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Abstract

A sequence of functions = {f,,(¢)}° ; satisfies the functional equation for multiplication
of quantum integers iff,un(q) = fimn(q) fn(¢"™) for all positive integersm and n. This paper
describes the structure of all sequences of rational functions with coefficiei@stirat satisfy
this functional equation.
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1. The functional equation for multiplication of quantum integers

Let N = {1,2,3,...} denote the positive integers. For everye N, we define the
polynomial

(g =1+q+q°+---+q""
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This polynomial is called thguantum integer nThe sequence of polynomial:],}7° ;
satisfies the following functional equation:

fmn(Q) = fm(Q)fn(qm) (1)

for all positive integersn andn. Nathansorj1] asked for a classification of all sequences
F = {fu(@)}32, of polynomials and of rational functions that satisfy the functional
equation ).

The following statements are simple consequences of the functional equation. Proofs
can be found in Nathansdd].

Let 7 = {f.(¢)};>, be any sequence of functions that satisfigs Then fi(g) =
fi(g)2 =0 or 1. If fi(g) = 0, then f,(q) = fi(q) f.(q) = O for all n € N, and F
is a trivial solution of (). In this paper, we consider only nontrivial solutions of the
functional equation, that is, sequencgs= { f,,(¢)}5>2; with fi(g) = 1.

Let P be a set of prime numbers, and I&tP) be the multiplicative semigroup df
generated by. ThenS(P) consists of all integers that can be represented as a product
of powers of prime numbers belonging & Let 7 = {f,(¢)};>,; be a nontrivial
solution of (). We define the support

suppF) = {n € N : fu(q) # O}.

There exists a unique sé of prime numbers such that sugp) = S(P). Moreover,

the sequenceF is completely determined by the séf,(q) : p € P}. Conversely,

if P is any set of prime numbers, and {it,(¢) : p € P} is a set of functions such
that

hpl(Q)hpz(qpl) = hpz(‘])hpl(qu) (2)

for all p1, p2 € P, then there exists a unique solutidh= { f,,(¢)}° ; of the functional
equation {) such that supiF) = S(P) and f,(q) = h,(q) for all p € P.
For example, for the seP = {2, 5, 7}, the reciprocal polynomials

ho(q) = 1—q + 4>,

hs(@) = 1—q+4q®—q*+¢°>—q" + 4%

11 12

h(@) =1-qg+¢®—¢*+¢°—q®+4°—q't +¢

satisfy the commutativity condition2). Since

[plys

h =
V@)=

for pe P,
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it follows that

[n]ys

fulq) = —— for all n € S(P). 3)
[n]q

Moreover, f,,(¢) is a polynomial of degree(@ — 1) for all n € S(P).

Let F = {fu.(9)};2, be a solution of the functional equation) (with suppF) =
S(P) If P =, then suppF) = {1}. It follows that f1(¢) = 1 and f,,(¢) = 0 for all
n>2. Also, for any primep and any functioni(q), there is a unique solution of the
functional equation) with supgF) = S({p}) and f,(¢) = h(q). Thus, we only need
to investigate solutions oflf for card P) > 2.

It F={fu(@);2, andG = {g,(¢)};2, are solutions of 1) with suppF)=suppg),
then, for any integers, e, r, ands, the sequence of functior® = {h,(q)};>,, where

ha(@) = (@) 2n(q")",
is also a solution of the functional equatiol) (vith suppH) = supF). In particular,

if 7 = {fu(@)},2, is a solution of {), thenH = {h,(¢q)};2, is another solution of
(1), where

_ | 1/fu(@) if n € suppF),
hn(q) = { 0 if n ¢ supp(F).

The functional equation also implies that

In(@ fn@™) = fu(q@) fin(g™) (4)

for all positive integeram andn, and

k-1 _
Fur@) = funl@™). )
i=0

Let 7 = {fu(¢)};2, be a solution in rational functions of the functional equation
(1) with supgF) = S(P). Then there exist a completely multiplicative arithmetic
function A(n) with supportS(P) and rational numberg and r; with ro(n — 1) € Z
and(n — 1) € Z for all n € S(P) such that, for everyr € S(P), we can write the
rational function f,(¢) uniquely in the form

Falq) = An)goe—b ) o
n vn (q) i

whereu, (¢) andv,(q) are monic polynomials with nonzero constant terms, and
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dequ,(q)) —dequ,(q)) =t1(n —1) for all n € supgF).
For example, leP be a set of prime numbers with car) > 2. Let A(n) be a completely
multiplicative arithmetic function with suppoif(P), and letzg be a rational number
such thatrg(n — 1) € Z for all n € S(P). Let R be a finite set of positive integers and

{t-},er a set of integers. We construct a sequefice: { f,(¢)};2 ; of rational functions
as follows: Forn € S(P), we define

Fulg) = Am)g®" =D [ Tin1z. @)

rer

Forn ¢ S(P) we setf,(q) =0. Then]‘[,eR[n]’q’, is a quotient of monic polynomials
with coefficients inQ and nonzero constant terms. The sequefice= {f,(g)}3° 4
satisfies the functional equatiof){ and suppF) = S(P).

We shall prove that every solution of the functional equatibnirg rational functions
with coefficients inQ is of the form {). This provides an affirmative answer to Problem
6 in [1] in the case of the fiel®.

2. Roots of unity and solutions of the functional equation

Let K be an algebraically closed field, and I&t* denote the multiplicative group
of nonzero elements oK. Let I denote the group of roots of unity iK*, that is,

I'={{eK*:{" =1 for somen € N}.

Since I is the torsion subgroup oK*, every element inK*\ I" has infinite order. We
define thelogarithm group

L(K)=K*/T
and the map
L:K*— L(K)
by
L(a) =al’ for all a € K*.
We write the group operation i (K) additively

L(a)+ L(b) =al’ + bl = abl’ = L(ab).
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Lemma 1. Let K be an algebraically closed fieldnd L(K) its logarithm group Then
L(K) is a vector space over the fiel@ of rational humbers

Proof. Leta € K* andm/n € Q. SinceK is algebraically closed, there is an element
b € K* such that

b =a".
We define

" L) = L®).
n

Supposen/n =r/s € Q, and that

for somec € K*. Sincems = nr, it follows that

cms — amr — bnr — bmx7

and soc/b € I'. Therefore,
m r
—L(a)=LMb) =bl=cI' =L(c)=-L(a)
n S

and (m/n)L(a) is well defined. It is straightforward to check thatK) is a Q-vector
space. O

Lemma 2. Let P be a set of primegard(P)>2, and let S(P) be the multiplicative
semigroup generated by. FFor every integerm € S(P) \ {1} there is an integem <
S(P) such thatlog m and log n are linearly independent ove®. Equivalently for
every integenn € S(P)\ {1} there is an integen € S(P) such that there exist integers
rand s withm” = n* if and only ifr =5 =0.

Proof. If m = p* is a prime power, leh be any prime inP \ {p}. If mis divisible by
more than one prime, let be any prime inP. The result follows immediately from
the fundamental theorem of arithmetic]

Let K be a field. Afunction on Kis a mapf : K — K U {oo}. For example,f (q)
could be a polynomial or a rational function with coefficients kh We call f~1(0)
the set ofzerosof f and f~1(c0) the set ofpolesof f.
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Theorem 1. Let K be an algebraically closed fieltlet 7 = { f,(¢)};>; be a sequence
of functions on K that satisfies the functional equat{@h Let P be the set of primes
such that sup@F) = S(P). If card(P)>2 and if, for everyn € supgF), the function
fx(g) has only finitely many zeros and only finitely many potaen every zero and
pole of f,(¢) is eitherO or a root of unity

Proof. The proof is by contradiction. Ldf be the group of roots of unity iK. Suppose
that

fala) =0 for somen € suppgF) anda € K*\ I.

By Lemma 2, there is an integem € S(P) such that log: and log: are linearly
independent oveRQ. Since a has infinite order in the multiplicative groug™® and
fn‘l(O) is finite, there are positive integeksand M = m* such thata™ is not a zero
of the function f,,(¢). By (4), we have

(@ £:(@™) = fu(@) fu(g™).

Therefore,

(@) Foa™) = fo(a) fur(a™) = 0.

Since f,(a™) 0, it follows from (5) that

k-1 _
0= fu(a) = f,x(a) = 1_[ fm(am’)
i=0

and so
fm(a’"[) =0 for somei such that @i <k — 1.
Let
b=a"
Then
Jm(b) =0,

be K*\T,
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and
L(b) = m'L(a) (8)
Since £,71(0) is finite, there are positive integefsand N = n such thatz" is not

a zero of f,,(q) for everyz e f,;l(O) with z € K*\ I'. SinceK is algebraically closed,
we can choose € K such that

N =b.
Then
Jm(c) #0,
ce K*\TI
and
NL(c) = L(b). ©)

Again applying 4), we have

I @ fn@™ = fn@@) fu(@™)

and so

Fn(@ fn(e™) = i (@) fin(c™) = fa(e) fu(b) = O.

It follows that

-1
0= fy (") = fele™ =[] fue™)
j=0
and so
ﬁl(cm"") =0 for somej such that & j<¢— 1.
Let
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Then
fala) =0,
a e K*\T,
and
L(d') = mn’ L(c) (10)

Combining 8)—(10), we obtain

- mn mitl
L@) = —~L(b) = L)
that is,
mi,
L) = TL(G)’ where I<i’ <k and 1<’ < /. (11)
n

What we have accomplished is the following: Given an elemeat f,1(0) that is
neither O nor a root of unity, we have constructed another elemfeetf”‘l(O) that
is also neither 0 nor a root of unity, and that satisfig$).( Iterating this process, we
obtain an infinite sequence of such elements. However, the number of zeiygqof
is finite, and so the elements in this sequence cannot be pairwise distinct. It follows
that there is an element

ae 70\ (MU (o)

such that
m}"
L(a) = FL(G)’
wherer ands are positive integers. Then

a'T' =1L (a”'y) =n*L(a) =m"L(a) =L (a”") =a" T.

Sincea is not a root of unity, it follows that



128 A. Borisov et al./Journal of Number Theory 109 (2004) 120-135

which contradicts the linear independence of do@nd log: over Q. Therefore, the
zeros of the functiong;,(¢) belong toI" U {0} for all n € supgF).

Replacing the sequencé = {fn(@)}nesuppr) with 7" = {1/ fu(@)}nesuppF), We
conclude that the poles of the function(¢) also belong tol” U {0} for all n €

Sup@F). This completes the proof.[]

3. Rational solutions of the functional equation

In this section, we shall completely classify sequences of rational functions with
rational coefficients that satisfy the functional equation for quantum multiplication.
For k>1, let &;(g) denote thekth cyclotomic polynomial. Then

Fi(q)=q" —1=]] ®ale)
ik

and

By (q) = [ | Fat@* ™, (12)
dlk

where u(k) is the Mobius function. Let! be a primitive dth root of unity. Then
Fir () =0 if and only if d is a divisor ofk. We define

Fo(q) = Po(q) = 1.

Note that

F@=¢"-1=@q-DA+q+ - +¢"H = Flkl, (13)

for all k>1.

A multisetU = (Up, 0) consists of a finite se/y of positive integers and a function
0 : Ug — N. The positive integed(«) is called themultiplicity of u. Multisets U =
(Uo, d) and U’ = (U, &) are equal ifUg = U} and d(u) = &'(u) for all u € Up.
Similarly, U € U’ if U € U§ and d(u) <d'(u) for all u € Ug. The multisetsU and
U’ aredisjoint if Up N Uj = ¢¥. We define

[1 0= ] fu@’®

uelU uelp

and
max(U) = max(Up).

If Up =, then we set ma/) =0 and[][,., fulg) = 1.
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Lemma 3. Let U andU’ be multisets of positive integershen

[[F@ =] Fe@. (14)

uel u'el’

if and only ifU =U".

Proof. Let k = max({U U U’). Let { be a primitivekth root of unity. If k € U’, then

[[R@O=]] Fv© =0,

uel u'el’

and sok € U. Dividing (14) by Fi(g), reducing the multiplicity ofk in the multisets
U and U’ by 1, and continuing inductively, we obtaii = U’. [

Let F = {fu(¢)};2, be a nontrivial solution of the functional equatioh),(where
fx(q) is a rational function with rational coefficients for alle supgF). Because of
the standard representatio8),(we can assume that

un(q)
vn(q) ’

fn(Q) =

whereu, (¢) andv,(g) are monic polynomials with nonzero constant terms. By The-
orem 1, the zeros of the polynomials,(¢) and v,(¢) are roots of unity, and so we
can write

nueUr’l dju (‘I)

fulg) = W,

whereU;, and V, are disjoint multisets of positive integers. Applying2j, we replace
each cyclotomic polynomial in this expression with a quotient of polynomials of the
form Fi(g). Then

[luev, Fu(@)

) 15
HUEVn Fu(q) (1)

fn(Q)z

where U, andV, are disjoint multisets of positive integers. Let

e, @) Tlwey Fu(@)
nveVn Fv(q) HU’EVY; Fv/(q) ’

fal@) =
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whereU, andV, are disjoint multisets of positive integers abt] and V, are disjoint
multisets of positive integers. Then

[l r@= ] F@.

uelU,Uv, veU, UV,
By Lemma3, we have the multiset identity
U, UV, =U, UV,.

SinceU, NV, = #, it follows that U, € U, and soU, = U,. Similarly, V, = V.
Thus, the representatiod ) is unique.

We introduce the following notation for thdilation of a set: For any integed and
any setS of integers,

dxS={ds:seS}.

Lemma 4. Let F = {fu.(9)};>, be a nontrivial solution of the functional equatig)
with supgF) = S(P), where cardP)>2. Let

HueUy, Fu(q)

Jn(q) = Hve\/n Fo(@)

and U, and V, are disjoint multisets of positive integerBor every primep € P,
let

m, =maxU, U V,).

There exists an integer r such that, = rp for everyp € P. Moreovet eitherm, € U,
forall pe P orm, eV, forall peP.

Proof. Let p1 and p» be prime numbers i, and let

m m
P1 p2
pP1 P2

Equivalently,

P21 py Z 1M py.
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Applying functional equation4) with m = p; andn = p,, we obtain

HueUpl Fu(q) HueUpz Fu(qﬁl) l_lueUp2 Fu(q) HueUpl Fu(qu)
]_[UEVpl FU(Q) ]_[veV,,2 Fv(qpl) Hvesz Fv(CI) HveVpl Fv(qu) '

where
Upy N Vpy = Up, NV, = 0.
The identity
Fu(@™) = (¢")" —1=¢"" — 1= Fuu(q),
implies that

nueUMUpl*Upz Fu (Q) l—[ueUpl Fu(q) I—[uepl*Upz FM (q)
HUGVP1Up1*Vp2 Fv(q) Hvevpl Fv(q) Hvepl*vpz Fv(q)

l_[ueUpz Fu(q) nsepz*Upl F.(q)
HUEVPZ FU(Q) H[epz*vpl Fv(CI)

HMEUszPZ*Upl Fy (Q)
HUEV,,ZUpz*V,,l Fy(q)

By the uniqueness of the representatid){ it follows that
Up, UprxUpp) UV, U(paxVy) =Up, U(p2xUp) UV, U(pr* Vp,).
Recall that

mp, = max(Up, U Vp,).

mp; € Upy,
then

pampy € p2* Up,
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and so

p2mp, € Up U (p1* Upz) UV, U (p2 * V171)~

However,

(') pamp, & Upy Since_pzmp1 >mpy, = max(Up1 U Vm) ;
(i) pampn & p2* Vpy SinCem,, € Upy aNAUp, NV, =1,
(i) pomp, & Vp, Since pamp, = pimp, > m,, = max(Upy, U V,,).

If pomp, > pimp, = max(p1Uy,), then pom,, & p1*U,,. This is impossible, and
so

p2mp, = pimp, € p1* Up,,
Mp, € Up,,

and

Mpy  Mpy

= =r forall p1, p2 € P.
P1 P2

Similarly, if m,, € V,, for somepi € P, thenm,, € V,, for all po € P. This
completes the proof.

Theorem 2. Let F = { f,(¢)},2, be a sequence of rational functions with coefficients
in Q that satisfies the functional equatigh). If supp(F) = S(P), where P is a set of
prime numbers and card) > 2, then there are

(i) a completely multiplicative arithmetic functiot(n) with supportS(P),
(ii) a rational numberzy such thatzg(n — 1) is an integer for alln € S(P),
(i) a finite set R of positive integers and a $st,.g of integers

such that

Fu(@) = Am)q"®" =D Tinls foralln e suppF). (16)

rer

Proof. It suffices to prove 16) for all p € P. Recalling the representatioB)( we only
need to investigate the case

l_[MEUp FL{ (CI)

fp(q@) = m,
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whereU, andV, are disjoint multisets of positive integers. Lat, = max(U, U V,).
By Lemma4, there is a nonnegative integar such thatm, = mp for all p € P. We
can assume that, € U, for all p € P.

The proof is by induction omm. If m = 0, thenU, =V, = ¢ and f,(¢) = 1 for
all p € P, hence 16) holds with R = @.

Let m =1, and suppose that, = p € U, for all p € P. Then

H“EUP Fu(q) . ¢" =1 l_[ueU,'; Fu(q)
HUGVI, Fy(q) B HUEV,, Fy(q)

fp(CI) =

Sinceq” — 1= Fi(q)[pl,, we have

fp(Q)

[P]q

(qp - 1) HL[GU,,\{p} Fu(q)
[P]q nveVF Fy(q)

Fl(Q) l_[ueUl,\{p} Fy (61)
Moy, Fo(@

[uew, Fu@)

B Hvev;, Fy(q) '

gplq) =

where U, N V] = @. The sequence of rational functiors = {g,(¢)};°, is also a
solution of the functional equatiorlL), and either maQU;, U Vl’,) =0forall pePor
maxU, U V) = p forall p € P.

If max(U;,U VI’,) = p for all p € P, then we construct the sequertle= {h,(q)};°,
of rational functions

gn(q)  fu(q)
hn = =
D=0, = i

Continuing inductively, we obtain a positive integesuch that
fa(q) =[n), for all n € suppF).

Thus, (6) holds in the casen = 1.
Let m be an integer such that the Theorem holds wheneygemp for all pe P, and
let 7 = {fu(q)};2, be a solution of the functional equatiof) (with supgF)=S(P)
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andm, =mp andm, € U, for all p € P. The sequenc€ = {g,(q)}>; with

(@)

B [n]q’

gn(q)

is a solution of the functional equatiod)( Since

Fp@=q"=1=(¢" =1) (1+4"+ +a"*™V) = F@Iply,
it follows that
(g"r —1) l_[ugUp\{mp} Fu(q)

[P]q’ nvevp Fy(q)

(g™’ —1) nueUp\{mp} Fu(q)
[Plgr [vev, Fo(@)

Fr(q) HuEU,,\{mp} Fu(q)
Moy, Fo(@

l_[ueUl’J Fu(Q)

HUEV,’, Fv(Q) '

gp(q)

whereU, NV, =¥, and maxU, U V) <mp.
If max(U, UV,)=mp, thenmp € U;,. We repeat the construction with

_&(q)  fulg)

- [n]qr - [n]gr .

hn(q)

Continuing this process, we eventually obtain a positive integsuch that the sequence
of rational functions
oo
[ (@) }
Iy
[Vl]qr n=1

satisfies the functional equatiod){ and

foa) _ uew, Fula)
ply: Thoev, Fo(@)




A. Borisov et al./Journal of Number Theory 109 (2004) 120-135 135

whereU, NV, =@ and maxU,UV,) < mp. It follows from the induction hypothesis
there is a finite seR of positive integers and a sét.}, <z of integers such that

n(q) = H[n];’, for all n € supgF).
rer

This completes the proof.[]

There remain two related open problems. First, we would like to have a simple
criterion to determine when a sequence of rational functions satisfying the functional
equation 1) is actually a sequence of polynomials. It is sufficient that all of the integers
t. in the representationlf) be nonnegative, but the example iB) (shows that this
condition is not necessary.

Second, we would like to have a structure theorem for rational function solutions
and polynomial solutions to the functional equatid) With coefficients in an arbitrary
field, not just the field of rational numbers.
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