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Abstract

We show that the iterated splicing operation determined by a regular H scheme (with some
necessary restrictions) preserves membership in any full abstract family of languages. This in-
volves translation of an H scheme into two alternative forms. The �rst form, which is closely
related to the underlying biochemical operations, uses cutting and pasting rather than splicing.
The second form uses matrices of languages, and in this formulation the splicing operation is
translated into standard formal language operations (concatenation and quotient). Moreover, in
the matrix formulation the splicing language itself may be expressed in terms of standard formal
language operations, and this provides an algorithm for calculating the splicing language. As
an application we use the cutting and pasting approach to extend the closure result to circular
strings. c© 2000 Elsevier Science B.V. All rights reserved.

1. Introduction

Tom Head [6, 7], in an analysis of certain biochemical processes involving DNA,
introduced a new operation on strings called splicing. Since then his basic idea has
been formalized in terms of generative mechanisms for formal languages called splicing
systems or, more recently, H systems. These systems are now fairly well understood
abstractly, and have been proposed as a theoretical foundation for some versions of
the new �eld of DNA computing (see [1] or [10]).
As a generative mechanism an H system transforms an initial language into a splic-

ing language. The object of this note is to improve on several earlier results showing
that, under certain restrictions, the transformation from an initial language to a splicing
language preserves membership in any full AFL (abstract family of languages; see Sec-
tion 2 for a de�nition). The main improvement, besides substantial simpli�cation, is an
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explicit representation of the splicing language in terms of the original using only oper-
ations familiar from elementary formal language theory. Our technique involves conver-
sion of the splicing formulation into a form, using matrices of languages, which allows
us to use simple algebraic techniques. Another feature of our technique is the transla-
tion of the standard formulation of H systems, under certain restrictions, into a form
involving cutting and pasting which seems to be a better model of operations on DNA
than the standard formulation. In fact, we shall show that suitably restricted H systems,
cut and paste H systems, and matrix H systems can be freely translated into each other.
Before describing the mathematics we summarize, in non-technical terms, the bio-

chemical operations that motivated Head’s de�nition of splicing; more details may be
found in his papers. A single molecule of “double-stranded” DNA may be visualized
as a long “ladder”, as follows:

The blocks A, T , G, C can only occur vertically in the pairs [A=T ], [T=A], [C=G], and
[G=C], so the DNA molecule may be considered a string over the alphabet consisting
of these four pairs. (Actually, since the molecule is free to rotate in three dimensional
space, it cannot be represented just as a string. Our model may be extended to respect
the symmetries determined by such rotations; see [7] and [16].)
Splicing of DNA molecules occurs in two steps. First, a type of chemical called a

“restriction enzyme” may cut the DNA molecule at a speci�c substring, called a “site”,
leaving two pieces with a damaged ladder structure at the cut end. The site and the
actual shape of the cut ends are speci�c to each enzyme. For example, a particular
enzyme may cut the string above at the site [G=C][G=C][T=A][C=G], producing the
following two pieces:

In this representation note that the middle of the site has been split into dangling
single strands; the remaining unsplit parts of the site are called the left and right
“contexts” of the site.
Since restriction enzymes work locally they can still operate on the pieces above,

cutting them at appropriate sites as long as the sites do not touch the single stranded
ends. Another type of chemical called a “ligase” mediates the reconnection of fragments
by rejoining properly matched single-stranded ends. Thus in the presence of a ligase,
two fragments as shown above can rejoin. This is not very interesting if these fragments
are the result of the original cut, since the new molecule will match the original; rather
the interest in splicing comes from the possibility that the two fragments rejoined by
the ligase came from di�erent types of DNA molecules, or even di�erent fragments
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of the same molecule, so that the resulting double-stranded molecules will not be the
same as the originals.
Head’s translation of this process into formal language theory is the following. A

site is a pair (u; u′) of strings, and a splicing rule is a pair (u; u′) and (v′; v) of sites.
Two strings may be spliced according to this rule if they can be factored as xuu′y and
x′v′vy, in which case the result of the splicing operation is xuvy. In other words, the
�rst string is cut between u and u′, the second is cut between v′ and v, and the left
fragment of the �rst string is glued to the right fragment of the second. A set of such
rules is an H scheme, and an H system consists of an H scheme together with an
initial language L. The eventual object of study is the splicing language generated by
the H system; this is the smallest language containing L and invariant under splicing
operations using the rules in the H scheme.
Gheorghe P�aun noticed in [12] that such a splicing rule could be encoded as a

single string u#u′$v′#v using the two auxiliary symbols # and $, so that the set R
of all applicable splicing rules is itself a language. This has become the standard for
representing H schemes. The obvious question has the general form: What can you say
about the splicing language if you restrict the languages R and L in some way?
The �rst such problem was solved by Culik and Harju in [2], who answered one of

Head’s original questions by showing that if the initial language is regular and the rule
set is �nite then the splicing language is regular. Culik and Harju used their theory of
dominoes; algorithmic approaches to this result have been investigated by Gatterdam
[5] and Kim [11].
Pixton [16] simpli�ed Culik and Harju’s proof, translating to the language of au-

tomata, and generalized the result to cover regular initial languages and certain (but
not all) cases of regular rule sets. Moreover, with the same types of restricted regular
rule sets, Pixton [15] showed that full AFL’s are invariant under splicing. On the other
hand, P�aun [14] showed that for regular rule sets and regular initial sets the resulting
splicing language could be essentially any RE language. These and related results are
summarized in [8].
P�aun’s result shows that we must place some restriction on regular rule sets in order

to prove closure. We can describe this restriction as follows. When two strings are
spliced using the splicing rule u#u′$v′#v the substrings u′ and v′ do not appear in
the �nal result, but the strings u and v do appear. For this reason we call u′ and v′

the invisible sites, and we call u and v the visible sites. Our restriction on rule sets
is that there be only �nitely many visible sites. This restriction can be interpreted in
terms of the discussion of DNA splicing above as the requirement that the lengths of
the single strands at cut ends, plus the attached context, should be bounded. (Pixton’s
results in [16, 15] essentially incorporated this restriction, but disguised under a di�erent
formulation of splicing. This is discussed at the end of Section 3.)
Our �rst alternate formulation of splicing is based on two operations, cutting and

pasting, which are closer in spirit to biochemical operations on DNA than the single
operation of splicing. Similar formulations were used implicitly in [15] and explicitly
by Freund et al. in [3]. We call this alternate formulation a CPH scheme (for “cutting
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and pasting” H scheme). The cutting and pasting operations are facilitated by a �nite
number of special symbols, not in the original alphabet, called end markers and used
only to terminate strings. Thus, a string which starts and ends with end markers but
otherwise uses only the original alphabet is called an end marked string, and a language
consisting only of end marked strings is called an end marked language. Cut operations
are determined by an end marked language C of cutting sites. In a cut operation a
site in C (minus the end markers) is removed from the original string leaving two
fragments, and the end markers are a�xed to the fragments at the “cut” ends. Pasting
operations are determined by another end marked language P of pasting strings. The
end markers on a pasting string determine the fragments which may be pasted, and
when the fragments are joined the pasting string is inserted between them (deleting
all markers except at the ends of the �nal string). In terms of DNA splicing the end
markers introduced by cutting encode the dangling single strands at the cut ends (plus
the attached context), and the pasting strings can be interpreted as the result of rejoining
these single strands as part of the ligase operation.
Just as for H systems, we can de�ne a corresponding splicing language for CPH

systems. We say a CPH scheme is regular i� the sets C and P are regular. In Section
3 we show how to translate between regular H systems with �nitely many visible sites
and regular CPH systems and between their corresponding splicing languages.
We then reformulate CPH systems in terms of matrices of languages. A matrix of

languages X is a �nite rectangular array of languages, Xij. The translation between a
language with end markers and a matrix of languages is straightforward: If the end
markers are enumerated as �i for 16i6n then an end marked language L corresponds
to the matrix X where Xij = {s : �is�j ∈ L}. The data in a CPH scheme is just a pair
of end marked languages, corresponding to the cutting sites and the pasting strings.
These translate immediately into matrices: B and D, derived from the cutting sites after
some modi�cation; and P, corresponding to the pasting strings. We call such a triplet
of matrices an MH scheme (for “matrix H scheme”). An initial end marked language
for the CPH scheme translates directly to an initial matrix for the MH scheme.
In this formulation we do not need to introduce an analogue of the splicing operation

on strings; rather, we use algebraic operations on matrices of languages. Speci�cally,
we need the matrix operations corresponding to concatenation, left and right quotient,
Kleene closure, and union (which we generally write using “+” rather than “∪” to
emphasize the algebraic structure). Here we are, in e�ect, treating such matrices as
matrices of formal power series with boolean coe�cients, in the sense of [17]. De�-
nitions and basic properties of these operations are in Section 4. Now given an MH
system we de�ne the splicing matrix of the MH system as the smallest matrix solution
S of the splicing equation:

S = L+ B−1S + SD−1 + SPS:

In Section 5 we show how to translate between CPH systems and MH systems and
between splicing languages and splicing matrices.
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Next, in Section 6, we show how to solve the splicing equation. In fact we can give
an explicit formula for the solution in terms of matrix operations on the original data
for the MH system. In general the solution is somewhat complicated, but to give the
avor of the general solution we exhibit the solution here in an important special case.
If P is the identity matrix I (so Ijj = {1} and otherwise Ijk = ∅) and B and D both
contain I then

S = �L
+

where �L = ((S−1B)∗)−1L((DS−1)∗)−1:

Notice that this is not quite an explicit formula for S, since the solution is in terms
of �L, which is itself de�ned in terms of S. However, there is a simple algorithm at
this stage for determining S; this is described, along with some sample calculations,
in Section 7. Moreover, even without this algorithm, the form of the solution readily
demonstrates that if P = I , B and D are regular, and the initial matrix L is in a full
AFL F (meaning that each component of L is in F) then S is in F. Together with
translations between the various splicing models, this provides the proof of our main
result:

Closure Theorem. Suppose F is a full AFL. The splicing language determined by
a regular H system with �nitely many visible sites and an initial language in F is
in F. The splicing language determined by a regular CPH system with an initial
language in F is in F. The splicing matrix determined by a regular MH system
with an initial matrix in F is in F.

CPH systems and MH systems are generally easier to work with than H systems,
and are in many ways more natural. As an illustration of this we consider another
aspect of DNA splicing, following Head [7]. Since ligases act locally on two ends of
DNA molecules and DNA molecules are somewhat exible it is quite possible that
circular molecules of DNA will be produced, even if the original molecules were all
linear. Similarly, since restriction enzymes act locally it is quite possible that they will
cut circular molecules of DNA, producing linear molecules. To model this we can
consider a mixture of both circular and linear strings, and modify the de�nitions of
the splicing, cutting, and pasting operations. We need certain further restrictions on H
schemes (but not on CPH schemes) when dealing with circular strings. We also must
require a further closure property for the AFL F (which is satis�ed, at least, by the
regular and context-free families). The necessary de�nitions are given in Section 8,
where we prove:

Circular Closure Theorem. Suppose F is a full AFL which is closed under cyclic
closure.
1. If � is a �nite, symmetric and reexive H scheme and M is a language of linear
and circular strings in F then the splicing language generated by � and M is in
F.
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2. If � is a regular CPH scheme and M is a language of end marked linear strings
and circular strings in F then the splicing language generated by � and M is in
F.

In fact, most of the the proof of this theorem is the reduction from an H system to
a CPH system. The proof in the CPH case is quite simple (and obvious): Just cut all
the circular strings, let the language evolve strictly as a linear system so that the linear
Closure Theorem can be applied, and then reconnect any linear strings that can produce
circular strings. This should be contrasted with the argument in [16] for circular splicing
(in the regular case) which is much more di�cult than the corresponding proof in the
linear case.

2. Preliminaries

We summarize here our notation and conventions from formal language theory.
By an alphabet A we shall always mean a non-empty �nite set. We write 1 for the

empty word in A∗. For languages L and M we write the left and right quotients of
L by M as M−1L and LM−1. We have y ∈ M−1L i� there is z ∈ L and x ∈ M with
z = xy, with a similar de�nition for LM−1. Since M−1

1 (LM−1
2 ) = (M−1

1 L)M−1
2 we can

write the double quotient unambiguously as M−1
1 LM−1

2 .
As is customary we shall confuse singleton sets with their contents, writing, for

example, a−1L or a∗ instead of {a}−1L or {a}∗.
The notion of a full abstract family of languages, or full AFL, is de�ned in [9].

By this we mean a family of languages F with the following closure properties:
• The regular languages are in F.
• If L and M are in F then LM , L ∪M and L∗ are in F.
• If L is in F and R is regular then L ∩ R, R−1L and LR−1 are in F.
• If L⊂A∗ and M ⊂B∗ are in F and h : A∗ → B∗ is a homomorphism then h(L)
and h−1(M) are in F.

The most familiar full AFLs are the regular and context-free families.
We shall occasionally need the automaton formulation of regularity. For this we

consider a �nite directed graph G with a labeling function � from the edges of G into
A ∪ {1}. Then � extends to a map from the set of �nite paths in G to A∗. If I and T
are speci�ed sets of vertices in G then an accepting path is a path in G from a vertex
in I to a vertex in T . We de�ne L(G; I; T ) to be the set of all words �(p) where p is
an accepting path. It is well known that a language is regular if and only if it can be
written as L(G; I; T ) for some G, I and T .
We shall need the following simple order-theoretic fact frequently.
Suppose (S;6) is a partially ordered set in which every countable set has a supre-

mum. We write the supremum of {X; Y} as X ∨ Y and we write the supremum of
{Xp : p¿0} as

∨∞
p=0 Xp. We say an order-preserving function  : S → S is con-

tinuous i� for every non-decreasing sequence Xp we have  (
∨∞

p=0 Xp) =
∨∞

p=0  (Xp).
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If � : S → S satis�es �(X )¿X for all X we de�ne �0(X ) = X ; �n+1(X ) =
�(�n(X )) for n¿0; and �∗(X ) =

∨∞
n=0 �

n(X ).

Lemma 2.1. Suppose (P;6) is a partially ordered set in which every countable set
has a supremum. Suppose  : P → P is order-preserving and continuous, and de�ne
� by �(X ) = X ∨ (X ). For L ∈ P de�ne S = �∗(L). Then S is the smallest solution
of each of the following:
1. S¿L ∨ �(S).
2. S = L ∨ �(S).
3. S¿L ∨  (S).
4. S = L ∨  (S).

Proof. Note that  (S) =  (
∨∞

p=0 �
p(L)) =

∨∞
p=0  (�

p(L)) by continuity. A trivial in-
duction shows that L∨∨n

p=0  (�
p(L)) = �n+1(L). Hence, L∨ (S)¿L∨∨n

p=0  (�
p(L))

= �n+1(L) for all n so L∨ (S)¿
∨∞

n=1 �
n(L) = S. Conversely, S¿�n+1(L)¿ (�n(L))

for all n so S¿
∨∞

p=0  (�
p(L)) =  (S), and also S¿L, so S¿L ∨  (S). Therefore

S = L ∨  (S), and we have veri�ed that S satis�es part 4. It is trivial to check that
the equation in part 4 implies parts 3, 2 and 1.
On the other hand, suppose S ′ satis�es part 3. Then L6S ′ and for any X6S ′ we

have �(X )6�(S ′)6S ′. Thus by induction we obtain �p(L)6S ′ for all p, so S =
�∗(L)6S ′. That is, S is the smallest solution of part 3, and hence also the smallest
solution of part 4.
Next, for any X , the statements X¿L ∨  (X ) and X¿L ∨ X ∨  (X ) = L ∨ �(X )

are equivalent, so it follows that S is also the smallest solution of part 1. As above
we �nally conclude that S is the smallest solution of part 2.

A common situation in which Lemma 2.1 applies occurs when P is a power set
P(Z) ordered by inclusion and  is de�ned by  (X ) = F(X ) where F : Z → X is a
function. We need a somewhat more general situation, where  is not determined by
a function but by a relation:

Lemma 2.2. Suppose Z is a set and R is a subset of
⋃

n¿0 Z
n+1. De�ne  : P(Z)→

P(Z) so that x ∈  (X ) i� there is n¿0 and there are x1; : : : ; xn in X with (x1; : : : ; xn; x)
∈ R. Then  is order-preserving and continuous.

Proof.  is order preserving: If X ⊂Y ⊂Z and x ∈  (X ) then (x1; : : : ; xn; x) ∈ R for
some n¿0 and x1; : : : ; xn ∈ X , and so x1; : : : ; xn are in Y , implying x ∈  (Y ).

 is continuous: Suppose X0⊂X1⊂ : : :⊂Z and let X =
⋃∞

p=0 Xp. Since Xp ⊂X for
all p and  is order-preserving we have  (Xp)⊂  (X ) for all p, so

⋃∞
p=0  (Xp)⊂  

(X ). On the other hand, if x ∈  (X ) then there are x1; : : : ; xn in X with (x1; : : : ; xn; x) ∈
R. For each j choose pj so that xj ∈ Xpj , and let p be the maximum of p1; : : : ; pn.
Then Xpj ⊂Xp for all j, so x1; : : : ; xn are in Xp and (x1; : : : ; xn; x) ∈ R, so x ∈  (Xp).
This completes the proof of the opposite inclusion  (X )⊂⋃∞

p=0  (Xp), as needed.



142 D. Pixton / Theoretical Computer Science 234 (2000) 135–166

3. Splicing by cutting and pasting

We �x an alphabet A and two symbols # and $ not in A. Following P�aun [12] we
de�ne a splicing rule to be a string in A∗#A∗$A∗#A∗. If r = u#u′$v′#v is a splicing
rule we say u and v are the visible sites of r, uu′ and v′v are the left and right
sites, and u′ and v′ are the invisible sites. Given this rule r and a pair of strings
w = xuu′y′ and w′ = x′v′vy, we say the string z = xuvy is the result of splicing w
and w′ using the rule r. (More precisely, z is determined not by w and w′ but by the
indicated factorizations. Similar comments apply to similar de�nitions in the rest of the
paper.)
An H scheme is a pair � = (A; R) where R⊂A∗#A∗$A∗#A∗ is a set of splicing rules.

We say � is �nite or regular i� R is a �nite or regular language. If L⊂A∗ we de�ne
�(L) as the union of L and the set of all strings that can be obtained by splicing two
strings of L using a rule in R. Clearly Lemmas 2.2 and 2.1 apply here. The language
�∗(L) is the splicing language de�ned by the H scheme � and the initial language L.
Now suppose we have a �nite set E of end markers disjoint from A. An element

of EA∗E is called an end marked string, and a set of end marked strings is called an
end marked language. As a notational convention we shall employ exclusively Greek
letters to refer to elements of E. Given c = �u� and a string z = �xuy�, we say the
strings w = �x� and w′ = �y� are the results of cutting z at the cutting site c. On
the other hand, given p = �v� and strings w = �x� and w′ = �y�, we say the string
z = �xvy� is the result of pasting w and w′ using the pasting string p. Note that
cutting and pasting operations preserve EA∗E.
A CPH scheme (CP for “cut and paste”) is a quadruple � = (A; E; C; P) where C

and P are end marked languages. We say � is �nite or regular i� both C and P are
�nite or regular. If L is an end marked language and � is a CPH scheme we de�ne
�(L) as the union of L and the set of all strings that can be obtained by cutting a
string of L at a site in C or by pasting two strings of L using a string in P. Again
Lemmas 2.2 and 2.1 apply to �.
We shall need the following observation about iterated cutting:

Lemma 3.1. Suppose � = (A; E; C; ∅) is a CPH scheme with no pasting operations,
and suppose L⊂EA∗E. A string �z� is in �∗(L) if and only if there is a string
�′xszty�′ in L so that
1. either �′xs = � or there is a cutting site �′′s� in C; and
2. either ty�′ = � or there is a cutting site �t�′′ in C.
In particular, �∗(L) = �2(L).

Proof. Strings �z� satisfying the indicated property are clearly in �2(L) and it is easy
to check that the set of all such strings is closed under all cut operations.

In the rest of this section we shall show how to convert between regular H schemes
with �nitely many visible sites and regular CPH schemes.
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For the �rst translation we start with a regular H scheme � = (A; R) with �nitely
many visible sites, and we shall construct a CPH scheme in which each splicing opera-
tion can be replaced by two cuts and a paste. We use end markers at the cut operations
to record enough information about the splicing rule so that we can then decide which
paste operation to perform. We also mark the initial strings with a special end marker,
so that we can pick out the �nal splicing results from the mixture of fragments and
fully spliced strings formed by the CPH system.
Before giving the details of the translation we prove the following, which is the key

to translating �nitely many visible sites to a �nite number of end markers.

Lemma 3.2. Suppose � = (A; R) is a regular H scheme with �nitely many visible
sites. Then there are �nitely many non-empty regular sets R1; : : : ; RN (with N¿0)
whose union is R; satisfying the following: If u#u′$v′#v and �u# �u′$ �v′# �v are in Rk then
u = �u; v = �v; and u#u′$ �v′# �v is also in Rk .

Proof. If R is �nite we can just use singleton sets for the Rk .
In general, choose an automaton representation R = L(G; I; T ), as in Section 2.

We let E0 be the set of edges in G which are labeled with $. Now consider triples
w = (u; e; v) where u and v are in A∗ and e ∈ E0. For such w we let Rw be the set
of rules of the form u#u′$v′#v which are labels of accepting paths in G which pass
through e. Clearly, each Rw is a regular set and each rule in R lies in some Rw.
Suppose r = u#u′$v′#v and �r = u# �u′$ �v′#v are both in Rw. If we follow an accepting

path for r from I to the edge e and then continue from e to T along an accepting path
for �r then we obtain an accepting path labeled by r′ = u#u′$ �v′#v, so r′ is in Rw.
Since R has only �nitely many visible sites there are only �nitely many triples w =

(u; e; v) with Rw 6= ∅. These sets, relabeled as R1; : : : ; RN , have the required properties.

Now we �x a collection {Rk} as given by the lemma, and we let uk and vk be the
common visible sites shared by the rules in Rk . For each k we select markers �k and
�k , and we let E = {�k ; �k : 16k6N} ∪ {3}, where 3 is one additional marker. We
de�ne CR = {�kuku′�k : 16k6Nand for some v′; uk#u′$v′#vk ∈ Rk}. This is easily
seen to be regular. We de�ne CL as the similar set of strings of the form �kv′vk�k , and
we set C = CL ∪ CR. We �nish by de�ning P as the �nite set {�kukvk�k : 16k6N}.
This de�nes the CPH scheme � = (A; E; C; P). The following says that � generates the
same splicing language as �, if we are willing to identify A∗ with 3A∗3:

Proposition 3.3. Suppose � = (A; R) is a regular H scheme with only �nitely many
visible sites, and de�ne � = (A; E; C; P) as above. Then � is a regular CPH scheme,
�nite if � is �nite, and, for any L⊂A∗; �∗(L) = 3−1�∗(3L3)3−1.

Proof. To show �∗(L)⊂ S ′ = 3−1�∗(3L3)3−1 we use Lemma 2.1: we need S ′ ⊃L,
which is obvious, and �(S ′)⊂ S ′. So suppose x = x1uku′x2 and y = y1v′vky2 are in S ′

and can be spliced using uk#u′$v′#vk ∈ Rk to produce z = x1ukvky2. Since x and y are
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in S ′ we have 3x3 and 3y3 in �∗(3L3). Then the fragments 3x1�k and �ky23
obtained by cutting these strings at the sites �kuku′�k and �kv′vk�k are in �∗(3L3).
Hence, the result 3x1ukvky23 = 3z3 of pasting these fragments using the pasting
string �kukvk�k is also in �∗(3L3). Therefore z is in 3−1�∗(3L3)3−1 = S ′.
For the proof of the opposite inclusion let �c be the CPH scheme (A; E; C; ∅). We

shall �rst show that �∗(3L3)⊂ S ′′ = �∗
c (3�∗(L)3). Again, since S ′′ ⊃3L3, this is

just a matter of showing that �(S ′′)⊂ S ′′. Clearly, S ′′ is closed under cut operations,
so suppose that x′ = �x�k and y′ = �ky� in S ′′ are pasted to yield z = �xukvky�. By
Lemma 3.1 we can �nd 3 �x3 = 3x1sxuku′x23 in 3�∗(L)3 with either � = 3 and
x1s = 1 or �s� ∈ C, and with �kuku′�k in C. Corresponding to this cutting site there is
a rule uk#u′$v′#vk in Rk . Similarly there is 3 �y3 = 3y1 �v′vkyty23 in 3�∗(L)3 with
either � = 3 and ty2 = 1 or �t� ∈ C, and with �k �v′vk�k in C, with the corresponding
rule uk# �u′$ �v′#vk also in Rk . By Lemma 3.2 the rule uk#u′$ �v′#vk is in Rk , and splicing
�x and �y using this rule shows that 3x1sxukvkyty23 is in 3�∗(L)3. Applying Lemma
3.1 now shows that �xukvky� = z is in �∗

c (3�∗(L)3) = S ′′, �nishing the inclusion
argument.
Finally, we notice that any cut operation introduces an end marker di�erent from 3,

and so (3A∗3)∩�∗
c (3�∗(L)3) = 3�∗(L)3. Hence (3A∗3)∩�∗(3L3)⊂3�∗(L)3,

and this implies 3−1�∗(3L3)3−1⊂ �∗(L), �nishing the proof of Proposition 3.3.

Now we want to translate a regular CPH scheme � = (A; E; C; P) into a splicing
scheme. As an intermediate step (which will be useful later) we �rst translate it into
a CPH scheme in which P is very simple.
We start the construction by enumerating E as {�1; : : : ; �n}. We then select two new

sets of symbols, � = {�1; : : : ; �n} and � = {1; : : : ; n}, and we set �E = �∪�. We let
h be the homomorphism from (A ∪ �E)∗ to (A ∪ E)∗ de�ned by h(�i) = h(i) = �i and
h(a) = a for a ∈ A. Notice that h is a bijection when restricted to either �A∗� or �A∗�.
We de�ne �C = h−1(C) ∩ (�A∗�) and �P = {�� : � ∈ �E}. Our new CPH scheme is

�� = (A; �E; �C; �P). If L⊂EA∗E is an initial language then we de�ne �L = h−1(L)∩(�A∗�).
Of course we must incorporate the pasting strings of the original scheme; we do this by
essentially adding P to �L. However we must take some care, since there may be strings
in P which are never actually used in generating �(L), and if we add such strings to
�L we may introduce spurious strings in the splicing language generated by ��.
To be precise we introduce the following terminology. Suppose � ∈ �E. Then we say

that Z is a left extension of � i� Z ∈ �A∗ and either Z = � (so � ∈ �) or � ∈ � and
h(Z�) ∈ �∗(L). Similarly, Z is a right extension of � i� Z ∈ A∗� and either Z = �
(so � ∈ �) or � ∈ � and h(�Z) ∈ �∗(L). If z = �1w�2 ∈ �EA∗ �E then we say Z1wZ2 is
an extension of z i� Z1 is a left extension of �1 and Z2 is a right extension of �2.
We de�ne �PL as the set of all strings in h−1(P) ∩ (�A∗�) which have extensions.

Proposition 3.4. Suppose � = (A; E; C; P) is a CPH scheme and L⊂EA∗E. If h;
�� = (A; �E; �C; �P); �L and �PL are de�ned as above then �∗(L) = h( ��∗( �L∪ �PL)∩ (�A∗�)).
If � is �nite or regular then so are �� and �PL.
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Proof. Let �0 be the set of markers in � which have left extensions, and let �0
be the set of markers in � which have right extensions. These are �nite and �PL =
h−1(P) ∩ (�0A∗�0), so �PL is regular if P is regular. Since h is a bijection on �A∗� it
is clear that �PL is �nite if P is �nite.
Now let S ′ be the set of strings w ∈ �EA∗ �E satisfying the following two conditions:

w has an extension, and each extension W of w satis�es h(W ) ∈ �∗(L). We claim
that ��∗( �L ∪ �PL)⊂ S ′. By Lemma 2.1 we only have to show that S ′ ⊃ �L ∪ �PL and that
��(S ′)⊂ S ′.
For the �rst part, note that any string in �A∗� has a unique extension, namely itself.

From this it follows that h(S ′ ∩ �A∗�) = �∗(L), so �L⊂ S ′. Further, any string in �PL

has an extension by de�nition. Moreover, suppose W = Z1vZ2 is any extension of the
element w = jv�k of �PL. Writing Z1 = �iX1 and Z2 = X2‘, we have both h(Z1j) =
�iX1�j and h(�kZ2) = �kX2�‘ in �∗(L). Also, h(w) = �jv�k ∈ P so we can paste h(Z1j)
and h(�kZ2) using h(w) to show that h(W ) = �iX1vX2�‘ is in �∗(L). Hence �PL ⊂ S ′.
For the second part we have to consider both cutting and splicing of elements of S ′

using ��. First suppose z = �1xuy�2 is in S ′ and ju�k is in �C, generating x′ = �1xj
and y′ = �ky�2 in ��(S ′). We give the argument that x′ is in S ′; a symmetric argument
works for y′. First, since z is in S ′ it has an extension, Z1xuyZ2, so Z1xj is an extension
of x′. Moreover, if Z ′

1xj is any extension of x
′ then Z ′

1xuyZ2 is an extension of z, so
h(Z ′

1xuyZ2) is in �∗(L). But then h(Z ′
1xj) = h(Z ′

1)x�j is obtained from h(Z ′
1xuyZ2) by

cutting at �ju�k ∈ C, so h(Z ′
1xj) is in �∗(L).

To complete the proof of the claim we suppose x′ = �1x� and y′ = �y�2 are in S ′

and are pasted using �� ∈ �P to produce z = �1xy�2 ∈ ��(S ′). We shall show that z is
in S ′ assuming � = k ∈ �; the case that � is in � is handled symmetrically. First take
extensions Z1xk and YyZ2 for x′ and y′. Then Z1xyZ2 is an extension of z. Moreover
if Z ′

1xyZ
′
2 is any extension of z then Z ′

1xk is an extension of x′, so h(Z ′
1xk) is in

�∗(L). Hence Z ′
1x is a left extension of � = k , so (Z ′

1x)yZ
′
2 is an extension of y′.

Therefore h(Z ′
1xyZ

′
2) is in �∗(L).

Now we have established ��∗( �L∪ �PL)⊂ S ′. As noted above, h(S ′∩ (�A∗�)) = �∗(L),
so we have h( ��∗( �L ∪ �PL) ∩ (�A∗�))⊂ �∗(L).
Now we consider the opposite inclusion, S ′′ = h( ��∗( �L∪ �PL)∩�A∗�)⊃ �∗(L). Since

L⊂ S ′′ we only have to show that �(S ′′)⊂ S ′′. Cutting operations in � translate imme-
diately to cutting operations in ��, and it is then clear that the results of cutting strings
of S ′′ at sites in C are in S ′′. Now suppose that x′ = �ixj and y′ = �kx‘ are in
��∗( �L∪ �PL), and h(x′) = �ix�j and h(y′) = �ky�‘ in S ′′ are pasted using p = �jv�k ∈ P
to produce z′′ = �ixvy�‘ in �(S ′′). We have already shown that S ′′ ⊂ �∗(L), so h(x′)
and h(y′) are in �∗(L). Hence (�ix)v(y‘) is an extension of p′ = jv�k . Hence p′

is in �PL, and we can paste x′, p′ and y′ using jj and �k�k to demonstrate that
z′ = �ixvy‘ is in ��∗( �L ∪ �PL). Hence z′′ = h(z′) is in S ′′.
We have now proved the two necessary inclusions, �nishing the proof.

Remark. In order to determine �PL it is necessary to determine �∗(L). In calculations
this can be incorporated as part of an iterative procedure for �nding ��∗(L). See the
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remark at the end of Section 7. Alternatively, one can translate to matrix terms and
use Proposition 6.6.

We now complete the cycle, showing how to convert the result of Proposition 3.4
into a splicing scheme.
We start with a CPH scheme � = (A; E; C; P) with P = {�� : � ∈ E} and we de�ne

an H scheme � = (A′; R) as follows. First, the alphabet A′ is A∪E ∪{3} where 3 is
a new symbol, used to mark “catalyst” strings. Then we de�ne R as the union of the
following three sets of rules:

R1 = {a#�$�#b : � ∈ E; a; b ∈ A ∪ E};

R2 = {a#ub$3#� : �u� ∈ C; a; b ∈ A ∪ E};

R3 = {�#3$au#b : �u� ∈ C; a; b ∈ A ∪ E}:

The symbols a and b in these rules are present only to avoid unwanted splicings with
the catalyst strings and technical problems arising from empty cutting sites.
The following shows that � determines the same splicing language as �, modulo a

�nite number of catalyst strings.

Proposition 3.5. Suppose � = (A; E; C; P) is a CPH scheme with P = {�� : � ∈ E}
and L⊂EA∗E. Let � = (A′; R) be the H scheme described above and let F be the
�nite set 3E ∪ E3. Then �∗(L) = �∗(L ∪ F) ∩ EA∗E = �∗(L ∪ F) \ F . Also, if � is
�nite or regular then so is �.

Proof. It is easy to check that � is �nite or regular if � is.
We start by showing that S ′ = �∗(L∪F)∩EA∗E⊃ �∗(L). Since S ′ ⊃L we only have

to show that �(S ′)⊂ S ′. First suppose x′ = �x� and y′ = �y� are in S ′, so the result
of a pasting operation gives z = �xy� ∈ �(S ′). But x′ and y′ may be spliced using
the splicing rule a#�$�#b (where a is the last symbol in �x and b is the �rst symbol
in y�), and z is the result of this splicing, so z ∈ S ′. Second, suppose z = �xuy� is
in S ′ and �u� is in C. Then x′ = �x� and y′ = �y� are the results of cutting z at the
site �u�, so they are in �(S ′). Consider the splicing rule a#ub$3#�; this applies to the
pair z and 3� (where a is the last symbol in �x and b is the �rst symbol in y�) and
the result of splicing x and 3� using this rule is x′. Hence x′ is in S ′. A symmetric
argument shows that y′ is also in S ′.
Next we show that S ′′ = �∗(L) ∪ F ⊃ �∗(L ∪ F). Again S ′′ ⊃L ∪ F so we only

have to show that �(S ′′)⊂ S ′′. Suppose x′ and y′ in S ′′ may be spliced to produce
z ∈ �(S ′′). We have to consider the di�erent possible rules that can apply.
First, suppose the rule used is a#�$�#b ∈ R1. Then the left and right sites specify

two symbols, neither of which is 3, so neither x′ nor y′ can be in F . Hence, x′ ∈
�∗(L)⊂EA∗E contains the substring a� so x′ = x′′a�. Similarly, y′ = �by′′. Moreover,
these are the only locations of the sites a� in x′ and �b in y′. Hence, the result z of
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splicing x′ and y′ is x′′aby′′, which is the result of pasting x′ and y′ using ��, so z is
in �∗(L)⊂ S ′′.
Next, suppose the rule used is a#ub$3#� ∈ R2. Then the only string in S ′′ that

contains the site 3� is 3� itself, so y′ = 3�. Since x′ contains the site aub we have
x′ = �x1ux2� where a is the last symbol in �x1 and b is the �rst symbol in x2�. Thus,
the result z of splicing x′ and y′ is �x1�. But �u� is in C, and z is also one of the
results of cutting x′ at the site �u�, so z is in �∗(L)⊂ S ′′.
The case of a rule in R3 is symmetric to the case of a rule in R2.
We have now shown �∗(L) ∪ F ⊃ �∗(L ∪ F) and �∗(L ∪ F) ∩ EA∗E⊃ �∗(L). We

also have F ⊂ �∗(L ∪ F), �∗(L)⊂EA∗E and F ∩ (EA∗E) = ∅. From these and some
elementary set manipulations we derive �∗(L) = �∗(L ∪ F) ∩ EA∗E = �∗(L ∪ F) \ F .

Remark. We briey show how the “triplet” formulation of [16, 15] �ts in the cur-
rent analysis. In this formulation a splicing rule is a string of the form u � w � v
where � is a symbol not in the alphabet A, and the corresponding splicing operation is
(xux′; y′vy) =⇒ xwy. A triplet H scheme is a pair � = (A; T ) where T is a set of such
rules. Any regular H scheme � with �nitely many visible sites can be translated into a
regular triplet scheme; the translation maps u#u′$v′#v to uu′ �uv� v′v. Finiteness of the
possible values for uv is needed to preserve regularity, and �∗(L) = �∗(L) is obvious.
In the other direction we indicate how to translate a regular triplet scheme � = (A; T )
into a regular CPH scheme. We choose an automaton representation T = L(G; I; F);
by eliminating unnecessary edges in G we may assume that the set of edges labeled
by � is the disjoint union of two sets E1 and E2, so that any accepting path in G has
edges e in E1 and f in E2, with e before f. We choose end markers �e for e ∈ E1
and �f for f ∈ E2, together with two more markers 3 and �3. For a rule u � w � v
represented by a path in G passing through e and f we add �eu �3 and �3v�f to C and
�ew�f to P. This de�nes the CPH scheme �, and �∗(L) = 3−1�∗(3L3)3−1 follows
by an argument similar to the proof of Proposition 3.3.

4. Matrices of languages

By an m × n matrix of languages X over A we mean a rectangular array [Xik ] of
languages in A∗, for 16i6m; 16k6n. We say such a matrix X is �nite or regular
i� each Xik is �nite or regular. If F is an abstract family of languages then we say
that X is in F i� each Xik is in F.
Square matrices of languages are just end marked languages in disguise: Suppose E

is a set of end markers, enumerated as {�1; : : : ; �n}. If X ⊂EA∗E then we de�ne the
matrix form of X to be the matrix X † de�ned by X †

jk = �−1j X�−1k ⊂A∗. Conversely, if
X is a n × n matrix of languages over A then we de�ne the end marked form of X
to be the language X † =

⋃
jk �jXjk�k . Clearly, for any full AFL F, X is in F if and

only if X † is in F.
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The advantage of using matrices rather than end marked languages is that various op-
erations on languages are simpler to describe and manipulate using matrix terminology.
In the following we assume that all matrices are square, of size n× n.
If X and Y are matrices of languages we de�ne X6Y to mean Xik ⊂Yik for all i; k.

Similarly, we de�ne the union and intersection of a family of matrices component-
wise. To emphasize the algebraic nature of some of our calculations we usually write
X ∪Y as X +Y and

⋃∞
p=0 Xp as

∑∞
p=0 Xp. We de�ne concatenation and right and left

quotients by
• (XY )ik =

⋃
j XijYjk ,

• (X−1Z)jk =
⋃

i(Xij)−1Zik ,
• (ZY−1)ij =

⋃
k Zik(Yjk)−1.

These de�nitions may be rewritten as follows:
• If Z = XY then z ∈ Zik i� z = xy for some j, x ∈ Xij, y ∈ Yjk .
• If Y = X−1Z then y ∈ Yjk i� z = xy for some i, x ∈ Xij, z ∈ Zik .
• If X = ZY−1 then x ∈ Xij i� z = xy for some k, y ∈ Yjk , z ∈ Zik .
The zero matrix O is de�ned by Oik = ∅, and the identity matrix I is de�ned by
Iii = {1} and Iik = ∅ for i 6= k. The powers Xp are de�ned by iterated concatenation,
with X 0 = I , and then X ∗ is de�ned as

∑
p¿0 X

p. To save a level of parentheses later
we introduce the following notation:

X−pY = (Xp)−1Y; X−∗Y = (X ∗)−1Y;

YX−p = Y (Xp)−1; YX−∗ = Y (X ∗)−1:

We shall need to perform various computations with these operations. We summarize
next some basic rules:

Lemma 4.1. For n× n matrices of languages:
1. X (YZ) = (XY )Z , X (

∑
p Yp) =

∑
p XYp.

2. X−1(
∑

p Yp) =
∑

p X−1Yp, (
∑

p Xp)−1Y =
∑

p X−1
p Y .

3. If Y6Z then XY6XZ , X−1Y6X−1Z , and Y−1X6Z−1X .
4. X−1(Y−1Z) = (YX )−1Z , (ZX−1)Y−1 = Z(YX )−1, (X−1Z)Y−1 = X−1(ZY−1).
5. X−1(YZ) = (X−1Y )Z + (Y−1X )−1Z .
The sums involved can be either �nite or in�nite.

Proof. All of these are analogues of the corresponding rules for operations on lan-
guages, and the proofs are very similar. As an example we give the argument for part 5.
First, w ∈ (X−1(YZ))jk i� v = xw for some i, x ∈ Xij, v ∈ (YZ)ik , and v ∈ (YZ)ik i�

v = yz for some l, y ∈ Yil, z ∈ Zlk . Since xw = yz we have either x = yz1, z1w = z
or y = xw1, w1z = w. In the �rst case we have z1 ∈ (Yil)−1Xij ⊂(Y−1X )lj, so w ∈
((Y−1X )lj)−1Zlk ⊂((Y−1X )−1Z)jk . In the second case, w1 ∈ (Xij)−1Yil ⊂(X−1Y )jl, so
w ∈ (X−1Y )jlZlk ⊂((X−1Y )Z)jk .
For the opposite inclusion, suppose �rst that w ∈ ((Y−1X )−1Z)jk . Then z = z1w for

some l, z1 ∈ (Y−1X )lj, z ∈ Zlk . Hence x = yz1 for some i, y ∈ Yil, x ∈ Xij. Therefore
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xw = yz1w = yz and yz ∈ YilZlk ⊂(YZ)ik so w ∈ (Xij)−1(YZ)ik ⊂(X−1(YZ))jk . In
the second case, w ∈ ((X−1Y )Z)jk so w = w1z for some l, w1 ∈ (X−1Y )jl, z ∈ Zlk .
Hence y = xw1 for some i, y ∈ Yil, x ∈ Xij. Therefore, xw = xw1z = yz and again
yz ∈ YilZlk ⊂(YZ)ik so w ∈ (Xij)−1(YZ)ik ⊂(X−1(YZ))jk .

We shall use Lemma 4.1 many times, usually without attribution.

Remark. In Lemma 4.1, as well as in similar situations in the rest of the paper, we
generally do not mention explicitly that there are “right-handed” versions of the results,
obtained by interchanging the operations of left concatenation and left quotient with
right concatenation and right quotient.

Note that X−1Z has nothing to do with matrix inversion. For computations it is
simplest to consider X−1Y as the result of multiplying Y by the matrix X−1 de�ned
by (X−1)jk = (Xkj)−1. Of course, this does not make sense, since the inverse of a
language is not a language. It does, however, make sense if one regards the inverse
of a language L as the operator M 7→ L−1M , and then X−1 may be understood as a
matrix of such operators. There is one special case in which this is particularly easy
to interpret. Namely, if the language L is either ∅ or 1 then the operation M 7→ L−1M
coincides with the operation M 7→ LM . To formulate the matrix analogue of this
observation we say a matrix P is a 0–1 matrix i� each entry is either ∅ or 1.

Lemma 4.2. Suppose P is a 0–1 matrix. Then, for any B and Z :
1. P−1Z = PTZ , where PT is the transpose of P.
2. B−1(ZP) = (B−1Z)P.

Proof. Part 1 follows from the preceding discussion. For part 2 set Q = PT and apply
the right-hand version of part 1 twice:

B−1(ZP) = B−1(ZQ−1) = (B−1Z)Q−1 = (B−1Z)P:

We also need the matrix analogues of the closure properties of a full AFL:

Lemma 4.3. Suppose F is a full AFL.
1. If X and Y are matrices in F then X + Y , XY , and X ∗ are in F.
2. If X is in F and Z is regular then X ∩ Z is in F.
3. If Z is in F and X and Y are regular then X−1Z and ZY−1 are in F; and if Z
is regular and X and Y are arbitrary then X−1Z and ZY−1 are regular.

Proof. These are immediate from the corresponding results for languages except, per-
haps, for X ∗. Take a set E = {�1; : : : ; �n} of end markers so we can consider X †. We let
D = {�i�i16i6n}. Then Sik = (X †)∗ ∩ (�i(A∗D)∗A∗�k) is in F. If h is the homomor-
phism from (A ∪ E)∗ to A∗ de�ned by erasing the markers in E then h(Sik) = (X ∗)ik ,
so (X ∗)ik is in F.
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5. Splicing via matrices

We now reinterpret splicing in matrix terms. AnMH scheme (for “matrix H scheme”)
is a quadruple � = (A; B; D; P) where A is an alphabet and B, D and P are n × n
matrices of languages over A. If necessary we shall refer to � as an n×n MH scheme,
but usually n will be clear from the context. We say that � is regular i� B, D and P
are all regular matrices. If X is a matrix of languages then we de�ne

�(X ) = X + B−1X + XD−1 + XPX:

We call B and D the left and right cutting matrices, and P the pasting matrix.
It follows from Lemma 4.1 that X 7→ B−1X + XD−1 + XPX is order-preserving and

continuous, so Lemma 2.1 applies to �. Thus, the splicing matrix �∗(L) is the smallest
matrix of languages S satisfying the equation

S = L+ B−1S + SD−1 + SPS: (5.1)

We shall refer to this equation as the splicing equation for � and L.
In the following we use the universal matrix U de�ned by Uik = A∗ for all i; k.

Proposition 5.1. Suppose � = (A; E; C; P) is a CPH scheme. De�ne B = UC†; D =
C†U and � = (A; B; D; P†). Then � is regular if � is regular, and, if L is any end
marked language, (�∗(L))† = �∗(L†).

Proof. Suppose X is any matrix of languages. Notice that y ∈ (B−1X )jk i� x = by for
some i, b ∈ Bij, x ∈ Xik . Also, b ∈ Bij i� b = wu for some l, w ∈ Uil, u ∈ C†

lj. That is,
w ∈ A∗, �iwuy�k = �ix�k is in X †, and �lu�j ∈ C†. Hence y ∈ (B−1X )jk i� �jy�k is the
“left” fragment resulting from a cut operation on some �ix�k ∈ X † at some cutting site
�lu�j ∈ C†. Together with a similar analysis for XD−1, we see that B−1X + XD−1 is
the matrix form of the set of strings resulting from single cut operations on X † using
the cutting sites in C†. An even simpler calculation shows that XPX is the matrix form
of the set of strings resulting from single pasting operations on pairs of strings in X †

using the pasting strings in P†. Hence �(X ) = (�(X †))†, from which the proposition
easily follows.

Next we translate an n× n MH scheme � = (A; B; D; P) to a CPH scheme. We start
with a set of end markers E = {�1; : : : ; �n} which will de�ne the end marked forms of
various matrices. We add two more symbols {3 ; �3} to E to form E′, and we add 2n
more symbols pi; qi; 16i6n to A to form A′.
Notice that, as a cutting operation, X 7→ B−1X acts by matching and deleting an

entire pre�x of an element of Xik , and di�erent components of B apply to di�erent
components of X . However, a cutting operation in a CPH scheme cannot take into
account the end markers. The new alphabet symbols pi and qj are used as alternative
markers for the ends of strings. Since these are alphabet symbols the cutting sites can
refer to them.
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The set of pasting strings P′ consists of P† plus the �nite set of strings of the form
�3pj�j or �jqj �3, which are used to replace end markers with the alphabetic markers

pj and qj. Finally, we place in C′ all strings of the form 3pib�k where b ∈ Bik or
�idqk3 where d ∈ Dik .

Proposition 5.2. Suppose � = (A; B; D; P) is an MH scheme and � = (A′; E′; C′; P′)
is de�ned as above. Then � is a regular CPH scheme if � is regular. If L is any
matrix of languages and L′ = L† ∪{3 �3 ; �33 ; 33} then �∗(L) = (�∗(L′)∩EA∗E)†.

Proof. Regularity of � is clear.
Let S ′ = (�∗(L′) ∩ EA∗E)†. As usual, in order to establish �∗(L)6S ′ we only have

to show that �(S ′)6S ′. Take z ∈ (�(S ′))jk = (S ′+B−1S ′+S ′D−1 +S ′PS ′)jk ; we need
to consider three possibilities.
First consider z ∈ (B−1S ′)jk . That is, for some i, w = bz with w ∈ S ′

ik and b ∈ Bij.
So w′ = �iw�k is in �∗(L′) and can be pasted with 3 �3 ∈ L′ using �3pi�i ∈ P′ to
produce w′′ = 3piw�k = 3pibz�k in �∗(L′). Now we can cut w′′ at the cutting site
3pib�j ∈ C′ to produce 33 and z′ = �jz�k in �∗(L′). Hence z ∈ S ′

jk .
The case z ∈ (S ′D−1)jk is handled similarly, and the last case, z ∈ (S ′PS ′)jk , is

a simple matter of translating between matrix and end marked forms. So we have
established the �rst inclusion, �∗(L)6S ′.
For the reverse inclusion, we de�ne the language S ′′ as the set of all strings of the

form sjxtk where x ∈ �∗(L)jk , sj = �j or 3pj, and tk = �k or qk3, together with the
three strings 3 �3, �33 and 33. We shall show �∗(L′)⊂ S ′′. Since L′ ⊂ S ′′ we only
need to show �(S ′′)⊂ S ′′.
First consider the e�ect of cutting a string z′ ∈ S ′′ at a site 3pib�j ∈ C′, with b ∈ Bij.

Then z′ must contain the symbol pi so the only possible form for z′ is z′ = 3pibytk
and the results of cutting are 33 ∈ S ′′ and y′ = �jytk . Then by ∈ �∗(L)ik and b ∈ Bij

so y ∈ (B−1�∗(L))jk ⊂ �∗(L)jk . Hence y′ = �jytk is in S ′′. Together with the symmetric
argument for cutting at sites �idqk3 this shows that S ′′ is closed under cutting.
Now consider the possibilities for pasting two strings x′ and y′ in S ′′ using a pasting

string p′ ∈ P′. If p′ = �3pj�j then x′ = 3 �3, since this is the only string in S ′′ ending
with �3, and y′ = �jytk with y ∈ �∗(L)jk . Then the result of pasting is 3pjytk , which
is still in S ′′. A similar argument holds if p′ = �jqj �3. Finally consider p′ = �jv�k ∈ P†.
Then x′ = six�j and y′ = �kyt‘ with x ∈ �∗(L)ij and y ∈ �∗(L)k‘. But then the result
of pasting x′ and y′, sixvyt‘, is in S ′′ since xvy ∈ (�∗(L)P�∗(L))i‘ ⊂ �∗(L)i‘. Therefore
S ′′ is also closed under pasting, so �(S ′′)⊂ S ′′.
Now we �nish the proof, since we have already shown �∗(L)6S ′, and clearly

S ′′ ∩ EA∗E = (�∗(L))†, so �∗(L′)⊂ S ′′ implies �∗(L′) ∩ EA∗E⊂(�∗(L))†, and hence
S ′6�∗(L).

The translation from a CPH scheme to an MH scheme introduces the matrices B =
UC† and D = C†U which are (usually) in�nite even if C is �nite. Thus a translation to
matrix terms and back to splicing will lose information about �niteness of the original
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scheme. We now give an alternate construction which recaptures a �nite CPH scheme
in this case.
We assume that � = (A; B; D; P) is an MH scheme and that there are matrices B̃

and D̃ such that B = UB̃ and D = D̃U . We construct a CPH scheme as follows. First
we choose a set E = {�1; : : : ; �n} of end markers to set up the correspondence between
matrices and end marked languages in EA∗E. We add to E one more symbol, 3, to
form Ẽ. We now form C̃ as the set of all strings 3b�k where b ∈ B̃jk and �jd3 where
b ∈ D̃jk .

Proposition 5.3. Suppose � = (A; B; D; P) is an MH scheme, and suppose there are
matrices B̃ and D̃ such that B = UB̃ and D = D̃U . De�ne Ẽ and C̃ as above, and let
� = (A; Ẽ; C̃; P†). Then, for any matrix of languages L, �∗(L) = (�∗(L†) ∩ EA∗E)†.
Moreover, � is a regular CPH scheme if � is regular, and � is a �nite CPH scheme
if P, B̃, and D̃ are �nite.

Proof. The idea here is just that the unwanted result of each cut operation will be
marked with 3 and strings containing 3 will not be accepted in the �nal language.
The details are similar to (and simpler than) those in several previous proofs and are
left to the reader.

6. Solving the splicing equation

We shall now show how to solve the splicing equation (5.1). We �rst consider a
trivial special case, with no cutting:

Proposition 6.1. If �̃ = (A;O;O; P) then, for any L, �̃∗(L) = (LP)∗L = L(PL)∗.

Since �̃(Z) = Z + ZPZ this is easily proved by induction. Note that this just says
that the strings in the splicing language are obtained by pasting together a sequence of
strings from the initial language.
We shall need the following calculation when solving more general forms of the

splicing equation.

Lemma 6.2. Let �̃ = (A;O;O; P), with P a 0-1 matrix, and suppose Z and B are
matrices, with I6B. De�ne S̃ = �̃(Z) and B̃0 = B+ (S̃P)−1B. Then

B̃
−1
0 �̃∗(Z)6�̃∗(B̃

−1
0 Z):

Proof. We start with

B̃
−1
0 �̃(Z) = B̃

−1
0 Z + B̃

−1
0 (ZPZ) = B̃

−1
0 Z + B̃

−1
0 (ZP)Z + ((ZP)

−1B̃0)−1Z; (6.1)
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using Lemma 4.1.5. The last term becomes

((ZP)−1B̃0) = (ZP)−1B+ (ZP)−1((S̃P)−1B) = (ZP)−1B+ (S̃PZP)−1B

6(S̃P)−1B6B̃0;

using Z6S̃ and S̃PS̃P = (S̃PS̃)P6S̃P. Thus (6.1) simpli�es to

B̃
−1
0 �̃(Z)6B̃

−1
0 Z + B̃

−1
0 (ZP)Z + B̃

−1
0 Z = B̃

−1
0 Z + B̃

−1
0 (ZP)Z: (6.2)

Now we apply Lemma 4.2.2 to B̃
−1
0 (ZP) to continue the calculation:

B̃
−1
0 �̃(Z)6B̃

−1
0 Z + (B̃

−1
0 Z)PZ6B̃

−1
0 Z + (B̃

−1
0 Z)P(B̃

−1
0 Z) = �̃(B̃

−1
0 Z);

where Z6B̃
−1
0 Z follows from I6B̃0. Writing Zp = �̃p(Z), we still have S̃ = �̃∗(Zp)

so we can apply the preceding with Z replaced with Zp to get

B̃
−1
0 Zp+1 = B̃

−1
0 (�̃

p+1(Z)) = B̃
−1
0 (�̃(Zp))6�̃(B̃

−1
0 Zp);

and from this B̃
−1
0 �̃∗(Z)6�̃∗(B̃

−1
0 Z) follows by induction.

The following is a more general solution of the splicing equation. We allow cutting,
but we require that all pasting strings be empty words:

Theorem 6.3. Suppose � = (A; B; D; P) with P a 0–1 matrix and let S = �∗(L).
De�ne B0 = (I + SP)−1(I + B), �B = B∗

0 , D0 = (I + D)(I + PS)−1, �D = D∗
0 and

�L = �B
−1

L �D
−1
. Then S = ( �LP)∗ �L.

Remark. The idea is that, as in the simplest case of Proposition 6.1, a string in the
splicing language is obtained by pasting together a sequence of strings from a modi�ed
initial language. The modi�ed initial language consists of the results of cutting opera-
tions on the initial language, where the cutting matrices B and D have been replaced
by “enhanced” cutting matrices �B and �D.

Proof. If we replace B by I + B and D by I + D we do not change �(Z) = Z +
B−1Z + ZD−1 + ZPZ , so we shall assume I6B and I6D. Thus B0 = B + (SP)−1B
and D0 = D + D(PS)−1. We de�ne �̃ = (A;O;O; P) and S̃ = �̃∗( �L) = ( �LP)∗ �L, by
Proposition 6.1. We must show S = S̃.
To show S̃6S we need �L6S and �̃(S)6S. The second inequality is obvious,

since �̃(Z)6�(Z) for all Z . For the �rst we need �B
−1

S6S. To prove this, start with
((SP)−1B)−1S6B−1(SPS)6S, using Lemma 4.1.5 and B−1S+SPS6�(S) = S. Hence
B−1
0 S = B−1S + ((SP)−1B)−1S6S, again using B−1S6S. Now �B

−1
S6S follows by

iteration. Similarly, S �D
−1
6S. Therefore �L = �B

−1
L �D

−1
6 �B

−1
S �D

−1
6S.

To show S6S̃ we need L6S̃ and �(S̃)6S̃. Since I6 �B and I6 �D we have L6 �L6S̃.
Consider �(S̃) = S̃+B−1S̃+ S̃D−1 + S̃PS̃. We have S̃PS̃6�̃(S̃) = S̃, so we only need
B−1S̃6S̃ and S̃D−16S̃. We give the details for B; the argument for D is similar.
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Let B̃0 = (S̃P)−1B as in Lemma 6.2. We have already shown that S̃6S, so B̃06B0.
Hence, by Lemma 6.2, B−1S̃ = B−1�̃∗( �L)6B̃

−1
0 �̃∗( �L)6�̃∗(B̃

−1
0
�L)6�̃∗(B−1

0
�L). But

now B−1
0
�L6 �B

−1 �L = �B
−2

L �D
−1
= �B

−1
L �D

−1
= �L, since �B

2
= �B. Thus, we have shown

B−1S̃6�̃∗(B−1
0
�L)6�̃∗( �L) = S̃, as required.

From this solution in the 0–1 case we can now deduce our main theorem, the Closure
Theorem from Section 1. We restate it more precisely here:

Theorem 6.4 (Closure Theorem). Suppose F is a full AFL.
1. If � = (A; R) is a regular splicing scheme with �nitely many visible sites and

L⊂A∗ is in F then �∗(L) is in F.
2. If � = (A; E; C; P) is a regular CPH scheme and L⊂EA∗E is in F then �∗(L) is
in F.

3. If � = (A; B; D; P) is a regular n × n MH scheme and L is an n × n matrix of
languages in F then �∗(L) is in F.

Proof. Propositions 3.3, 3.4, 3.5, 5.1 and 5.2 all transform one type of splicing scheme
and initial object (language or matrix) into another. They all preserve regularity of the
scheme. They all operate by transforming the initial object, operating on the transformed
object by the new scheme, and then transforming the new splicing object back to
the original splicing object. All these transformations require only simple language or
matrix operations which preserve any given full AFL F.
Therefore, as far as the validity of the Closure Theorem goes we can apply any of

these transformations, and just prove closure for the transformed system. We choose
to transform the given scheme and initial object into the special type of CPH scheme
described in Proposition 3.4, and then apply Proposition 5.1 to produce a regular MH
scheme �′ = (A′; B′; D′; P′) and a matrix L′ in F. In the special CPH scheme produced
by Proposition 3.4 the set of pasting strings is {�� : � ∈ E}, and so the resulting matrix
P′ is the identity matrix I .
Thus, using the notation of Theorem 6.3 with � = (A; B; D; P) replaced with �′ =

(A′; B′; D′; I), we can write S ′ = �′∗(L′) = �L
+
.

To �nish we use the closure properties of Lemma 4.3. No matter what S ′ is, B0 and
D0 are quotients of the regular matrices I +B′, respectively I +D′, so they are regular.
Hence �B and �D are regular, so �L is in F since F is closed under quotient by regular
matrices. Since F is closed under concatenation and Kleene closure we conclude that
S ′ = �L �L

∗
is in F.

An examination of the proof shows that we can make two improvements. First, the
pasting language P is added to the splicing language in Proposition 3.4, so we only
need to require that P be in F, not that it be regular. Second, since the quotient of a
regular language by anything is still regular, we do not need to require that B and D
(or C) be regular if F is the regular family. Thus we have
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Addendum 6.5. Theorem 6.4 remains true if we replace the assumption that P is
regular with the assumption that P is in F. It also remains true if F is the regular
family and we remove the assumptions of regularity on R; C; B and D.

The transformations in the proof of the Closure Theorem lead to a simple form for
the splicing matrix but they generally increase the size of the system considerably.
For example, suppose we start with an n × n MH scheme. Applying Proposition 5.2
produces a CPH system with n + 2 end markers and 2n additional alphabet symbols.
Then Proposition 3.4 transforms this into a CPH scheme with 2n+4 end markers. Thus,
the MH system used in the proof of the Closure Theorem uses (2n + 4) × (2n + 4)
matrices over an alphabet with 2n additional symbols. The following is a more direct
(and simpler) translation from an MH system to an MH system with a 0–1 pasting
matrix:

Proposition 6.6. Suppose � = (A; B; D; P) is an n× n MH scheme and L is an n× n
matrix. Using n× n blocks, de�ne the (2n)× (2n) matrices

B̂ =
[
B O
O O

]
; D̂ =

[
O O
O D

]
; L̂ =

[
O L
P O

]
:

Further de�ne �̂ = (A; B̂; D̂; I) and
[ �W �X
�Y �Z

]
= �̂∗(L̂):

Then �∗(L) = �X .

This provides the “general” solution of the splicing equation:

Corollary 6.7. With �L de�ned by Theorem 6.3 using �̂ and L̂;

�∗(L) =
[
I O

]
�L
+
[
O
I

]
:

Proof of Proposition 6.6. First calculate

�̂
[
W X
Y Z

]
=
[
W ′ X ′

Y ′ Z ′

]

=
[
W + B−1W +W 2 + XY X + B−1X + XD−1 +WX + XZ
Y + YW + ZY Z + ZD−1 + YX + Z2

]
:

We �rst apply this with W = �W , etc. Since �Y¿P we have �W = �W
′
¿ �X �Y¿ �XP,

so �W �X¿ �XP �X . Hence �X = �X
′
¿ �X + B−1 �X + �XD−1 + �XP �X = �( �X ). From this and

�X¿L we conclude �X¿�∗(L).
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For the opposite inclusion let S = �∗(L) and assume

X6S; WS6S; SZ6S; and SYS6S:

Then the same is true for X ′, etc.,

X ′ = X + B−1X + XD−1 +WX + XZ6�(X ) +WS + SZ6S;

W ′S = WS + (B−1W )S +W (WS) + XYS

6S + B−1(WS) +WS + SYS6S + B−1S6S;

SZ ′ = SZ + S(ZD−1) + SYX + (SZ)Z

6S + (SZ)D−1 + SYS + SZ6S + SD−16S;

SY ′S = SYS + SY (WS) + (SZ)YS6SYS6S:

Now a trivial induction using �̂p(L̂) shows that �X6S.

7. Calculations and examples

Gatterdam [4] (corrected in [5]) and P�aun [13] considered the problem of realizing
a given regular language as the splicing language �∗(L) of a �nite H scheme � and
a �nite initial language L. Not all regular languages can be so represented. However,
any regular language may be represented as the image of such a �∗(L) under a coding
(a homomorphism that maps each symbol to a single symbol).
For CPH and MH schemes we have a simpler construction, which is well known

in the study of so�c systems. A similar representation of a regular language in matrix
terms is in [17].

Proposition 7.1. Suppose Q is a regular language over the alphabet A.
1. There are a �nite CPH scheme � = (A; E; ∅; P) with P = {�� : � ∈ E}, a �nite
language L⊂EA∗E, and two symbols �1 and �n in E so that Q = �−11 �∗(L)�−1n .

2. There are a �nite n× n MH scheme � = (A;O;O; I) and a �nite matrix L so that
Q = �∗(L)1n = (L+)1n.

Proof. Choose an automaton representation Q = L(G; I; T ). We may assume I and T
are singletons by adding, if necessary, extra vertices and edges labeled by 1 between
these new vertices and the original initial and terminal vertices. Let E = {�1; : : : ; �n}
be the set of vertices in G, indexed so I = {�1} and T = {�n}. This determines �. The
initial language L consists of all strings �jz�k such that there is an edge in G from �j to
�k labeled by z. It is then obvious that, for j 6= k, �−1j �∗(L)�−1k = L(G; {�j}; {�k}). (If
j = k then L(G; {�j}; {�j}) contains 1, but we do not necessarily have �j�j in �∗(L).)
The MH scheme � is the one generated from � by Proposition 5.1, and then part 2 is

an immediate translation of part 1. In this context the matrix L becomes the incidence
matrix for the graph G (with coe�cients in A∗).
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Remark. Conversely, suppose �L is an n× n matrix. Then �L de�nes a graph G with n
vertices vj, so that there is an edge from vj to vk i� �Ljk 6= ∅. We then label each such
edge with the language �Ljk , and we label any path in G with the concatenation of the
languages at the edges. In this way we may consider G as a “generalized” automaton,
so that the language L(G; {vj}; {vk}) is just the jk entry in �L

∗
. In case �L is �nite (or, in

fact, regular) this generalized automaton may be easily converted to a standard automa-
ton. Thus, for example, if we start with a �nite H scheme � and a �nite initial language
L then we can consider the proof of Theorem 6.4 as producing a matrix �L so that S =
�L
+
has one o�-diagonal entry, say Sjk , equal to �∗(L). In this case we may interpret

�L, with the initial and terminal vertices vj and vk , as an automaton recognizing �∗(L).

We want to explain the computational content of the solution of the splicing equation
in Section 6. The basic idea is that a regular matrix has only �nitely many quotients.
To use this idea explicitly we introduce some notation: For a regular language L we
de�ne ‖L‖ to be the minimum number of vertices of an automaton representing L as
L(G; I; T ). For an n× n regular matrix X we let ‖X ‖ be the sum of ‖Xjk‖, 16j; k6n.

Lemma 7.2. Suppose X is an n× n regular matrix of languages and Ym and Zm are
increasing sequences of matrices. Then there are at most n‖X ‖+ 1 distinct matrices
in each of the sequences Y−1

m X and XZ−1
m , and there are at most 2n‖X ‖+ 1 distinct

matrices in the sequence Y−1
m XZ−1

m .

Proof. First consider the case that n = 1, so X is just a regular language. Write
X = L(G; I; T ) where G has ‖X ‖ vertices. Then, for a given language Y , z ∈ Y−1X
i� x = yz for some x ∈ X , y ∈ Y . This is equivalent to the requirement that there are
paths p and q in G so that p starts in I and ends at some vertex v, q starts at v and
ends in T , �(p) ∈ Y and �(q) = z. In other words, Y−1X = L(G; J; T ) where J is the
set of vertices v in G such that Y ∩ L(G; I; {v}) 6= ∅.
In the general case, in order to analyze Y−1

m X we look at the quotients Y−1
m;ijXik . For

each choice of m; i; j; k the possible quotients correspond to sets Jm;ijk of vertices in a
minimal size automaton for Xik . In order for Y−1

m+1X to be strictly larger than Y−1
m X

at least one of the sets Jm;ijk must strictly increase as m increases to m+ 1. But each
Jm;ijk can strictly increase at most ‖Xik‖ times. Summing over i; j; k, we see that the
sequence Y−1

m X can change values at most n‖X ‖ times.
The other two cases are similar, starting with representations XZ−1 = L(G; I; K) and

Y−1XZ−1 = L(G; J; K).

The following converts Theorem 6.3 into a procedure for calculating splicing matri-
ces.

Theorem 7.3. Let � = (A; B; D; P) be a regular MH scheme with P a 0-1 matrix.
De�ne the functions �0 and � on matrices by

�0(Z) = ((I + ZP)−1(I + B))−∗L((I + D)(I + PZ)−1)−∗;

�(Z) = (�0(Z)P)∗�0(Z):
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Then, for any matrix L :
1. �m+1(L) = �m(L) for some m6n(‖I + B‖ + ‖I + D‖). If L is regular then also

m62n‖L‖.
2. For any m, if �m+1(L) = �m(L) then �∗(L) = �m(L).

Remark. (1). This gives, in some sense, an algorithm for determining the splicing
matrix �∗(L). However, each step involves determining many quotients of languages.
These may be determined algorithmically in the regular case. However, more generally,
determining these quotients may not be algorithmically possible.
(2). This result may also be interpreted as follows: There is a �xed formula, in terms

of a �nite number of concatenations, quotients, unions and Kleene closures, for the
splicing matrix. Speci�cally, for any L, �∗(L) = �M (L) where M = n(‖I+B‖+‖I+D‖).
This is not particularly useful, but it does provide an “explicit” formula for the splicing
matrix.
(3). If neither � nor L is regular then there is no guarantee that �∗(L) = �∗(L),

since the function � does not generally satisfy the continuity hypothesis of Lemma
2.1.

Proof. De�ne Tm = �m(L), so T0 = L and Tm is an increasing sequence. Then part
1 follows from Lemma 7.2 applied to the two sequences (I + TmP)−1(I + B) and
(I + D)(I + PTm)−1. In the case L is regular we get the alternate estimate m62n‖L‖
from the two-sided version of Lemma 7.2.
Now suppose Tm = Tm+1 for some m. We �rst note that Tm6S = �∗(L). In fact,

this is an obvious induction since � is order-preserving, T0 = L6S, and, according
to Theorem 6.3, �(S) = S. In order to show S6Tm we need L6Tm, which is clear,
and �(Tm)6Tm. Clearly TmPTm6Tm so we only need B−1Tm6Tm and TmD−16Tm.
As usual we give the argument only for B. As in the proof of Theorem 6.3 there is
no harm in assuming I6B and I6D.
We can organize the calculation of Tm as follows (remembering I6B and I6D):

Bk = B+ (TkP)−1B; Dk = D + D(PTk)−1; Lk = �0(Tk) = B−∗
k LD−∗

k

Tk+1 = (LkP)∗Lk :
(7.1)

Then Tm = Tm+1 = �̃∗(Lm) with �̃ = (A;O;O; P) so Lemma 6.2 applies: B−1
m Tm6

�̃∗(B−1
m Lm). Using B6Bm and B−1

m Lm = B−1
m (B−∗

m LD−∗
m )6Lm, this implies B−1Tm6

�̃∗(Lm) = Tm.

We illustrate this algorithm with a simple example, which we �rst present in cutting
and pasting terms. The alphabet is A = {a; b} and the set of end markers is E =
{�; �; ; �}. We consider the strings in �A∗� to form the “�nished” language, and we
consider strings starting or ending with the other markers as fragments. There are three
cutting actions:

xay =⇒ �y; xay =⇒ x; xbby =⇒ x�
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(the “left” fragment resulting from cutting at bb is not needed). There are two pasting
operations:

(x; �y) =⇒ xby; (x�; �y) =⇒ xaby:

Finally, the initial language is just {ab}.
We follow Proposition 3.4 to translate this into an MH system. With some ad hoc

simpli�cations to keep the sizes of the matrices reasonably small we obtain a 4 × 4
system with the pasting strings in the initial matrix. After adding I to both B and D
we have

B =



1 A∗a 0 0
0 1 + A∗a 0 0
0 A∗a 1 0
0 A∗a 0 1


 ; D =




1 0 0 0
0 1 0 0

aA∗ aA∗ 1 + aA∗ aA∗

bbA∗ bbA∗ bbA∗ 1 + bbA∗


 ;

P =



0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 ; L =



ab 0 0 0
0 0 0 0
0 b 0 0
0 ab 0 0


 :

We start with T0 = L and use the de�nitions in (7.1). Since ‖B‖ = 11, ‖D‖ = 22
and ‖L‖ = 8 we can expect to �nd the solution in at most min(4·(11+22); 2·4·8) = 64
steps. Fortunately, this is a very generous estimate in this case.
First iteration:

B0 = B; D0 =




1 0 0 0
0 1 0 0

aA∗ aA∗ 1 + aA∗ 1 + aA∗

bbA∗ bbA∗ b+ bbA∗ 1 + bbA∗




L0 =



ab 0 1 0
b b 0 0
0 b 0 0
0 ab 1 0


 ; T1 =




ab+ bb+ b+ 1 0
b+ b+ 0 0
bb+ b+ 0 0

abb+ + bb+ ab+ + b+ 1 0


 :

Second iteration:

B1 =



1 A∗a 0 0
0 1 + A∗a 0 0
1 A∗a 1 1
0 A∗a 0 1


 ;

D1 =




1 0 0 0
0 1 0 0

aA∗ aA∗ 1 + aA∗ 1 + aA∗

bbA∗ 1 + b+ bbA∗ 1 + b+ bbA∗ 1 + b+ bbA∗
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L1 =



ab b 1 + b 1 + b
b b 1 + b 1 + b
0 b 1 + b 1 + b
0 b+ ab 1 + a+ b+ ab 1 + a+ b+ ab


 ;

T2 =



ab+ A∗bb A∗b A∗ A∗

b+ A∗bb A∗b A∗ A∗

A∗bb A∗b A∗ A∗

A∗bb A∗b A∗ A∗


 :

Third iteration:

B2 =



1 A∗a 0 0
0 1 + A∗a 0 0
1 1 + A∗a 1 1
1 1 + A∗a 1 1


 ;

D2 =




1 0 0 0
0 1 0 0

aA∗ 1 + aA∗ 1 + aA∗ 1 + aA∗

bbA∗ 1 + b+ bbA∗ 1 + b+ bbA∗ 1 + b+ bbA∗




L2 =



ab b+ ab 1 + a+ b+ ab 1 + a+ b+ ab
b b+ ab 1 + a+ b+ ab 1 + a+ b+ ab
0 b+ ab 1 + a+ b+ ab 1 + a+ b+ ab
0 b+ ab 1 + a+ b+ ab 1 + a+ b+ ab


 ; T3 = T2:

Thus, the splicing language corresponding to the original problem is ab+ A∗bb, the
1,1 entry of T2. Note that at this stage we can describe the splicing system very simply:
The “enhanced” cutting matrices are

B∗
2 =



1 A∗a 0 0
0 1 + A∗a 0 0
1 1 + A∗a 1 1
1 1 + A∗a 1 1


 ; D∗

2 =




1 0 0 0
0 1 0 0

aA∗ + bA+ A∗ A∗ A∗

aA∗ + bA+ A∗ A∗ A∗


 :

Then L2 is the result of cutting L by these matrices, and the splicing matrix T2 is
obtained by pasting together a sequence of copies of L2, with pasting matrix P.

Remark. Technically, it is necessary to verify that the pasting strings b� and �ab�
have “extensions” in the sense of Proposition 3.4 before adding them to the initial
matrix in L32 and L42. This is in fact true and easy to verify before starting the
iteration. In a more formal algorithmic process it would be necessary to start with
all entries empty except for L11. Then at the end of each iteration we can easily test
whether various entries Ljk may be populated from the set of pasting strings.
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8. Circular splicing

Informally, a “circular string” is a string x1x2 : : : xn of symbols from the alphabet A,
with the understanding that a cyclic permutation of the symbols, say xk+1 : : : xnx1 : : : xk ,
should represent the same circular string. To formalize this notion we de�ne an equiv-
alence relation ∼ on A∗ by xy ∼ yx, so two strings are equivalent i� one is a cyclic
permutation of the other. We denote the set of equivalence classes by A ,̂ and we
write ˆw for the equivalence class of the linear string w ∈ A∗. We say a subset C of
Aˆ is a circular language, and a subset M of the disjoint union A∗ ∪ Aˆ is a mixed
language.
The application of splicing rules to mixed strings was introduced in [7], and is

described in more detail in [16]. We can summarize the use of a rule u#u′$v′#v as
follows:
1. (xuu′y′; x′v′vy) =⇒ xuvy (ordinary linear splicing).
2. (̂ xuu′; ˆyv′v) =⇒ ˆxuvyv′u′ (circular splicing).
3. (xuu′y; ẑv′v) =⇒ xuvzv′u′y (mixed splicing).
4. ˆxuu′yv′u′ =⇒ (̂ xuv; ˆyv′u′) (circular self-splicing).
5. xuu′yv′vz =⇒ (xuvz; ˆyv′u′) (mixed self-splicing).
More obviously, we have the following cutting and pasting operations, de�ned in

terms of a cutting site �u� and a pasting string �v�:
1. xuy =⇒ (x�; �y) (linear cutting).
2. (x�; �y) =⇒ xvy (linear pasting).
3. ˆxu =⇒ �x� (circular cutting).
4. �x� =⇒ ˆxv (self-pasting).
Suppose M is a mixed language, � is an H scheme, and � is a CPH scheme. We

de�ne �m(M) as usual, using all �ve mixed splicing operations, and we reserve �(M)
for the result of applying the linear operations to the linear strings in M , ignoring the
circular strings. Similarly, we de�ne �m(M) and �(M).
We say that an H scheme � = (A; R) is symmetric i� whenever u#u′$v′#v is in

R then v′#v$u#u′ is in R, and we say that � is reexive i� whenever u#u′$v′#v is
in R then both u#u′$u#u′ and v′#v$v′#v are in R. Symmetry is a natural assumption
to make in the circular context: All the splicing operations except ordinary linear
splicing leave both uv and v′u′ in the result so, in e�ect, they use both u#u′$v′#v and
v′#v$u#u′. Reexivity is an attempt to translate in splicing terms the idea that a ligase
should always be able to rejoin the two fragments of a single DNA molecule cut by a
restriction enzyme. Moreover, the reexivity assumption is actually necessary for the
closure theorem: See the example of Siromoney et al. [18], as discussed in [16], which
shows that, without the reexivity assumption, a �nite initial circular language and a
�nite H scheme can generate a non-regular splicing language.
Note that the assumptions of symmetry and �nitely many visible sites imply that the

H scheme is �nite.
We �rst translate from an H scheme to a CPH scheme, giving a version of Proposi-

tion 3.3 in the mixed context. We start with a �nite reexive and symmetric H scheme
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� = (A; R). For each rule r = u#u′$v′#v in R we create two end markers �r and �r .
We declare �ruu′�r and �rv′v�r to be both cutting sites and pasting strings, and we
also declare �ruv�r and �rv′u′�r to be pasting strings. These determine the �nite sets
C and P, and, with the addition of one more marker 3, the set E.

Proposition 8.1. Suppose � = (A; R) is a �nite reexive and symmetric H scheme
and de�ne the �nite CPH scheme � = (A; E; C; P) as above. For any mixed language
M ⊂A∗ ∪ A ,̂ if we de�ne L = M ∩ A∗ and Z = M ∩ Aˆ then we have
1. �∗

m(M) ∩ A∗ = 3−1 (�∗
m(3L3 ∪ Z) ∩ A∗)3−1;

2. �∗
m(M) ∩ Aˆ= �∗

m(3L3 ∪ Z) ∩ A .̂

Proof. This follows the general outline of the proof of Proposition 3.3.
The �rst half of the proof is the veri�cation that each splicing operation on strings in

A∗∪Aˆcan be mirrored by a sequence of cutting and pasting operations in (3A∗3)∪A .̂
Suppose that we have a splicing operation involving the rule r = u#u′$v′#v. In the
following we use, as needed, the cutting sites and pasting strings derived from r. Since
only one rule is involved, we shall suppress the subscripts on the end markers.
1. Ordinary splicing (xuu′y′; x′v′vy) =⇒ xuvy: Cut 3xuu′y′3 =⇒ (3x�; �y′3) and
cut 3x′v′vy3 =⇒ (3x′�; �y3); paste (3x�; �y3) =⇒ 3xuvy3.

2. Circular splicing (̂ xuu′; ˆyv′v) =⇒ ˆxuvyv′u′: Cut x̂uu′ =⇒ �x� and cut ˆyv′v =⇒
�y�; paste (�x�; �y�) =⇒ �xuvy�; self-paste �xuvy� =⇒ ˆxuvyv′u′.

3. Mixed splicing (xuu′y; ẑv′v) =⇒ xuvzv′u′y: Cut 3xuu′y3 =⇒ (3x�; �y3) and cut
ẑv′v =⇒ �z�; paste (3x�; �z�) =⇒ 3xuvz�; paste (3xuvz�; �y3) =⇒
3xuvzv′u′y3.

4. Circular self-splicing ˆxuu′yv′v =⇒ (̂ xuv; ˆyv′u′): Cut ˆxuu′yv′v =⇒ �xuu′y� and cut
�xuu′y� =⇒ (�x�; �y�); self-paste �x� =⇒ ˆxuv and self-paste �y� =⇒ ˆyv′v.

5. Mixed self-splicing xuu′yv′vz =⇒ (xuvz; ˆyv′u′): Cut 3xuu′yv′vz3 =⇒ (3x�;
�yv′vz3) and cut �yv′vz3 =⇒ (�y�; �z3); paste (3x�; �z3) =⇒ 3xuvz3 and
self-paste �y� =⇒ ˆyv′u′.

As in the proof of Proposition 3.3 this mirroring shows that (3 �L3)∪ �Z ⊂ �∗(3L3∪Z),
where we have written �L = �∗

m(M) ∩ A∗ and �Z = �∗
m(M) ∩ A .̂

Now let �c be the CPH scheme (A; E; C; ∅). For the second half of the proof we
shall show that �∗

m(3L3 ∪ Z)⊂ �∗
cm(3 �L3 ∪ �Z).

To describe �∗
cm(3 �L3) we use Lemma 3.1. For fragments of circular strings we

have the following.

Lemma 8.2. �z� is in �∗
cm( �Z) if and only if there are strings �c� and �c′� in C and

a string ˆcxc′y in �Z .

Proof. The argument is identical to that of Lemma 3.1, except for the possible presence
of strings which are the result of cutting a circular string in �Z exactly once. For this
to happen there must be a circular string ẑc in �Z and a cutting site �c� in C, so
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the result of the cut is �z�. If �c� = �ruu′�r with r = u#u′$v′#v then, by reexivity,
r′ = u#u′$u#u′ is also in R. Using r′ we can perform circular splicing on two copies
of ẑc = ẑuu′ to produce ẑuu′zuu′ = ẑczc = ˆczcz in �Z , and this string satis�es the
requirements of the Lemma. If �c� = �rv′v�r then we proceed just as above, but using
the rule r′′ = v′#v$v′#v, which is also provided by the reexivity assumption.

Let W = �∗
cm(3 �L3 ∪ �Z). In order to show �∗

m(3L3 ∪ Z)⊂W we only need to
show that �m(W )⊂W , since W ⊃3L3 ∪ Z is obvious. Also �cm(W )⊂W is trivial,
so we need to show that W is closed under pasting operations.
Suppose that a pasting operation uses the pasting string �v� ∈ R. We need the

following bookkeeping exercise:
There is a rule r = u#u′$v′#v in R so that � and � are in {�r; �r}. Determine

r′ = s#s′$t′#t as follows:
1. If �v� = �ruu′�r then r′ = u#u′$u#u′.
2. If �v� = �rv′v�r then r′ = v′#v$v′#v.
3. If �v� = �ruv�r then r′ = u#u′$v′#v.
4. If �v� = �rv′u′�r then r′ = v′#v$u#u′.
In each case either r′ = r or r′ is guaranteed by symmetry or reexivity, so r′ is in
R. Moreover, the reader may check that v = st and that �ss′� and �t′t� are exactly the
cutting sites in C bounded by either � or �.
Suppose �rst that the pasting string �st� is used to self-paste a string �z� in W to

produce ẑst. Since �z� is in W it is the result of cutting a string in 3 �L3 ∪ �Z . Hence,
according to Lemma 3.1 or Lemma 8.2, there is a string 3xt′tzss′y3 or ˆxt′tzss′ in
3 �L3 ∪ �Z . In either case this string can be self-spliced using r′ to demonstrate that
ẑst is in �Z ⊂3 �L3 ∪ �Z .
For the remaining case suppose that �z� and �z′�′ in W are pasted using �st� to

produce �zstz′�′. Again by Lemma 3.1 or Lemma 8.2 we can �nd in 3 �L3 ∪ �Z two
strings; the �rst is either 3xczss′y3 or ˆczss′y and the second is either 3x′t′tz′c′y′3
or t̂′tz′c′y′. We have either � = 3 and xc = 1 or �c� ∈ C, and similarly either �′ = 3
and c′y′ = 1 or �′c′�′ ∈ C. In either case we can recover �zstz′�′ by �rst splicing
these strings using r′, and then cutting at c (if � 6= 3) and at c′ (if �′ 6= 3). For
example, splicing ˆczss′y and t̂′tz′c′y′ using r′ yields ˆczstz′c′y′t′s′y, and the fragments
remaining after cutting at c and c′ are �zstz′�′ and �′y′t′s′y�. There are three other
possibilities: Two involve mixed splicing, and the last involves linear splicing. The
details are essentially the same.
This completes the proof that �∗

m(3L3 ∪Z)⊂W = �∗
cm(3 �L3 ∪ �Z). As in the proof

of Proposition 3.3 this implies the inclusion �∗(3L3∪Z)∩(3A∗3∪A )̂⊂3(�∗
m(M)∩

A∗)3 ∪ (�∗
m(M)∩A )̂ since results of cutting operations are never in 3A∗3 ∪A .̂ This,

with the reverse inclusion proved earlier, �nishes the proof of the Proposition.

Proposition 8.1 reduces the analysis of mixed H systems to the analysis of mixed
CPH systems. Our next result shows that the evolution of a mixed CPH system can
be explained as follows: First cut all possible initial circular strings; then allow the



164 D. Pixton / Theoretical Computer Science 234 (2000) 135–166

resulting mixed language to evolve purely as a linear CPH system (ignoring the circular
strings); �nally self-paste all possible linear strings to form circular strings.

Proposition 8.3. Suppose that � = (A; E; C; P) is a CPH scheme and let �c =
(A; E; C; ∅) and �p = (A; E; ∅; P). If M ⊂EA∗E ∪ Aˆ then

�∗
m(M) = �pm(�∗(�cm(M))):

Proof. Clearly �∗
m(M)⊃ S ′ = �pm(�∗(�cm(M))). To prove the opposite inequality we

only need �m(S ′)⊂ S ′. Now �∗(�cm(M)) is closed under linear operations, so the only
di�erence between S ′ and �∗(�cm(M)) is the result of self-paste operations. Since linear
cut and paste operations do not see this di�erence they cannot produce strings outside
of S ′. Similarly, self-pasting elements of S ′ cannot produce anything not already in
S ′. So we only have to consider the result of cutting one of the circular strings that
resulted from self-pasting.
Suppose �z� ∈ �∗(�cm(M)) is self-pasted using �v� ∈ P to produce ẑv in S ′. Suppose

ẑv = ẑ′v′ and �′v′�′ is in C, so �′z′�′ is in �m(S ′). To see that �′z′�′ is actually in S ′

we proceed as follows. First, paste together three copies of �z� using �v� to produce
�zvzvzvz� in �∗(�cm(M)). Now ẑv = ẑ′v′ means that zv = xy and z′v′ = yx for some
strings x and y. Hence �zvzvzvz� = �xyxyxyz� = �xz′v′z′v′yz�. This string can now be
cut twice, using �′v′�′ ∈ C, to produce �′z′�′ in �∗(�cm(M))⊂ S ′, as desired.

The following is an immediate consequence of this and Proposition 8.1. It states that
if the initial language is purely linear then the linear part of the splicing language can
be derived entirely by linear splicing (or cut and paste) operations.

Corollary 8.4. 1. If M ⊂EA∗E and � is any CPH scheme then �∗
m(M) ∩ (EA∗E) =

�∗(M).
2. If M ⊂A∗ and � is a �nite symmetric and reexive H scheme then �∗

m(M)∩A∗ =
�∗(M).

Before our last result we need to explain the application of AFL terminology to
circular and mixed languages.
If L⊂A∗ then we de�ne the circularization of L as Cir(L) = {ˆw : w ∈ L}. Con-

versely, if C ⊂Aˆ we call any language L⊂A∗ for which Cir(L) = C a linearization
of C, and we de�ne the full linearization of C as Lin(C) = {w : ˆw ∈ C}. If F is a
family of languages we say a circular language C is in F i� some linearization of C
is in F, and we say a mixed language M is in F i� both M ∩ A∗ and M ∩ Aˆ are in
F. If L⊂A∗ then the set of all cyclic permutations of words in L is denoted Cycle(L)
and is called the cyclic closure of L; it is immediate that Cycle(L)=Lin(Cir(L)). We
say that a family of languages F is closed under cyclic closure i� Cycle(L) is in F

whenever L is in F. It is shown in [9] that the regular family and the context-free
family are closed under cyclic closure.
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Lemma 8.5. If F is closed under cyclic closure then a circular language C is in F

i� Lin(C) is in F.

The proof is immediate, since if L is a linearization of C which is in F then Lin(C)
= Cycle(L) is in F.
From this lemma the basic closure properties for AFL’s of circular languages

follow:

Corollary 8.6. If F is a full AFL which is closed under cyclic closure then the cir-
cular languages in F are closed under �nite union, intersection with regular circular
languages, and forward and inverse homomorphic images.

Now �nally we have the precise form of the Circular Closure Theorem of Section 1.

Theorem 8.7 (Circular Closure Theorem). Suppose F is a full AFL which is closed
under cyclic closure.
1. If � is a regular CPH scheme and M ⊂(EA∗E)∪ Aˆ is in F then �∗

m(M) is in F.
2. If � is a �nite symmetric and reexive H scheme and M ⊂A∗ ∪ Aˆ is in F then

�∗
m(M) is in F.

Proof. The H version reduces to the CPH version via Proposition 8.1.
For the CPH version we use Proposition 8.3. We �rst need to consider �cm(M). Let

L = M ∩ (EA∗E) and Z = M ∩ A ,̂ so �cm(M) = �c(L) ∪ �cm(Z). Clearly (from the
matrix formulation) �c(L) is in F, so we need to consider �cm(Z). For each pair �; � of
end markers we form C�� = �−1C�−1. Then C�� is just the set of cutting sites bounded
by � and �, but without the end markers. We let Z�� = Z ∩ Cir (A∗C��), the set of
strings in Z which contain a site bounded by � and �. Since C�� is regular, this is in
F. Now we can describe a cutting operation on a string of Z as follows: Linearize
the string, cyclically permute it so it ends in a site, cut o� the site and add appropriate
end markers. In other words, if L̃ is the set of results of circular cutting, then

L̃ = �cm(Z) ∩ EA∗E =
⋃
��

�(Lin (Z��)C
−1
�� )�:

From this it is clear that �cm(Z) = Z ∪ L̃ is in F.
Next, �∗(�cm(M)) = �cm(M) ∪ �∗(L ∪ L̃), which is in F by the Closure Theorem

6.4.
Finally, consider pasting operations on strings in �∗(�cm(M)). Linear pasting will not

produce anything new, so consider self-pasting. Speci�cally, let �L = �∗(�cm(M))∩EA∗E
(so �L is in F) and let �Z be the set of circular strings resulting from self-pasting
operations on strings in �L. De�ne P�� = �−1P�−1. Then we can describe a self-pasting
operation as follows: Find a string in �L which begins with � and ends with �; remove
the end markers; append an element of P��; and circularize. That is,

�Z =
⋃
��

Cir ((�−1 �L�−1)P��):
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From this it is clear that �Z is in F, so �∗
m(M) = �pm(�∗(�cm(M))) = �Z ∪�∗(�cm(M))

is in F.
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