
j=0

fn(c
mnj )

and so

fn(c
mnj ) = 0 for somej such that 0�j � − 1.

Let

a′ = cmnj .
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Then

fn(a
′) = 0,

a′ ∈ K∗ \ �,

and

L(a′) = mnjL(c) (10)

Combining (8)–(10), we obtain

L(a′) = mnj

N
L(b) = mi+1

n −j
L(a)

that is,

L(a′) = mi′

nj
′ L(a), where 1� i′ �k and 1�j ′ � . (11)

What we have accomplished is the following: Given an elementa ∈ f−1
n (0) that is

neither 0 nor a root of unity, we have constructed another elementa′ ∈ f−1
n (0) that

is also neither 0 nor a root of unity, and that satisfies (11). Iterating this process, we
obtain an infinite sequence of such elements. However, the number of zeros offn(q)

is finite, and so the elements in this sequence cannot be pairwise distinct. It follows
that there is an element

a ∈ f−1
n (0) \ (� ∪ {0})

such that

L(a) = mr

ns
L(a),

where r and s are positive integers. Then

an
s

� = L
(
an

s
)

= nsL(a) = mrL(a) = L
(
am

r
)

= am
r

�.

Sincea is not a root of unity, it follows that

mr = ns,
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which contradicts the linear independence of logm and logn over Q. Therefore, the
zeros of the functionsfn(q) belong to� ∪ {0} for all n ∈ supp(F).

Replacing the sequenceF = {fn(q)}n∈supp(F) with F ′ = {1/fn(q)}n∈supp(F), we
conclude that the poles of the functionsfn(q) also belong to� ∪ {0} for all n ∈
supp(F). This completes the proof.�

3. Rational solutions of the functional equation

In this section, we shall completely classify sequences of rational functions with
rational coefficients that satisfy the functional equation for quantum multiplication.

For k�1, let �k(q) denote thekth cyclotomic polynomial. Then

Fk(q) = qk − 1 =
∏
d|k

�d(q)

and

�k(q) =
∏
d|k

Fd(q)
�(k/d), (12)

where �(k) is the Möbius function. Let� be a primitive dth root of unity. Then
Fk(�) = 0 if and only if d is a divisor ofk. We define

F0(q) = �0(q) = 1.

Note that

Fk(q) = qk − 1 = (q − 1)(1 + q + · · · + qk−1) = F1(q)[k]q (13)

for all k�1.
A multisetU = (U0, �) consists of a finite setU0 of positive integers and a function

� : U0 → N. The positive integer�(u) is called themultiplicity of u. Multisets U =
(U0, �) and U ′ = (U ′

0, �
′) are equal ifU0 = U ′

0 and �(u) = �′(u) for all u ∈ U0.

Similarly, U ⊆ U ′ if U0 ⊆ U ′
0 and �(u)��′(u) for all u ∈ U0. The multisetsU and

U ′ are disjoint if U0 ∩ U ′
0 = ∅. We define

∏
u∈U

fu(q) =
∏
u∈U0

fu(q)
�(u)

and

max(U) = max(U0).

If U0 = ∅, then we set max(U) = 0 and
∏

u∈U fu(q) = 1.
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Lemma 3. Let U andU ′ be multisets of positive integers. Then

∏
u∈U

Fu(q) =
∏
u′∈U ′

Fu′(q), (14)

if and only if U = U ′.

Proof. Let k = max(U ∪ U ′). Let � be a primitivekth root of unity. If k ∈ U ′, then

∏
u∈U

Fu(�) =
∏
u′∈U ′

Fu′(�) = 0,

and sok ∈ U. Dividing (14) by Fk(q), reducing the multiplicity ofk in the multisets
U andU ′ by 1, and continuing inductively, we obtainU = U ′. �

Let F = {fn(q)}∞n=1 be a nontrivial solution of the functional equation (1), where
fn(q) is a rational function with rational coefficients for alln ∈ supp(F). Because of
the standard representation (6), we can assume that

fn(q) = un(q)

vn(q)
,

whereun(q) and vn(q) are monic polynomials with nonzero constant terms. By The-
orem 1, the zeros of the polynomialsun(q) and vn(q) are roots of unity, and so we
can write

fn(q) =
∏

u∈U ′
n
�u(q)∏

v∈V ′
n
�v(q)

,

whereU ′
n andV ′

n are disjoint multisets of positive integers. Applying (12), we replace
each cyclotomic polynomial in this expression with a quotient of polynomials of the
form Fk(q). Then

fn(q) =
∏

u∈Un
Fu(q)∏

v∈Vn
Fu(q)

, (15)

whereUn andVn are disjoint multisets of positive integers. Let

fn(q) =
∏

u∈Un
Fu(q)∏

v∈Vn
Fv(q)

=
∏

u′∈U ′
n
Fu′(q)∏

v′∈V ′
n
Fv′(q)

,
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whereUn andVn are disjoint multisets of positive integers andU ′
n andV ′

n are disjoint
multisets of positive integers. Then

∏
u∈Un∪V ′

n

Fu(q) =
∏

v∈U ′
n∪Vn

Fv(q).

By Lemma3, we have the multiset identity

Un ∪ V ′
n = U ′

n ∪ Vn.

SinceUn ∩ Vn = ∅, it follows that Un ⊆ U ′
n and soUn = U ′

n. Similarly, Vn = V ′
n.

Thus, the representation (15) is unique.
We introduce the following notation for thedilation of a set: For any integerd and

any setS of integers,

d ∗ S = {ds : s ∈ S}.

Lemma 4. Let F = {fn(q)}∞n=1 be a nontrivial solution of the functional equation(1)
with supp(F) = S(P ), where card(P )�2. Let

fn(q) =
∏

u∈Un
Fu(q)∏

v∈Vn
Fv(q)

and Un and Vn are disjoint multisets of positive integers. For every primep ∈ P,

let

mp = max(Up ∪ Vp).

There exists an integer r such thatmp = rp for everyp ∈ P. Moreover, eithermp ∈ Up

for all p ∈ P or mp ∈ Vp for all p ∈ P .

Proof. Let p1 andp2 be prime numbers inP, and let

mp1

p1
� mp2

p2
.

Equivalently,

p2mp1 �p1mp2.
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Applying functional equation (4) with m = p1 and n = p2, we obtain

∏
u∈Up1

Fu(q)∏
v∈Vp1

Fv(q)

∏
u∈Up2

Fu(q
p1)∏

v∈Vp2
Fv(qp1)

=
∏

u∈Up2
Fu(q)∏

v∈Vp2
Fv(q)

∏
u∈Up1

Fu(q
p2)∏

v∈Vp1
Fv(qp2)

,

where

Up1 ∩ Vp1 = Up2 ∩ Vp2 = ∅.

The identity

Fn(q
m) = (

qm
)n − 1 = qmn − 1 = Fmn(q),

implies that

∏
u∈Up1∪p1∗Up2

Fu(q)∏
v∈Vp1∪p1∗Vp2

Fv(q)
=

∏
u∈Up1

Fu(q)∏
v∈Vp1

Fv(q)

∏
u∈p1∗Up2

Fu(q)∏
v∈p1∗Vp2

Fv(q)

=
∏

u∈Up2
Fu(q)∏

v∈Vp2
Fv(q)

∏
s∈p2∗Up1

Fu(q)∏
t∈p2∗Vp1

Fv(q)

=
∏

u∈Up2∪p2∗Up1
Fu(q)∏

v∈Vp2∪p2∗Vp1
Fv(q)

.

By the uniqueness of the representation (15), it follows that

Up1 ∪ (p1 ∗ Up2) ∪ Vp2 ∪ (p2 ∗ Vp1) = Up2 ∪ (p2 ∗ Up1) ∪ Vp1 ∪ (p1 ∗ Vp2).

Recall that

mp1 = max
(
Up1 ∪ Vp1

)
.

If

mp1 ∈ Up1,

then

p2mp1 ∈ p2 ∗ Up1
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and so

p2mp1 ∈ Up1 ∪ (p1 ∗ Up2) ∪ Vp2 ∪ (p2 ∗ Vp1).

However,

(i) p2mp1 ∈ Up1 sincep2mp1 > mp1 = max
(
Up1 ∪ Vp1

)
,

(ii) p2mp1 ∈ p2 ∗ Vp1 sincemp1 ∈ Up1 andUp1 ∩ Vp1 = ∅,
(iii) p2mp1 ∈ Vp2 sincep2mp1 �p1mp2 > mp2 = max

(
Up2 ∪ Vp2

)
.

If p2mp1 > p1mp2 = max
(
p1 ∗ Up2

)
, thenp2mp1 ∈ p1 ∗Up2. This is impossible, and

so

p2mp1 = p1mp2 ∈ p1 ∗ Up2,

mp2 ∈ Up2,

and

mp1

p1
= mp2

p2
= r for all p1, p2 ∈ P.

Similarly, if mp1 ∈ Vp1 for somep1 ∈ P, then mp2 ∈ Vp2 for all p2 ∈ P . This
completes the proof. �

Theorem 2. Let F = {fn(q)}∞n=1 be a sequence of rational functions with coefficients
in Q that satisfies the functional equation(1). If supp(F) = S(P ), where P is a set of
prime numbers and card(P )�2, then there are

(i) a completely multiplicative arithmetic function�(n) with supportS(P ),
(ii) a rational numbert0 such thatt0(n − 1) is an integer for alln ∈ S(P ),

(iii) a finite set R of positive integers and a set{tr}r∈R of integers

such that

fn(q) = �(n)qt0(n−1)
∏
r∈R

[n]trqr for all n ∈ supp(F). (16)

Proof. It suffices to prove (16) for all p ∈ P. Recalling the representation (6), we only
need to investigate the case

fp(q) =
∏

u∈Up
Fu(q)∏

v∈Vp
Fv(q)

,
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whereUp andVp are disjoint multisets of positive integers. Letmp = max(Up ∪ Vp).

By Lemma4, there is a nonnegative integerm such thatmp = mp for all p ∈ P. We
can assume thatmp ∈ Up for all p ∈ P.

The proof is by induction onm. If m = 0, thenUp = Vp = ∅ and fp(q) = 1 for
all p ∈ P, hence (16) holds withR = ∅.

Let m = 1, and suppose thatmp = p ∈ Up for all p ∈ P. Then

fp(q) =
∏

u∈Up
Fu(q)∏

v∈Vp
Fv(q)

=
(qp − 1)

∏
u∈U ′

p
Fu(q)∏

v∈Vp
Fv(q)

.

Sinceqp − 1 = F1(q)[p]q, we have

gp(q) = fp(q)

[p]q

=
(qp − 1)

∏
u∈Up\{p} Fu(q)

[p]q ∏
v∈Vp

Fv(q)

=
F1(q)

∏
u∈Up\{p} Fu(q)∏

v∈Vp
Fv(q)

=
∏

u∈U ′
p
Fu(q)∏

v∈V ′
p
Fv(q)

,

where U ′
p ∩ V ′

p = ∅. The sequence of rational functionsG = {gn(q)}∞n=1 is also a
solution of the functional equation (1), and either max(U ′

p ∪ V ′
p) = 0 for all p ∈ P or

max(U ′
p ∪ V ′

p) = p for all p ∈ P.

If max(U ′
p ∪V ′

p) = p for all p ∈ P , then we construct the sequenceH = {hn(q)}∞n=1
of rational functions

hn(q) = gn(q)

[n]q = fn(q)

[n]2q
.

Continuing inductively, we obtain a positive integert such that

fn(q) = [n]tq for all n ∈ supp(F).

Thus, (16) holds in the casem = 1.
Let m be an integer such that the Theorem holds whenevermp<mp for all p∈P, and

let F = {fn(q)}∞n=1 be a solution of the functional equation (1) with supp(F)=S(P )
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andmp = mp andmp ∈ Up for all p ∈ P. The sequenceG = {gn(q)}∞n=1 with

gn(q) = fn(q)

[n]qr

is a solution of the functional equation (1). Since

Frp(q) = qrp − 1 = (
qr − 1

) (
1 + qr + · · · + qr(p−1)

)
= Fr(q)[p]qr ,

it follows that

gp(q) =
(qmp − 1)

∏
u∈Up\{mp} Fu(q)

[p]qr ∏
v∈Vp

Fv(q)

=
(qmp − 1)

∏
u∈Up\{mp} Fu(q)

[p]qr ∏
v∈Vp

Fv(q)

=
Fr(q)

∏
u∈Up\{mp} Fu(q)∏
v∈Vp

Fv(q)

=
∏

u∈U ′
p
Fu(q)∏

v∈V ′
p
Fv(q)

,

whereU ′
p ∩ V ′

p = ∅, and max(Up′ ∪ Vp′)�mp.

If max(Up′ ∪ Vp′) = mp, thenmp ∈ U ′
p. We repeat the construction with

hn(q) = gn(q)

[n]qr = fn(q)

[n]2qr
.

Continuing this process, we eventually obtain a positive integertr such that the sequence
of rational functions

{
fn(q)

[n]trqr

}∞

n=1

satisfies the functional equation (1), and

fp(q)

[p]trqr
=

∏
u∈U ′

p
Fu(q)∏

v∈V ′
p
Fv(q)

,
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whereU ′
p ∩V ′

p = ∅ and max(U ′
p ∪V ′

p) < mp. It follows from the induction hypothesis
there is a finite setR of positive integers and a set{tr}r∈R of integers such that

fn(q) =
∏
r∈R

[n]trqr for all n ∈ supp(F).

This completes the proof.�

There remain two related open problems. First, we would like to have a simple
criterion to determine when a sequence of rational functions satisfying the functional
equation (1) is actually a sequence of polynomials. It is sufficient that all of the integers
tr in the representation (16) be nonnegative, but the example in (3) shows that this
condition is not necessary.

Second, we would like to have a structure theorem for rational function solutions
and polynomial solutions to the functional equation (1) with coefficients in an arbitrary
field, not just the field of rational numbers.
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