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Abstract

We study an inflationary scenario where thermal inflation is followed by fast-roll inflation. This is a rather generic possibility based on the
effective potentials of spontaneous symmetry breaking in the context of particle physics models. We show that a large enough expansion could be
achieved to solve cosmological problems. However, the power spectrum of primordial density perturbations from the quantum fluctuations in the
inflaton field is not scale invariant and thus inconsistent with observations. Using the curvaton mechanism instead, we can obtain a nearly scale
invariant spectrum, provided that the inflationary energy scale is sufficiently low to have long enough fast-roll inflation to dilute the perturbations
produced by the inflaton fluctuations.
© 2006 Elsevier B.V. Open access under CC BY license. 
1. Introduction

Currently, inflation [1] is considered to be the most promis-
ing candidate to provide the initial conditions for the success-
ful hot big bang theory, solving many cosmological problems
such as homogeneity, isotropy and flatness of the observable
universe. At the same time, primordial density perturbations
are generated from quantum fluctuations, and they become the
seeds of structure in the universe after inflation. The most pris-
tine form of these perturbations is inscribed as the temperature
anisotropy in the cosmic microwave background (CMB), which
was first probed by the cosmic background explorer (COBE)
satellite [2]. Recently, more improved CMB observations such
as Wilkinson microwave background probe (WMAP) [3] and
BOOMERanG [4] detected the signature of the acoustic oscil-
lations in the anisotropy spectrum with unexperienced accuracy.
Combined with galaxy survey like Sloan digital sky survey
(SDSS) [5], these data strongly support inflation.

There is, however, no consensus on the most plausible model
of inflation. Many conceptual developments in the inflationary
scenario such as the idea of eternally inflating universe [6],
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which suggests that inflation is a generic feature in the early
universe dominated by scalar fields and only the inflation of the
last 60 e-folds is relevant for the observed universe, have pro-
vided different realisations of inflation, making our decision on
the final stage of inflation even more diverse. In that sense, the
paradigm of slow-roll inflation [7] is a very useful and attrac-
tive principle to discriminate which model is able to implement
long enough inflation for homogeneous and flat universe and to
generate an almost scale invariant spectrum of density pertur-
bations. This helps us to clarify which inflation model is viable
by requiring that the inflaton potential V (φ) be flat enough to
achieve the slow-roll conditions,

ε = m2
Pl

2

(
V ′

V

)2

� 1,

(1)|η| =
∣∣∣∣m2

Pl
V ′′

V

∣∣∣∣ � 1,

where a prime denotes a derivative with respect to the infla-
ton field φ and mPl = (8πG)−1/2 � 2.4 × 1018 GeV is the
reduced Planck mass. But it is not easy to satisfy the slow-roll
conditions, |η| � 1 in particular, in many models motivated by
particle physics. For example, in supergravity theories the effec-
tive masses of generic scalar fields receive corrections of O(H)

during inflation, spoiling the condition |η| � 1. This does not
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mean, however, that inflation is impossible at all, and we could
obtain some inflation even when φ rolls off its effective poten-
tial quickly [8].

Also we can expect that the energy scale associated with
the last inflationary stage is considerably low compared with
the Planck scale. This is also motivated by the inflation mod-
els based on the de Sitter vacua construction by string mod-
uli stabilisation [9], where the Hubble parameter H cannot be
greater than gravitino mass m3/2 [10] which is of O(TeV) in
phenomenologically interesting gravity mediated supersymme-
try breaking case. Such a low scale inflation is also desirable
to provide a solution to the cosmological moduli problem [11].
However, the well-known inflationary energy scale from the ob-
served magnitude of the density perturbations on the CMB scale
is known as

(2)V 1/4 � 2.77 × 10−2ε1/4mPl.

Also, we can obtain a similar bound from the contribution
of the primordial gravitational waves to the CMB anisotropy
as [12]

(3)V 1/4 � 3.0 × 10−3r1/4mPl,

where r is the tensor-to-scalar amplitude ratio. Such a rather
large inflationary scale could be lowered by imposing some
symmetry under which the inflaton φ transforms, so that infla-
tion takes place near a symmetric point. Especially, incorporat-
ing spontaneous breaking of the underlying symmetry, typically
the potential takes the form

(4)V (φ) ∼ λ
(
φ2 − v2)2

,

where v denotes the vacuum expectation value of φ and at the
point φ = 0, the top of the local maximum, the symmetry is
preserved. It is then necessary that φ is initially placed near the
top of the effective potential, φ = 0. There are several ways to
achieve it, and especially when the energy scale of inflation is
low, this could be implemented through thermal effects [13].
This brings the idea of thermal inflation [14] which takes place
due to the temperature corrections to the effective potential.

Thus, it is reasonable enough to consider inflation occurring
near a maximum of the effective potential, including thermal
corrections, with significant curvature as the inflation relevant
for our observable universe, i.e., responsible for the inflation of
the last 60 e-folds. In this Letter we are going to consider this
possibility; although this idea was suggested in Refs. [8,15],
our discussion will be more explicit and detailed. This Letter is
outlined as follows. In Section 2, we first present the effective
potential of our interest and discuss the consequent inflation-
ary phase. It consists of thermal and fast-roll inflations, and
we briefly describe their principles. In Section 3, we discuss
the density perturbations during inflation. It is believed that the
generation of perturbations is due to quantum fluctuations of
certain scalar field, which is usually expected to be the infla-
ton but could be some different field, called the curvaton [16].
We will consider them both. In Section 4, we summarise and
conclude. Throughout this Letter we set c = h̄ = 1.
2. Inflation

An inflaton candidate of particular interest is a modulus field
ubiquitous in string theory [17]. Many moduli fields are ex-
pected to have Planckian vacuum expectation values, with a
potential of the form

(5)V = M4
SUSYF(φ/mPl),

where MSUSY is the supersymmetry breaking scale, F is a
generic function whose typical values and derivatives are ex-
pected to be of O(1), and φ is the scalar component of some
relevant modulus field. As discussed in the previous section,
a class of potentials of particular interest is the one associated
with spontaneous symmetry breaking, and in this case inflation
may occur around a local maximum of the potential.

Hence we take the form of the potential, with a thermal cor-
rection term, as

(6)V = V0 +
(

g2T 2 − 1

2
m2

φ

)
φ2 + · · · ,

where g is the coupling of φ to the fields of the background
thermal bath, and dots denote some unknown higher order func-
tion which gives the vacuum expectation value of the inflaton
at O(mPl), so that

(7)V0 ∼ m2
φm2

Pl.

2.1. Thermal inflation

Thermal inflation [14] was suggested as a solution to re-
move any unwanted relics produced at the end of an earlier
inflationary phase. Here we briefly discuss the major principles
of thermal inflation and refer the reader to the original litera-
tures [14] for details.

When the potential is given as Eq. (6), the universe is filled
with radiation and the inflaton. Then the energy density and the
pressure are given by

(8)ρ = ρT + V, p = ρT

3
− V,

respectively, where ρT = π2g∗T 4/30, with g∗ being the effec-
tive number of relativistic degrees of freedom. Inflation takes
place when ρ + 3p < 0, and from above it reads ρT < V , i.e.,
when the potential dominates the total energy density of the
universe. Hence at the beginning of thermal inflation the tem-
perature is

(9)Ti ∼ V
1/4
0 ∼ √

mφmPl.

Thermal inflation ends when the potential can no longer hold
the inflaton at the local minimum, and this happens when the
effective mass squared becomes negative so that instability de-
velops at the origin; the effective mass squared is given by

(10)m2
eff(T ) = 2g2T 2 − m2

φ,

so the inflaton rolls away from the origin when temperature
drops below

(11)Tf = mφ√ ,

2g
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ending thermal inflation. Using T ∝ a−1, the number of e-folds
during thermal inflation is estimated as

(12)NTI � ln

(
Ti

Tf

)
∼ ln

(
V

1/4
0

mφ

)
∼ 1

2
ln

(
mPl

mφ

)
.

This alone is not enough to provide the observed homogeneous
and isotropic universe unless mφ is vanishingly small, which
does not seem very plausible in the early universe. For example,
taking mφ ∼ m3/2 ∼ 103 GeV, it gives NTI ∼ ln 1015/2 ∼ 17.

2.2. Fast-roll inflation

After thermal inflation discussed in the previous section, the
inflaton rolls towards its minimum at O(mPl). At that moment,
the slow-roll parameter |η| = |m2

PlV
′′/V | � m2

φ/(3H 2) is usu-
ally constrained to be very small to maintain large number of
e-folds and to obtain nearly scale invariant spectrum. However,
in many theories this condition is violated, e.g., in supergrav-
ity theories, the soft masses of the scalar fields are typically of
O(H), making |η| ∼ 1. Nevertheless, it is known that still some
amount of “fast-roll” inflation could occur [8].

We assume that throughout the fast-roll inflationary phase,

(13)V = V0 − 1

2
m2

φφ2

is a good enough approximation for the potential.2 Then the
Hubble parameter is practically constant, given by

(14)H 2 = V0

3m2
Pl

.

Now, solving the equation of motion

(15)φ̈ + 3Hφ̇ + V ′ = 0,

we obtain the solution as

φ(t) = φi exp

[(√
9

4
+ m2

φ

H 2
− 3

2

)
Ht

]

(16)= φie
FHt ,

where φi ∼ O(H) by the requirement that the classical motion
of φ be greater than the quantum fluctuation H/(2π). This fast-
roll inflation ends3 when ε|φf

= 1, and this gives

(17)φf = mPl√
2

(√
1 + 12H 2

m2
φ

− 1

)
,

2 Note that when this assumption is not valid and higher order terms are re-
sponsible for ending inflation, they may help us to build inflationary models
with (very) low energy scale [13]. Interestingly, still we can put almost the
same observational constraint for this general case [18].

3 We can also postulate that inflation ends when the curvature becomes O(1),
which happens when |η|φf

= 1. Then, φf is given by

φf = √
2mPl

√√√√ 3H 2

m2
φ

− 1,

where we can see that there exists no real solution for m2
φ > 3H 2. This simply

means |η| > 1 at the top of the potential so the curvature is always greater
than 1. We have, anyway, still φf ∼ O(mPl) when m2

φ ∼O(H 2).
Table 1
A few interesting parameter sets. Note that when mφ becomes heavier, or the

inflationary energy scale V
1/4
0 gets higher, we obtain smaller number of e-folds

g mφ (GeV) H 2 F NTI NFR

1 10−3 3m2
φ 0.107 24.96 453.79

1 1 m2
φ 0.303 21.51 139.78

0.1 103 m2
φ/3 0.791 15.75 45.45

0.1 109 m2
φ/10 2 8.84 11.36

0.01 1012 m2
φ/100 8.61 3.09 1.97

where we take φf > 0. Hence when mφ ∼ O(H), we have
φf ∼ O(mPl), i.e., fast-roll inflation holds until φ reaches its
vacuum expectation value at O(mPl).

During fast-roll inflation, the universe expands with almost
constant H given by Eq. (14). The number of e-folds is then

(18)NFR ∼ F−1 ln

(
mPl

H

)
∼ 2F−1 ln

(
mPl

V
1/4
0

)
,

where we take m2
φ ∼ O(H 2) for the second approximation.

To solve the cosmological problems, we need at least NFR �
60 − NTI after thermal inflation. This constrains the inflation-
ary energy scale and the inflaton mass, e.g., the intermediate
scale V

1/4
0 ∼ 1011 GeV gives a bound on the mass squared to

be m2
φ � O(H 2) to obtain the total expansion of 60 e-folds.

Some representative values are shown in Table 1.

3. Perturbations

It is well known that during inflation, primordial density per-
turbations are generated from quantum fluctuations of one or
more scalar fields. These perturbations later become the seeds
of the formation of structure in the universe. The adiabatic com-
ponent is associated with the primordial curvature perturbation,
whose power spectrum is given by [19]

(19)P1/2 � 5 × 10−5,

and the spectral index is [5,19]

(20)n = 0.97 ± 0.03,

making the power spectrum nearly scale invariant on large
observable scales. It is usually believed that the quantum fluc-
tuations of the inflaton result in the primordial curvature per-
turbations. An interesting alternative, called the curvaton sce-
nario [16], suggests that some scalar field different from the
inflaton is responsible for the generation of perturbations. In
this section, we explore both possibilities. Note that since we
are interested in low inflationary energy scale, the amplitude of
the power spectrum of the primordial gravitational waves will
be suppressed to an unobservable level and we will not consider
it here; see, e.g., Ref. [20] for a discussion on the spectrum and
the spectral index for the primordial gravitational waves.
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3.1. Inflaton case

3.1.1. Thermal inflation
During thermal inflation, from Eqs. (6) and (10), the effec-

tive potential could be written as

(21)V = V0 + 1

2
m2

effφ
2,

where m2
eff ∼ mφmPl at the early stage of thermal inflation,

which is far larger than H 2 ∼ m2
φ . The inflaton φ is, therefore,

well anchored at the false vacuum. In this case, the quantum
fluctuations of φ do not become classical perturbations.4 The
resulting power spectrum of the inflaton fluctuations is given
by [23]

(22)Pδφ =
(

H	

2π

)2(
k

aH	

)3

exp

(
−2m2

eff

H 2
	

)
,

where 	 denotes the epoch of horizon crossing k = aH . This
spectrum is not scale invariant but strongly blue with the spec-
tral index being equal to 4, and the amplitude exponentially
suppressed. At later stages of thermal inflation, however, meff
gets lighter and finally becomes smaller than 3H/2, capable
of producing classical perturbations. What is the correspond-
ing spectrum of the primordial curvature perturbation? Its exact
form is, unfortunately, not known yet. Nevertheless, we can an-
ticipate it in several ways; perhaps the simplest expectation is
that it is related to Pδφ in a similar manner to the case of the
usual slow-roll inflation, so that P should be also blue. This
could be expected from the simple observation that since the
background is de Sitter, the quantum fluctuations of φ decay
as they go outside the horizon. Hence, the amplitude of those
which exit earlier, i.e., on larger scales, is smaller than those
which exit later. This makes the spectrum blue. We can derive
the same conclusion from the argument that as one approaches
Tf the fluctuations will grow bigger, since at the time when
m2

eff = 0 the effective potential is constant, i.e., V = V0, then

4 More exactly, for a generic scalar field χ with mχ > 3H/2, the fluctuations
of χ do not produce classical perturbations. This could be seen from the mode
equation [21,22]

u′′
k +

[
k2 − 1

τ

(
ν2 − 1

4

)]
uk = 0,

where uk = aδχk , τ = ∫
dt/a is the conformal time, and

ν2 = 9

4
− m2

χ

H 2
.

Only when mχ < 3H/2, ν becomes real and the well-known Hankel function
solution is obtained.
the fluctuations become very large.5 The spectrum therefore is
blue during thermal inflation stage.

Also there is another source of perturbations. Thermal fluc-
tuations during thermal inflation may cause the fluctuations in
the number of e-folds, leading to curvature perturbation. That
is, the perturbation in the curvature of the final comoving hy-
persurfaces R is expressed as [26]

(23)R= δN = ∂N

∂T
δT .

When T 	 H , within a Hubble volume of radius H−1, there
exist H−3/T −3 thermal baths of correlation length T −1. Hence
the typical thermal fluctuation on the scale of H−1 is

(24)δT ∼ T√
H−3/T −3

,

and with Eq. (23) this gives

(25)R∼
(

H

T

)3/2

∼
(

Tf

T

)3/2

,

where we have used Eq. (11) with g being of O(1). The corre-
sponding spectrum has a spectral index n = 4, i.e., steeply blue,
with its maximum amplitude of O(1) at the end of thermal in-
flation.

3.1.2. Fast-roll inflation
When the potential has the form of an inverted quadratic one

as Eq. (13), the corresponding power spectrum is known as [22]

(26)P = V0

12π2m2
Plη

2φ2
i

[
2−η Γ (3/2 − η)

Γ (3/2)

]2

,

and the spectral index as

(27)n − 1 = 2η.

Since the initial value of φ is of O(H) as estimated in Sec-
tion 2.2, when m2

φ ∼ O(H 2) so that |η| ∼ O(1), the amplitude
of the spectrum is

(28)P ∼
(

H

ηφi

)2

∼ η−2 ∼O(1),

and the corresponding spectral index is

(29)n ∼O(−1).

Hence, at the beginning of fast-roll inflation the amplitude of
the perturbation spectrum is of O(1), and it decreases very
quickly at later stages; that is, we obtain a steep red spectrum.

5 In fact, if the effective potential remains constant, the universe expands in
the pure de Sitter background, and the spectrum will be infinite. Even if φ is
assumed to be able to move on this constant potential (the so-called ultra-slow-
roll inflation) it will stop at some point, say φdS, making the power spectrum
infinite there. If we introduce a cutoff at φc before φ reaches φdS, we have a
scale invariant power spectrum [24]. Note that when inflation is not suspended
after φc , generally a (large) peak around the scale corresponding to φc is ex-
pected in the spectrum [25]. This is somewhat similar to the situation we are
discussing now, as we will see in the following section.
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Here a question may arise; is it possible to use thermal
fluctuations to compensate the red tilt and obtain a nearly flat
spectrum? When thermal inflation ends and fast-roll inflation
begins, the temperature Tf is of O(mφ) ∼ O(H), as can be
seen from Eq. (11). Once the stage of fast-roll inflation sets in,
the universe expands with almost constant H given by Eq. (14),
and accordingly temperature decreases exponentially. Hence an
entire Hubble volume is enclosed in a single thermal bath of
correlation length T −1 	 H−1, and the effects of thermal fluc-
tuations are completely negligible. Moreover, even if we could
make H ∼ T for a long time, to compensate the steep blue tilt
n = 4 due to thermal fluctuations, we need a large mφ . Such
a large mass finishes fast-roll inflation very quickly, well be-
fore total 60 e-folds. Unless some special mechanism or finely
tuned condition is assumed, it seems very difficult to make the
spectrum flat.

The large perturbations produced at the early stage of fast-
roll inflation may lead to cosmological disasters. For example,
if they are not swept away by the following longer stage of in-
flation, they would cause an unacceptably copious black hole
production when inflation ends and the density of the universe
is dominated by the coherent scalar condensates, i.e., oscillat-
ing massive scalar fields which are equivalent to non-relativistic
matter.

3.2. Curvaton case

In the curvaton scenario, during inflation, some scalar field
other than the inflaton, the curvaton field σ , is assumed to be al-
most free with small effective mass, i.e., |∂2V/∂σ 2| = |Vσσ | �
H 2, where V is the curvaton potential. The spectrum of the
quantum fluctuations of σ on superhorizon scales is therefore
given by

(30)Pδσ = H	

2π
.

The isocurvature perturbation associated with these fluctua-
tions6 later become curvature perturbation when the curvaton
oscillates at the minimum of its potential and decays. The cor-
responding spectrum of the primordial curvature perturbation
is [28]

(31)P1/2 = 2

3
rq

H	

2πσ	

,

where

(32)r = ρσ

ρ

∣∣∣∣
dec

is the ratio of the curvaton energy density to the total energy
density of the universe at the epoch of curvaton decay, and q �
1 is a constant. The spectral index is given by

(33)n − 1 = 2ησσ − 2ε,

6 In the models of inflation involving several inflaton fields, we can obtain
significant isocurvature perturbations [27] as well as conventional curvature
perturbations [26].
where ησσ = Vσσ /(3H 2), the slow-roll parameter with respect
to σ , determines the value n − 1 in many physically interesting
classes of inflation models where ε is negligible. Therefore, we
can easily obtain a nearly scale independent, flat spectrum as
long as |ησσ | � 1.

3.2.1. Thermalisation
One thing we should make sure at this stage is that the cur-

vaton should not join the surrounding thermal bath before its
oscillation commences. Otherwise, there is no chance for the
curvaton to decay into other particle species and it becomes
simply a component of the thermal bath, and scales as radiation,
i.e., ρσ ∝ T 4. Let the effective mass squared of the curvaton
consist of the soft mass and the thermal correction as Eq. (10),

(34)V ′′ ∼ m2
σ + g′2T 2.

Then, to avoid thermalisation, we demand that [29]

(35)g′Tm < mσ ,

where Tm is the temperature when the effective curvaton mass
becomes dominated by the soft mass mσ . The highest temper-
ature of our interest is Ti at the beginning of thermal inflation
given by Eq. (9), and this gives

(36)mσ > g′√mφmPl.

From Eq. (20), we obtain |mσ | � 0.2H provided that the soft
mass of the curvaton is completely dominating the effective
mass. Then, combining with Eq. (36), we can find an upper
bound on the coupling g′ as7

(37)g′ � 0.2

√
H

mPl
.

If we take H ∼ 103 GeV, this gives g′ � 10−8; the curvaton
is therefore required to hardly interact with the thermal bath
indeed.

3.2.2. Suppressing the inflaton perturbations
From the discussion of Section 3.1, we found that the per-

turbation spectrum associated with the inflaton is highly scale
dependent. Especially, the large peak of amplitude of O(1) at
the transition between the thermal and the fast-roll inflationary
stages seems unavoidable. Meanwhile, in the curvaton scenario
it is assumed that initially the universe is unperturbed practi-
cally. This means the curvature perturbation originated from the
fluctuations in the inflaton is negligible, leaving only isocurva-
ture perturbation at the end of inflation. Hence, it is necessary to
suppress the curvature perturbation associated with the inflaton
for the curvaton scenario to work properly.

One obvious way of achieving this is to have a long enough
period of fast-roll inflation. Since the spectrum is steeply red,
i.e., the amplitude of the perturbation produced at later stages
of fast-roll inflation is much smaller, soon we approach the

7 Note that more rigorous bounds on the coupling of the curvaton to the ther-
mal bath are given in Ref. [29] in various situations. It is, however, interesting
that we can derive a similar bound using a very simple argument.
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universe with negligible curvature perturbation, suitable for im-
plementing the curvaton scenario. From the number of e-folds
during fast-roll inflation, Eq. (18), it is clear that the inflation-
ary energy scale is demanded to be low to have large NFR. By
defining x = −kτ = k/(aH), we obtain

(38)dN = H dt = −d lnx.

From Eqs. (26) and (27), we can write the spectrum simply as

(39)P1/2 =
√

V0

12π2m2
Plη

2φ2
i

2−η Γ (3/2 − η)

Γ (3/2)
xη = Axη.

Here, we can set x = 1 at the beginning of fast-roll inflation
so that P1/2|x=1 = A ∼ O(1) when |η| ∼ O(1), as was already
noted from Eq. (28). Then, let x = xcurv when the amplitude of
the spectrum becomes small enough for the curvaton scenario
to work properly, say, of O(10−10). That is,

(40)P1/2
∣∣
x=xcurv

= Axη
curv ∼O

(
10−10),

so xcurv = (10−10/A)1/η . Then, from Eq. (38) the number of
e-folds between x0 and xcurv is simply

(41)�N = − lnxcurv = −η−1 ln

(
10−10

A

)
.

Therefore, the required number of e-folds during fast-roll in-
flation should be greater than 60 + �N ; 60 e-folds necessary
to solve various cosmological problems, and �N to dilute the
perturbation associated with the inflaton so that the curvaton
scenario can work. Combining this with Eq. (18), we find

(42)2F−1 ln

(
mPl

V
1/4
0

)
� 60 − η−1 ln

(
10−10

A

)
.

By estimating xcurv ∼ 10−10, we obtain �N � 23. This gives

(43)V
1/4
0 � exp

(
−83

2
F

)
mPl.

The heavier mφ gets, the tighter this bound becomes. For ex-
ample, when m2

φ = H 2, this gives a rather mild bound of

V
1/4
0 � 8.38 × 1012 GeV. Instead, if m2

φ = 3H 2, we find

V
1/4
0 � 1.31 × 105 GeV.

3.2.3. Curvaton dominance in low inflationary scale
In the previous subsection, we have seen that to implement

the curvaton scenario successfully, we need a sufficiently low
inflationary energy scale to dilute the perturbations associated
with the inflaton fluctuations. With such a low scale, however,
it is not possible to generate the observed magnitude of density
perturbations, given by Eq. (19). Indeed, in the simplest curva-
ton model, the inflationary Hubble parameter H	 is required to
be greater than 107 GeV [30]. Using the bound

(44)r �
√

mσ mPlσ
2
	

Tdecm
2
Pl

,

the constraint mσ < H	 and the big bang nucleosynthesis bound
Tdec > 1 MeV, H	 > 107 GeV is translated into

(45)σ	 � 5.54 × 1010 GeV.
Combining Eqs. (31) and (19), we obtain a relation [30]

(46)σ	 � 2 × 103rH	.

When the inflationary energy scale is low, e.g., H	 ∼ O(TeV),
we cannot satisfy Eq. (45) hence the amplitude of the power
spectrum is inconsistent with observations.

This is equivalent to the absence of the curvaton dominated
universe; for the curvaton to dominate the energy density of the
universe before its decay, we need8 [31]

(47)

(
Γσ

mσ

)1/4

� 2 × 103r
H	

mPl
,

where we have used Eq. (46). If the curvaton were to domi-
nate the energy density (r = 1) given a low inflationary scale
(H	 ∼ 103 GeV), the decay rate of the curvaton is estimated to
be Γσ � 10−48mσ . Then, using mσ < H	, the reheating tem-
perature after the decay of the curvaton is

(48)TR′ ∼ g
−1/4∗

√
Γσ mPl � 10−15 GeV,

which is far below the big bang nucleosynthesis bound 1 MeV.
Hence, at low inflationary energy scale, the curvaton cannot
dominate the universe and is unable to produce the observed
magnitude of the perturbation spectrum. To overcome this dif-
ficulty, several alternatives were suggested, e.g., the case of the
curvaton as a pseudo Nambu–Goldstone boson with a varying
order parameter to amplify the curvaton perturbations [32].

4. Conclusions

Despite many attractive features of the inflationary universe,
it is not trivial to construct the inflation model responsible for
the observable universe, i.e., the inflation of the last 60 e-folds.
One obvious difficulty is that it is not easy to achieve the slow-
roll conditions in the context of particle physics models, e.g., in
supergravity theories. This makes the total expansion of the uni-
verse during the stage of inflation very short and the spectrum
of the primordial curvature perturbation produced during infla-
tion highly scale dependent. Also the inflationary energy scale
expected from observations is rather large, causing the trouble-
some moduli problem after inflation.

In this Letter, we have considered a simple model free from
such constraints. By imposing some symmetry under which the
inflaton transforms, we can obtain an effective potential which
describes a local maximum and lower the inflationary energy
scale considerably. The inflaton could be placed near such a
local maximum via thermal effects when the energy scale is
low. Then, the consequent inflation consists of two phases,

8 Note that in the curvaton scenario we are considering, the curvaton σ begins
oscillation after the universe is filled with radiation due to the decay of the
inflaton. The decay of the curvaton happens after its oscillation commences.
Hence, we have

Γσ < mσ < Γφ,

where Γσ and Γφ denote the decay rate of the curvaton and the inflaton, respec-

tively. When this condition is satisfied, ρσ decreases as a−3 in the background
thermal bath.
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thermal inflation and fast-roll inflation. The total number of
e-folds could be large enough to solve cosmological problems
provided that the energy scale of inflation is sufficiently low.
The power spectrum of the primordial curvature perturbation
from the quantum fluctuations in the inflaton is, however, highly
scale dependant, inconsistent with observations. This could be
evaded by adopting the curvaton scenario where the curvature
perturbation is produced from the isocurvature perturbation of
a light scalar field different from the inflaton, the curvaton. For
the curvaton scenario to work properly, the inflationary energy
scale is required to be low enough to maintain the fast-roll in-
flation long enough to dilute the perturbation from the inflaton
fluctuations away.
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