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Together, these advances have set the stage for de-
Insulin-dependent diabetes mellitus (IDDM) is a multi-

veloping a complete molecular understanding of the
factorial autoimmune disease for which susceptibility is

pathogenesis of this autoimmune disease and for thedetermined by environmental and genetic factors. Inher-
design of rational and effective means of prevention.itance is polygenic, with the genotype of the major histo-
Prevention could then replace insulin therapy, which iscompatibility complex (MHC) being the strongest ge-
effective but associated with long term renal, vascular,netic determinant. However, even in monozygotic twins,
and retinal complications.the concordance rate is only 50% (Barnett et al., 1981),

indicating the importance of a number of as yet unidenti-
fied environmental factors (Castano and Eisenbarth,

The Role of the Major Histocompatibility Complex1990). There is a north–south gradient in incidence of the
Extensive sequencing of MHC class II alleles in man,disease with the highest incidence (1%–1.5% in Finland)

being in northern Europe, with decreasing incidence the NOD mouse, and the Bio-breeding rat, as well as
in more southerly and tropical locations. Although this the use of NOD mice transgenic for several MHC class
suggests the effect of infectious agents, in the nonobese II molecules, has revealed a complex interplay between
diabetic (NOD) mouse, germ-free NOD mice have the alleles of the two major isotypes of MHC class II mole-
highest incidence (nearly 100%) that has been seen in cules (HLA [human leukocyte antigen] DR and DQ in
any NOD colony. man, and I-A and I-E in the mouse]) (Wicker et al., 1995).

While MHC class II genotype is one of the strongest Susceptibility to type I diabetes is most strongly deter-
factors determining susceptibility to IDDM, it has long mined by DQ and I-Ab chain alleles that encode serine,
been apparent that susceptibility at MHC class II is a alanine, or valine at position 57 on both chromosomes
necessary but not sufficient predisposing genetic factor.

(Acha-Orbea and McDevitt, 1987; Todd et al., 1987).
Microsatellite analyses of genome-wide polymorphisms

DQb and I-Ab position 57 aspartic acid positive allelesin multiplex IDDM families and in NOD crosses with
mediate resistance to IDDM, which varies in degree withnonsusceptible strains have identified many other ge-
the sequence of other residues in the DQa and b chains.netic regions that also influence susceptibility. Thus, in
Expression of I-E (b chain position 57 aspartic acid posi-the NOD mouse there are at least 15 other regions on
tive) in the NOD mouse, and of DR B1 chains expressing11other chromosomes that contribute to geneticpredis-
aspartic acid at position 57, also mediates varying de-position (Vyse and Todd, 1996 [this issue of Cell]). In
grees of resistance to type I IDDM. Thus, HLA DR B1man, linkage studies have suggested an even larger

number (as many as 19) genetic regions determining alleles lacking aspartic acid at position 57 in Japanese
IDDM susceptibility. For the most part, the genes de- patients are associated with a higher degree of suscepti-
termining susceptibility in each of these chromosomal bility than Asp-57(1) HLA-DR B1 alleles (Ikegami et al.,
regions have yet to be identified. Several of these re- 1989, Diabetes, abstract). There is also evidence that
gions also influence susceptibility to a murine counter- MHC class I genotype may have a similar modifying
part of systemic lupus erythematosus and to a murine effect (Ikegami et al., 1993).
model of multiple sclerosis (Vyse and Todd, 1996). These associations have now been extensively tested

IDDM in animal models is T cell mediated and requires in many studies (Nepom and Erlich, 1991) and several
the participation of both CD81, class I MHC restricted exceptions have been noted. (Ikegami et al., 1989, Dia-
and CD41, class II MHC restricted T cells (Wicker et al.,

betes, abstract; Erlich et al., 1993). Results from these1995). Extensive studies in rodent models have failed
studies indicate that polymorphisms in the DQa chain,to identify the origins of the autoreactivity in IDDM, but
elsewhere in the DQb chain, and in the DR B1 chaindemonstrate the importance of a number (8–10) of islet
play an important modifying role. In some populationsb cell–expressed proteins that are the targets of the
this can be shown to be due to similar sequence poly-autoimmune process in this disease (Table 1). Other
morphisms at DR B1 position 57, with aspartic acidstudies have shown the important roles of several regu-
negative alleles mediating susceptibility while asparticlatory and proinflammatory cytokines, including inter-
acid positive alleles mediate resistance. (Ikegami et al.,feron-g (IFNg), tumor necrosis factor a (TNFa), interleu-

kin-4 (IL-4), and IL-10, as well as the importance of a 1989, Diabetes, abstract; Cucca et al., 1995). There is
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Table 3. Peptides Bound by DR4 SubtypesTable 1. Targets of the Autoimmune Response in IDDM

Amino Acid(s) atT Cell
Autoantigen Antibody Responsesa DR4 Allele Peptide Position 9

Insulin 1 1 0401 b-Asp-57 Ala, Ser, Gln
0405 b-Ser-57 Asp, GluGAD65/67 1 1

ICA 105 (IA-2) 1 ?
Carboxypeptides H 1 1

Peripherin 1 1 Considerable evidence (see below) indicates that islet
HSP60 1 1 b cell damage and destruction is mediated by islet anti-
p69 1 ? gen specific T helper type 1 (Th1) lymphocytes. The
ICA 512 1 ?

results cited above suggest that, while susceptible and52 kDa Ag 1 ?
resistant alleles can present many of the same peptides,Gangliosides 1 ?
susceptible alleles also present a distinct subset of pep-38 kDa secretory granule antigen ? 1

tides with a negative charge at position P9. These pep-a For specific references, see Atkinson and Maclaren, 1993.
tides, when bound by susceptible DQ and I-A alleles,
may preferentially induce a Th1 response. In contrast,
resistant alleles would be expected to present peptides

also evidence that a polymorphism at HLA-DR B1 posi- that would elicit a predominant Th2 response. NOD mice
tion 74 can have a strong modifying affect on suscepti- expressing transgenic I-A alleles (I-Ad, I-Ak, I-Ag7) with
bility (Cucca et al., 1995) (Table 2, this study). a mutation to aspartic acid at position 57 in Ab have a

Peptide elution studies by Ramensee et al. (1995) and decreased or zero incidence of IDDM (see references
Reich et al. (1994) have provided indirect support for in Quartey-Papafio et al., 1995). Cell transfer studies
the concept that HLA-DQ ,-DR, and I-A polymorphisms suggest this decreased incidence is the result of a pre-
affect susceptibility to IDDM by selectively affecting the dominant Th2 response to islet cell antigens (Singer, et
nature of the peptides presented to T cells by these al., 1993), but definitive proof for this interpretation is
class II molecules. These authors showed that peptides yet to be published. Competition between susceptible
eluted from HLA-DR alleles that have or lack aspartic and resistant alleles for binding a critical diabetogenic
acid at HLA-DRb57 bind overlapping but distinct sets peptide has been postulated as an alternative explana-
of peptides. Thus HLA DR B1-04 alleles lacking aspartic tion for these data (Nepom, 1990; Quartey-Papafio et
acid at position 57 bind peptides with glutamic acid or al., 1995). Support for the former hypothesis is seen in
aspartic acid at position P9 in the peptide (Table 3). This studies of IDDM families (Thai and Eisenbarth, 1993).
is presumably because the absence of aspartic acid at Although DQB1 0602 (an IDDM-resistant allele) positive
DR b1 position 57 leaves a conserved arginine at DRa79 siblings of diabetics rarely develop diabetes, they can
free to interact with a negative charge at the carboxyl produce high titers of autoantibodies to several islet
terminus of the peptide (Stern et al., 1994; Wucherpfen- cell antigens. This indicates that resistant alleles do not
nig and Strominger, 1995). In position 57 aspartic acid cause resistance by inducing more complete self-toler-
positive alleles, Asp-57 forms a salt bridge with a-Arg- ance to islet cell antigens than do the susceptible DQb1
79, and peptides with a negative charge at or near the alleles. (Nepom, 1990; Erlich et al., 1993).
carboxyl terminus of the peptide are not bound to any The results cited above bring us tantalizingly close
appreciable degree. (These data are derived from amino to understanding how susceptible and resistant alleles
acid sequence studies of complex mixtures of peptides mediate their effects. The issues raised can only be
eluted from the respective alleles. It is likely that both resolved when peptide epitopes derived from critical
types of allele, which are nearly identical in sequence islet cell autoantigens have been identified and charac-
elsewhere in the DR b1 chain, will also bind many of the terized with respect to their ability to elicit insulitis and
same peptides). IDDM-inducing T cells. The long list of antigens that are

the target of an autoimmune response in both mouse
and man (see below) means that the peptide epitopesTable 2. MHC Class II Sequence Polymorphisms in IDDM
derived from a number of islet cell autoantigens will

Locus Allele Susceptible Resistant have to be identified and characterized to achieve this
DQ B1 0201 Ala-57 goal.
DQ B1 0302 Ala-57
DQ B1 0303a Asp-57 The Autoantigens Targeted in IDDM
DQ B1 0301a Asp-57

The strong association that exists between specificDQ B1 0502 Ser-57
MHC class II alleles and disease susceptibility impliesDQ B1 0602c Asp-57
that the diabetogenic response is antigen driven. This

DR B1 0405 Ser-57
is supported by the observation that T cells obtainedDR B1 0403 Asp-57, Glu-74
from NOD mice in which the b cells have been ablatedDR B1 0401b Asp-57
at an early age no longer have the capacity to adoptivelyI-Eb g7c Asp-57
transfer disease (Larger et al., 1995). Studies in the NOD

I-A g7 Ser-57 mouse from the neonatal period until disease onset sug-
I-A bc Asp-57

gest that the diabetogenic response can be viewed as
a Neutral or weakly negative with respect to IDDM. a series of stages culminating in massive b cell destruc-
b Less susceptible than DRB1 0405. tion and the establishment of overt diabetes. Peri-insul-
c Strongly resistant to IDDM.

itis, first seen at 4–6 weeks of age, is characterized by
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an accumulation of macrophages, dendritic cells, and recognition of GAD (and insulin, see below) occurs early
in the disease process, and that anti-GAD reactivity mayB and T lymphocytes that enter the periductal areas but
mediate initial events associated with intra-insulitis.remain outside of the islet proper. At later time points,
NOD mice remain protected from diabetes when treatedintra-insulitis develops and is characterized by the direct
with GAD either at an age preceding islet inflammationinvasion of the islets by infiltrating cells, and is depen-
or when exhibiting extensive intra-insulitis, providingdent on the recognition of b cell antigen(s) (Wicker et
functional evidence that GAD may have a critical role inal., 1992). A temporal analysis of b cell reactivity in NOD
the disease process (Kaufman et al., 1993; Tisch et al.,mice suggests that only a few autoantigens are targeted
1993; Elliott et al., 1994). In these studies protection,in the early stages (Kaufman et al., 1993; Tisch et al.,
at least in part, appears to be mediated through the1993). As intra-insulitis progresses, additional b cell de-
induction of GAD-specific regulatory T cells that secretestruction occurs, apparently resulting in the sensitiza-
lymphokines that nonspecifically suppress the diabeto-tion and recruitment of other b cell–specific T cells found
genic response. To determine the relative contributionin the periphery. Intra-insulitis per se, however, does
and precise role of anti-GAD reactivity in the diseasenot appear to be sufficient to drive the response to an
process, experiments need to be done in which GAD-overt diabetic state. This is suggested by studies in NOD
specific T cells are selectively tolerized by clonal dele-mice transgenic for a pathogenic T cell receptor (TCR)
tion/anergy induction, to detect the effect this has onthat exhibit a highly aggressive form of intra-insulitis
development of insulitis and IDDM.beginning abruptly at 3–4 weeks of age, yet the time of

Insulin is another b cell autoantigen that appears toonset (18–20 weeks) and the frequency of overt diabetes
have a critical role in the diabetogenic response. Anti-in these animals is only marginally enhanced (Katz et
insulin autoantibodies can be detected in z50% of re-al., 1993a). These 3 week and 18–20 week checkpoints
cent-onset IDDM subjects and are most frequent inmay reflect the requirement for additional events in order
younger children who exhibit an enhanced rate of b cellto initiate insulitisand then to progress to overt diabetes.
destruction (Castano and Eisenbarth, 1990). Insulin is aThese events may depend on the outcome of interac-
key T cell target in that insulin B chain–specific CD41 Ttions occurring between effector and regulatory T cells
cell clones can accelerate diabetes in young NOD mice(see below) or sequential targeting of specific b cell
or adoptively transfer disease in NOD-scid mice (Danielautoantigens, or both.
et al., 1995). Furthermore, oral or parenteral treatmentOnly in the past 5–7 years has the identity of most of
of young NOD mice with whole insulin or insulin B chain,the b cell autoantigens been determined. Despite this
respectively, can protect animals from diabetes (Zhangprogress, little is known about the role these autoanti-
et al., 1991; Muir et al., 1995). This protection againgens may play in the disease process, i.e. whether they
appears to be partially mediated through the inductionare in fact pathogenic. At present,conclusions regarding
of immunoregulatory T cells, so that the relative contri-

the possible role/importance of a given b cell autoanti-
bution of anti-insulin reactivity to the disease process

gen in IDDM are based upon two sources: first, observed
is still not clear. In contrast to young NOD mice treated

correlations between autoantibody reactivity (and more
with GAD, animals receiving insulin or insulin–B chain

recently T cell reactivity) and disease progression in continue to exhibit intra-insulitis, suggesting that anti-
man and in NOD mice, and second, studies determining insulin reactivity may be necessary for more distal
whether the diabetogenic response in NOD mice can events in disease progression.
be modulated following treatment with the autoantigen Additional autoreactivity seen during thedevelopment
or transfer of specific T cell clones, or both. of human diabetes includes antibodies to two tryptic

Using the above criteria, glutamic acid decarboxylase fragments with molecular masses of 37 and 40 kDa,
(GAD) is one of only three critical b cell autoantigens. derived from a b cell antigen. Autoantibodies against
GAD is an enzmye with two isoforms, GAD65 and these fragments have been detected in 60% of newly
GAD67, that catalyze the biosynthesis of the neurotrans- diagnosed individuals and appear to identify a subgroup
mitter g-aminobutyric acid. The presence of anti-GAD of IDDM patients who rapidly progress to diabetes
antibodies in the sera of prediabetic individuals has (Christie et al., 1994). The recent discovery that the two
proven to be a reliable predictive marker for progression tryptic fragments are derived from the putative tyrosine
to overt diabetes (Baekkeskov et al., 1990; Hagopian phosphatase IA-2 should aid in assessing T cell reactiv-
et al., 1993). T cell reactivity in IDDM patients can be ity to the autoantigenand its possible role in the diabeto-
detected to a region of GAD that contains homology to genic response (Passini et al., 1995). A protein desig-
the Coxsackie B P2-C viral protein (Atkinson et al., 1994). nated as p69 has been shown to be an additional target
The fact that Coxsackie B viral infections have been of autoantibodies found in IDDM patients (Pietropaolo
implicated in cases of IDDM has led to the intriguing et al., 1993).
hypothesis that recognition of GAD may be stimulated Autoantibodies and T cell reactivity specific for HSP60
in some instances by a response to the virus. have also been detected in NOD mice. Whether HSP60

NOD mice also exhibit antibody reactivity to GAD (and is targeted in the human diabetogenic response remains
to insulin). Responses to GAD and insulin (but not to unclear. However, treatment of NOD mice with HSP60
other b cell autoantigens such as HSP60, peripherin, protects animals from disease (Elias et al., 1991). More-
and carboxypeptidase H) can be detected in animals at over, it has been reported that treatment of hyperglyce-
an age when minimalhistological signs of islet inflamma- mic NOD mice with an HSP60-specific peptide can rees-
tion are observed (Kaufman et al., 1993; Tisch et al., tablish euglycemic blood levels (Elias and Cohen, 1994).
1993). Anti-GAD reactivity is seen in some NOD mice Finally, HSP60-specific CD41 T cell lines have been
that exhibit extensive intra-insulitis, yet remain diabetes shown to accelerate or block disease in NOD recipients

(Elias et al., 1991).free (Tisch et al., 1993). These observations suggest that
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Undefined components of the b cell secretory granule exacerbates the development of diabetes and that
monoclonal antibodies specific for Th1-derived cyto-have been shown to be targeted by pathogenic CD41

T cell clones established from NOD mice (Haskins and kines block the development of the disease (Rabino-
vitch, 1994). In addition, murine b cell–specific T cellMcDuffie, 1990) and by CD41 T cell clones from IDDM

patients (Roep et al., 1990). clones that exhibit a Th1 phenotype can efficiently trans-
fer disease in syngeneic young NOD recipients (HaskinsThus, a number of b cell autoantigens are recognized

during the diabetogenic process. The task at hand is to and McDuffie, 1990; Shimizu et al., 1993; Katz et al.,
1995). Th2 cells, which are characterized by the secre-distinguish those antigens that play a primary role in

initiating the autoimmune process from those autoanti- tion of IL-4, IL-5, IL-6, IL-10, and IL-13 and primarily
support humoral mediated immunity, appear to have agens that elicit an autoimmune response as a secondary

event due to local inflammation. This might be achieved down-regulatory role in IDDM. Administration of IL-4
(Rapoport et al., 1993) or IL-10 (Pennline et al., 1994),in animal studies in which the T cells specific for a given

autoantigen are selectively tolerized, and the effect this both of which promote Th2 development and function,
protects NOD mice from diabetes. In addition, purifiedhas on insulitis and IDDM then determined. A sequential

study over time of T cell reactivity in HLA identical sib- T cells with a CD45RClo (Th2-like) phenotype prevent an
induced form of diabetes in rats (Fowell and Mason,lings of diabetics, and in recent onset IDDM patients,

may also provide further insight into the relative impor- 1993).
Several studies indicate that a functional imbalancetance of a given autoantigen.

between the two Th cell subsets is a key determinant
in establishing islet pathology. A high ratio of IFNg/IL-4The T Cell Response in IDDM

Studies primarily in the NOD mouse have attempted to producing T cells can normally be detected in infiltrates
leading to the destruction of islets grafted under thedetermine whether the repertoire of infiltrating T cells

exhibit Va or Vb restriction. To date, there has been no kidney capsule in NOD mice (Shehadeh et al., 1993). In
contrast, grafted islets in NOD mice containing infiltratesconsistent evidence indicating that restriction in Va or

Vb usage exists among T cells found in the pancreas. with a lower ratio of IFNg/IL-4 producing T cells (as
a result of receiving Freund’s adjuvant) remain intact.However, a recent study has reported that, in two dia-

betic patients, preferential usage of the Vb7 gene was Furthermore, a recent study has suggested that an in-
verse relationship exists between humoral reactivity todetected in the infiltrating T cells (Conrad et al., 1994).

This restriction was argued to be the result of T cell GAD and risk for IDDM inprediabetic patient populations
(Harrison et al., 1993).activation by an unidentified infectious agent encoding

a superantigen within the islets. The events that modulate the balance between the
two Th subsets in IDDM are still a matter of speculation.Studies with NOD mice deficient in MHC class I or

class II expression—andin turn devoid of CD81 on CD41 Factors that may have quantitative or qualitative effects
on T cell activation such as the density of MHC/peptideT cells, respectively—have demonstrated that both T

cell subsets are required for islet infiltration and subse- complexes on the surface of APCs (Pfeiffer et al., 1995),
TCR affinity/avidity for the binary complex, or interac-quent b cell destruction (Katz et al., 1993b; Serreze et

al., 1994; Wicker et al., 1994). However, the respective tions between costimulatory molecules (Lenschow et
al., 1995) may lead to preferential development of Th1contribution of each subset is presently not clear. Nu-

merous studies have shown that CD41 T cells alone are cells in IDDM. It is also conceivable that one or more of
the several non-MHC genes that confer IDDM suscepti-far more efficient in the adoptive transfer of disease

than CD81 T cells. The effectiveness of CD41 T cells in bility may be associated with some aspect of Th cell
subset development (Scott et al., 1994).transferring disease is most likely due to the secretion

of lymphokines such as IFNg and TNFa that are directly To view the regulation of the disease process strictly
in terms of Th1 and Th2 subsets is undoubtly an over-toxic to b cells and that recruit nonspecific effector cells

to amplify the response. CD81 T cells on the other hand, simplification. For example, CD41 Th1 autoreactive T
cell clones have been established from NOD mice thatmay have a more restricted role in the disease process.

It has been suggested that CD81 T cells are required to secrete an unknown factor which can suppress the
adoptive transfer of diabetes (Akhtar et al., 1995). Ininitiate b cell injury, which in turn could lead to the

priming of CD41 T cells and subsequent amplification addition, T cells expressing a diabetogenic TCR and
cultured under conditions to promote Th2 developmentof the response (Wicker et al., 1994). The lack of insulitis

in class I–deficient NOD mice and the appearance of are unable to mediate protection in NOD recipients (Katz
et al., 1995). CD81 T cells have also been shown toCD81 T cells in the islets prior to CD41 T cells (Jarpe

et al., 1991) support this notion. exhibit Th1- and Th2-like phenotypes, and the contribu-
tion of cytokines secreted by non–T cells must certainlyCD41 T cell dominance in the diabetic process may
be considered. The development of a given Th cell sub-reflect the critical role this subset has in regulating the
set and, in turn, the outcome of the diabetogenic re-immune system.CD41 T cellscan bedivided into distinct
sponse undoubtedly involve the interplay of a numbersubsets based on their cytokine profiles. These subsets
of cell types and factors.of Th cells opposeone another through reciprocaldown-

regulatory effects mediated by their respective cyto-
kines. Th1 cells, which secrete IL-2, IFNg, and TNFa Immunotherapy

Early attempts toprevent IDDM typically relied on immu-and predominantly support cell-mediated immunity, are
believed to be the primary CD41 T cells mediating IDDM. nosuppressive drugs (cyclosporine) or drugs that indis-

criminantly inhibit cell proliferation (imuran), often lead-This is supported by animal studies showing that admin-
istration of cytokines that promote Th1 development ing to serious side effects. Therefore, a great deal of
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effort has focused on selectively targeting those T cells Although antigen-specific immunotherapy appears to
be a promising method to prevent IDDM, it is most likelyinvolved in the disease process. One general approach

has been to employ monoclonal antibodies specific for that a combination of approaches may prove to be more
generally effective. Thus, active suppression by antigen-molecules expressed by the effector T cell population.

Monoclonal antibodies specific for CD4 (Shizuru et al., induced regulatory T cells may be enhanced in concert
with antibodies targeting cytokines required for Th1 de-1988) and CD3, a component of TCRs (Chatenoud et

al., 1993), have been shown to be effective in the preven- velopment and function. Furthermore, as additional b

cell autoantigens are identified and shown to have ation and treatment, respectively, of diabetes in NOD
mice. Similarly, prediabetic NOD mice are protected role in the disease process, therapy might employ a

number of autoantigens to target the polyclonal popula-from disease when treated with antibodies that interfere
with antigen recognition (anti-class II, Boitard et al., tion of autoreactive T cells, thereby increasing the likeli-

hood of successful treatment.1988; anti-TCR, Sempe et al., 1991), cellular activation
(anti-B7; Lenschow et al., 1995), and homing to the pan- Even if safe, effective, and long lasting immunother-

apies are developed, their application is a formidablecreas (anti–L selectin and anti-VLA-4; Yang et al., 1993).
Finally, antibodies targeting cytokines associated with challenge. Only 15% of new cases of IDDM occur in

families with a previous case in the kindred. Overt diabe-Th1 activity (anti-IFNg, anti-TNFa, and anti-IL-12; Rabin-
ovitch, 1994) have been able to prevent disease in predi- tes develops only when b cell destruction is nearly com-

plete, and the patient is asymptomatic for months orabetic NOD mice. In general, however, the applicability
of antibodies specific for these “immune–related mole- years until that point is reached. Immunotherapy thus

must be preventive, which requires inexpensive, accu-cules” to human IDDM is limited by the side effects of
chronic administration, such as immunogenicity, and rate genetic, autoantibody, and T cell screening tech-

niques. Given the large number of islet cell autoantigensthe lack of selectivity.
An alternative approach is todevise protocols in which now available and the rapid progress in identifying ge-

netic susceptibility markers, such screening techniquesimmunomodulation can be selectively applied through
the use of a specific antigen/peptide. Recently, it has should soon be feasible. Hopefully, effective methods

of prevention will promote widespread populationbeen demonstrated that insulin, when adminstered prior
to the onset of diabetes, can delay or prevent disease screening and the application of preventive therapy.
in individuals at high risk for IDDM (Keller et al., 1993).
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