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Interconnection Structure of Injective Counters 
Composed Entirely of JK Flip-Flops 
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Counters  whose transition map  is a permutat ion and whose constituting 
elements are J K  flip-flops only are investigated in order  to trace relationships 
between the interconnection structure and the state graph. 

Some equivalence relations over structure t ransformations are derived that 
reduce the n u m b e r  of relevant configurations. Numerical  computations based 
on these structure properties show that no circular counter exists for n < 9. 

1. INTRODUCTION 

The synthesis of counters plays a central role in applied switching theory. 
This is clearly due to the various practical applications of counters, ranging 
from frequency division to synchronization of information processing devices. 1 

The class of counters under scope has been investigated by Manning (1972, 
1976) and Pless (1976); it consists of synchronous counters constructed only of 
J K  flip-flops. Henceforth "counter" means these counters. This class of counters 
is rather attractive; when a counter of the class realizes a particular state graph, 
it may be driven with the highest clock rate and, under some conditions, has the 
minimum cost and the minimum number of internal connections. Manning's 
thesis essentially uses an experimental approach but also contains theoretical 
proofs of some interesting properties. More recently, Pless (1976) revisited the 
problem from a more mathematical point of view. Her paper presents a matrix 
characterization of injective counters, i.e., of counters the transition map of 
which is a permutation (each state has one and only one successor and 
predecessor). 

Pless (1976) suggests as an open question the periods of injective nonlinear 
counters. Manning (1972) conjectures that there is no (necessarily injective) 
counter with n J K  flip-flops and period 2 ~, n >. 3. This conjecture is based on 
experiments showing that there is no such counter for n = 4, 5. 

The present paper tries to trace the relationships that exist between the 
interconnection structure of the counter and the properties of its state graph. 

1 For  usual terminology, the reader is referred to any textbook on switching theory. 
See, e.g., Dietmeyer (1971). 
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The injective character of the state graph is precisely one of the properties that 
may be traced back up to: the interconnection structure. 

After presenting the required definitions in Section 2, we first turn to the 
study of counter equivalence. The Classical equivalence under the group of 
complementations and of permutations of the state variables is interpreted in 
terms of structure transformations. I t  is furthermore shown that other important 
structure transformations yield isomorphic state graphs. This kind of property 
is clearly of importance to cut down the overwhelming number of interconnection 
structures to be considered. 

Section 4 presents a first approach to the interconnection structure of injective 
counters. That  approach i s  based on the concepts of an independent part (a 
subcounter that does not receive any information on the state of the remaining 
part of the counter) and of a totally independent part (an independent part that 
does not provide the remaining part of the counter with any information upon 
its own state). I t  is shown that, in an injective counter, any totally independent 
part is injective and furthermore that it can only be made up of an injective 
independent part together with a very simple environment. It  is shown further- 
more that, if the transition map of the counter is a circular permutation, no 
proper independent part is allowed. 

Section 5 is devoted to a restricted family of counters, namely that of linear 
counters. We establish necessary and sufficient conditions for these counters 
to be injective, and also exhibit an isomorphism between these injective counters 
and the well-known linear autonomous shift-registers. The existence of such an 
isomorphism allows one to give a complete description of the state graph. 

In Section 6, we study in more detail the independent parts in nonlinear 
injective counters and first obtain the rather unexpected result that the maximum 
fan-out in such counters is two. From this result on, it is shown that, apart 
from three pathological cases, the independent parts in nonlinear injective 
counters all share a common interconnection structure called generalized loop 
structure. 

Finally, Section 7 applies the obtained knowledge to the research of counters 
the transition map of which is a circular permutation and shows by 
numerical computations that no such counter exists for 4 ~ n ~< 9. Moreover 
we conjecture that generalized loop-counters have an even number of cycles 
for n ~ 4. 

2. DEFINITIONS AND CLASSIFICATION 

A J K  flip-flop is usually described as a device having two (Ji and Ki) binary 
inputs, a clock-input C i for synchronization and two binary outputs denoted 
Yi andlfl • At a clock transition the new state, i.e., the new output Yi ,  is computed 
according to Dietmeyer (1971), Phister (1958), and Rudeanu (1974) as 

Y~ = J~y~ v K~y~. (1) 



306 DAVIO AND BIOUL 

More formally a J K  flip-flop may be viewed as an abstract automaton that 
we describe, with Ginzburg (1968) notations, as the algebraic system 

A ~ (S,  Z, 0, M, N},  

where 

X = {(J, K ) [ J ,  K ~ { O ,  1}} 

is the input alphabet and where 

S = O  = { 0 ,  1} 

are the state set and the output alphabet, respectively. An arbitrary state q ~ S is 
encoded by means of the single internal state variable y (appearing in (1)) and 
is identified with the flip-flop output. The  transition map M of the J K  flip-flop 
is described by (1) or by Table I. 

TABLE I 

M(j,K) 

M(d,K) 
(J, K) 

(0, O) (0, 1) (1, O) (1, 1) 

0 0 0 1 1 

1 1 0 1 0 

Similarly, a synchronous counter may also be defined as an abstract automaton 
whose input alphabet contains a single literal. The  transition map of a counter 
thus reduces to a single transformation of the state set and its graph is made up 
of a certain number  of nonconnected components classically called generalized 
cycles (D6nes, 1968). 

In  particular, a counter is an injective counter or a permutation counter iff its 
transition mapping is a permutation, i.e., iff its state graph contains only cycles. 
I t  is a circular counter iff its transition mapping  is a circular permutation, i.e., 
iff its state graph consists of a single cycle of length 2% 

In the present paper, the term counter is used to represent a synchronous 
interconnection of n J K  flip-flops (FF) conventionally denoted FF o , F F  1 ..... 

FF~_ 1 . This definition precludes the presence of additional gates in the counter. 
The  J and K inputs to FF~ are denoted Ji  and K~, respectively. The  state 
(output) o f F F  i is denoted y l .  The  input -output  behavior of the counter is thus 
completely described by a mapping 

(')~ (i, j e {0, 1,..., n 1}), (2) {JiK~}--~{0, 1,y~- ~ 
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where the Boolean exponentiation a (~) is used with its usual meaning: 

a (+) = a @ ~ (e ~ {0, 1}). (3) 

The  mapping (2) is usually called the connection list of the counter (Manning, 
1972; Pless, 1976). 

One remarks immediately that the constants 0 and 1 are redundant in the 
connection list (2). Indeed, the ] K  flip-flop input equation (1) shows that the 
values Ji = 0, 1 (resp. Ki = 0, 1) can be replaced, without modifying the 
flip-flop behavior, by Ji = y i ,  3~i (resp. Ki - :  y~, y+). From now on, we shall 
thus replace the mapping (2) by its restriction: 

{J~,K,}  -~ ~yjC (+,)~ ( i , j  e {0, 1,...,n --  1}). (4) 

Pless (1976) furthermore forbids all the situations in which a flip-flop reacts 
upon itself, e.g., Ji = y~e+), but it will turn out in Section 6 that this further 
restriction is not essential for injective counters. We thus consider, according 
to (4), that there are exactly (2n) 2n counters involving n flip-flops and immediately 
note that the family of counters under study represents a very small part of the 
(2~) 2~ possible transition mappings on a set of 2 ~ states. 

Under the constraints (4), the input equation (1) becomes 

Yi = y}~la2 i v Y~)Yi.  (5) 

Equation (5) suggests a classification of the flip-flops in a counter according to 
the values of their control inputs ]i and Ki 

(a) if k = l, FF i has a unique predecessor. In  this case, the flip-flop is 
called a linear flip-flop, since the next value Yi may be expressed as a linear 
combination of the present values Yi and Yk • Furthermore, 

(i) if e = h, the flip-flop acts as a synchronized delay element. It  is 
called a 

Dflip-flop if e =  1, 

D flip-flop if e = 0. 

(ii) e = h, the flip-flop acts as a synchronized toggle switch. It  is called a 

Tflip-flop if e = 1, 

T fllip-flop if e = 0. 

(b) if k =/= l, the flip-flop will be called an F flip-flop. In  what follows, 
we shall frequently use an important property of the ]1<2 flip-flop: if  the present 
state Yi of a J K  flip-flop is equal to zero (resp. to one), then, its next state Yi only 
depends on Ji (resp. on Ki). That  property is an immediate consequence of Eq. (1). 
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For this reason the inputs Ji and K i  will sometimes be denoted Fio and F i l  , 

respectively. With that notation, Fi, represents the actually efficient control 
input when Yi = e. I f  furthermore a complete knowledge over the polarities 

F ~e)~'(h) flip-flop. of Ji and K i  is required, we shall also denote the F flip-flop as io ~ i l  

The counters may be classified according to the nature of the flip-flops they 
contain. In particular, a counter entirely made up of linear flip-flops is called 
a linear counter (see Section 5). It  will be called nonlinear Counter when it contains 
at least one F flip-flop. 

3. EQUIVALENCE 

I t  has been recalled in Section 2 that the number of counters made up of n 
flip-flops is (2n) 2~. The investigation of the properties of counters by exhaustive 
enumeration techniques is thus practically impossible for n > 5. It  is thus 
convenient to define an equivalence relation on the set of counters: two counters 
are equivalent iff they have isomorphic state graphs. 

Manning (1972) and Pless (1976) have already noted that counters are equiv- 
alent under the group of permutations and complementations of the state 
variables. The purpose of this section is to study the circuit transformations 
which correspond to this kind of equivalence and to exhibit other circuit trans- 
formations which also yield isomorphic state graphs. 

The algebraic concept underlying the above defined equivalence is clearly 
that of isomorphism of automata. We first briefly recall the formal definitions 
of homomorphism and of isomorphism. The notations used are those of Ginzburg 
(1968). 

Given the automata 

A = ( S  A, Z, O, M A, N A) a n d  B = (S  B, 2, 0, M B, NB), 

the mapping ~ of S A into S B is a homomorphism of A into B iff, for every a 6 Z': 

(i) M.a~ : ~M. e, 
(6) 

(5) 2 N A = ~N  B. 

I f  the homomorphism ~ is a bijection, it is an isomorphism: 
Clearly, if a set of flip-flops in a counter is replaced by an isomorphic auto- 

maton, the resulting counter is isomorphic to the given one. A first elementary 
application of the concept of isomorphism is given by Theorem 1 : this theorem 
in fact accounts for the isomorphism produced by complementing one of the 
state variables. 

This is the simplified definition of homomorphism in the" case of complete deter- 
ministic Moore automata, which corresponds to the problem ~lnder study. 
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THEOREM 1. The input-output behavior of a J K  flip-flop is left invariant by 
a simultaneous crossing of the input and output wires. 

Pro@ T h e  input equations (1) for both situations displayed in Figl 1 are 

C = Y = ay v 6y; D = g = 65 v az. (7) 

FIG. 1. 

d 

Crossing the input and output wires of a JK flip-flop. 

Clearly, the mapping  

is such that 

~: y ~ z = y (8) 

Z = Y and C ~- D. Q.E.D. 

The  practical application of Theorem 1 is straightforward: crossing the 
input wires of a J K  flip-flop amounts to complementing all the literals D (e), T I~), 
F(0 kl, FI  ~) corresponding to flip-flop inputs controlled by the modified ]I<2 flip-flop. 
The  only modification of the code produced is the complementation of the state 
variable of this flip-flop. 

There  is no restriction on Theorem 1 and it applies in particular when the 
J K  flip-flop is connected as a linear flip-flop: 

(a) if the flip-flop is a T ~) flip-flop, crossing the input wires does not 
change the system: hence, it is allowed to complement  simultaneously all the 
literals D (~), TIh), F~el, corresponding to flip-flop inputs controlled by a T (~ 
flip-flop. 

(b) if the flip-flop is a D (~) flip-flop, crossing the input wires amounts to 
replacing the D c~) flip-flop by a D (e~ flip-flop. 

We now consider the cascade connections AL ~- D @ A and AR = A @ D 
of a D flip-flop with an arbitrary automaton: 

A = ( S  A, Z, O, M A, NA);  Z = 0 = {0, 1}. 

The  states of A L and A R are denoted by (e, q) and (q', e'), respectively. In  these 
pairs e and e' denote states of the D flip-flop, while q and q' denote states of the 
automaton A (Fig. 2). The  transition and output functions of A L and A R are 
denoted by M L, N L, M R, and N R, respectively. 
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7-2 
q 

FIe;. 2. Cascade connections Ar = D @ A and AR = A @ D. 

LEMMA 1. The mapping 

~: (e, q)~-~ (q', e') = (qM~ A, qN A) 

is a homomorphism of A L into A R . 

Pro@ Clearly , 

(e, q)Mo L ~- (a, qM~ A) and 

Similarly, 

(e, q)~ ~- (qM, A, qN A) 

(e, q)M~L~ • (qM~AM, A, qM, ANA). 

(9) 

TUEOREM 2. The cascade connections D @ T ~h~ and T Ih~ @ D of a D and 
of a TI~ ) flip-flop are isomorphic. 

Pro@ Remember  indeed that the input equation of a T I~) flip-flop is 

Q = - q ~ ) T ® ~ .  

In  that case, the mapping ~ clearly becomes 

~: (e, q) ~ (q @ e @ ]~, q) (10) 

and is thus one to one. Q.E.D. 

A succession of linear flip-flops is called hereafter a linear cascade. A linear 
cascade which only interacts with the external world by the input to the first 
flip-flop and the output of the last flip-flop is called a linear string. In  a linear 
string (Fig. 3), the fan-out of each flip-flop, but  the last one, is equal to 1. 
A linear string is completely characterized by a sequence of literals such as 

D(el)D(e~) ... D(e~)T(hl)T(h~) ... T(h)D(tl) ...; 

that sequence is called the characteristic sequence of the string. 

and (e, q) ~Mo R = (qM~AM~ A, qM~ANA). 

Furthermore,  the output signals are in both cases qM~AN A. Q.E.D. 

In general, the mapping ~ described in L e m m a  1 is not an isomorphism. 
However, it has that property in some practically important  cases to be described 
in the remaining part  of this section. 
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Fro. 3. A linear string. 

The  application of Theorems 1 and 2 immediately shows that there are only 
four types of nonequivalent characteristic sequences, namely: 

(i) the D (~) sequence: D(~)D D "" D, 

(ii) the T ~ sequence: D D "." D T(~)T T ' "  T (e ~ {0, 1}). (11) 

Note that in the T I~ sequence, the substring of D flip-flops may casually be 
empty. In  this case we speak of a pure T I~) sequence. 

We now turn to a second application of Lemma  1 illustrated by Fig. 4. In  
this case, automaton A consists of an F flip-flop the inputs of which are controlled 
by pure T (~) sequences. 

e ql q2 qm q 

Fro. 4. T w o  isomorphic automata. 

hL 

A R 

THEOREM 3. 

Proof. 
equations 

The automata A L and A R displayed in Fig. 4 are isomorphic. 

The  homomorphism ~, introduced by Lemma  1, is described by the 

ql' = ql @ e @/~, (12) 

q/  = q~ @ qi-1 (i = 2, 3,..., m), (13) 

r 1' = r 1 @ e @ ]~, (14) 

r / =  r~ ® rj_l ( j  = 2, 3,..., n), (15) 

q' = qq,,, @ qf~, (16) 

e' = q. (17) 
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The mapping ~ will be an isomorphism iff the above system of equations may 
be solved uniquely for qx .... , q~ , q ,..., r n , q, e. The discussion considers two 
cases: 

(a) e' = O. 
and is given by 

In  this case, the solution of the system (12)-(17) is unique 

q = 0,  ( i s )  

q~ = q', (19) 

q~-i = q~-' @ q', (20) 

e = q /  @ q '  @f~,  (21) 

r~-= r~' @ q~' @ q ' @ h @ h .  (22) 

(b) e' = 1. This case is handled in exactly the same way as the former 
one. 

I f  p is some state appearing in the left-hand members of (18)-(22) and if P0 
and Pl represent the solutions corresponding to the situations e' ~ 0 and e' = 1, 

one finally obtains 

p = po U @ pie ' .  (23) 

Q.E.D. 

4. INTERCONNECTION STRUCTURE OF INJECTIVE COUNTERS 

The  arguments developed up to now are of a quite general nature since they 
apply to any counter. From the present section on, we turn to more specialized 
arguments which progressively reduce our scope to circular counters. 

An independent k -par t  of a counter is a set of k flip-flops in the counter each 
of which is controlled only by some other(s) flip-flop(s) of the set. Thus, an 
independent part of a counter receives no information about the state of the 
complementary part of the counter, while it may control some flip-flops in 
that complementary part. When the complementary part is also an independent 
part, both parts are total ly  independent or disconnected. 

We start by studying the nature of independent parts in injective counters. 

LEMMA 2. _d totally independent p a r t  o f  an injective counter is an injective 

counter. 
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Proof. Denote by ql and q2 the states of the two totally independent parts, 
say P1 and P2.  Assume that P1 is not injective. In  that case, P1 has two states, 
say ell a and qlb, which have the same successor. In  that case, both states (ql~, q2) 
and (q~b, qz) of the given counter would also have the same successor and the 
counter would not be injective. Q.E.D. 

From now on, we may thus confine ourselves in the study of injective counters 
having no proper totally independent part. The  second question that arises is 
naturally that of the presence of (not totally) independent parts. The  answer 
to that question will be provided by Theorem 4. The  complementary part  of a 
(not totally) independent part  is called the dependent part. 

LEMMA 3. A n  injective counter made up of n fip-flops contains an independent 
(n --  1)-part iff the two following conditions simultaneously hold true: 

(i) The dependent part is a T (h) flip-fop. 

(ii) The independent part is an injective counter. 

Proof. (a) Assume first that the counter is injective and contains an 
independent (n - -  1)-part. Denote the state of the counter by (q, e , f )  where f 
is the state of the dependent part, e is the state (or the pair of states) that control 
the dependent part  and q is the state of the remaining part  of the counter. I f  
the dependent part  is not a T (l~l flip-flop, there is always some state of e for which 
the J and K inputs of the dependent flip-flop receive complementary values. 
In  that case, both states (q, e, x) (x ~ {0, 1}) have the same successor and the 
counter is not injective. Thus  condition (i) holds true. Assume now that the 
independent part  is not injective. In  that case, it contains two states (ql,  el) 
and (q2, e2) which have the same successor (q, e). Then,  the two states of the 
counter are (ql,  e l ,  f l)  and (q2, e2, f2), where 

A @ el = f2 ® e~ 

would also have the some successor (q, e, e 1 @fl) ,  since, thanks to (i), the 
dependent part  is a T (h) flip-flop. The  counter would not be injective. Thus  
condition (ii)holds true. 

(b) Assume now that both conditions (i) and (ii) hold true. Consider 
a specific cycle of  the state graph of the independent part: assume that this 
cycle has length l and that, during the cycle, the control bit e of the T (~) flip-flop 
assumes the value h w times. In  the state graph of the counter, we may thus 
associate two cycles of length l if w is even and one cycle of length 21 if w is odd. 
The  counter is thus injective. Q.E.D. 

LE~,~MA 4. I f  an independent part of a counter controls a single of the two 
inputs of an F flip-flop, the counter is not injective (n >~ 3). 
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Proof. In an injective counter, an F flip-flop never controls a single of its 
inputs (see Section 6). The  only situation to consider is thus described by 
Fig. 5. 

q2 

q l  
qa 

q4 
q~ 

The state of the counter is denoted (q l ,  q2, qa, q4, qs), where 

is the state of the flip-flop of the independent part that controls 
a single input of the F flip-flop (say the J input). 
is the state of the rest of the independent part ((k - -  1)-tuple). 
is the state of the flip-flop that controls the K input of the F flip-flop. 
is the state of the F flip-flop. 
is the state of the remaining part of the counter ((n - -  k - -  2)-tuple). 

Independent 
Dependent 

FIG. 5. I l lus t ra t ion of  L e m m a  4. 

Now, for fixed q l ,  the 3 - 2 n-e-~ states 

(q l ,  0, 0, 0, qs), (q l ,  0, 1, 0, qs), (q l ,  0, 1, 1, qs) (24) 

all have their successors among the 2 • 2 ~-~-2 states 

(ql', e,-, 0,-), 

since q l '  and e are uniquely determined by the independent k-part. Clearly, 
some of the states mentioned in (24) have common successors. The  counter can 
thus not be injective. Q.E.D. 

THEOREM 4. Any independent k-part of an injective counter is an injective 
counter. Furthermore, the dependent part is entirely made up of T c~) flip-flops. 

Proof. The proof is by induction on the number p of flip-flops in the depen- 
dent part. Lemma 3 provides us with the initial step of the induction, p = 1 
and we thus assume as induction hypothesis that the property holds true for 
p = n - -  k - -  1. Consider now a not totally independent k-part. I t  controls 
at least one input to some flip-flop in the dependent part but Lemma 4 then 
shows that the independent part has to control both inputs to that flip-flop. 
We may thus form an independent (k + 1)-part by adjoining the latter flip-flop 
to the given independent k-part. The  induction hypothesis applies h e r e  to 
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show that the obtained independent (k + 1)-part is injective and Lemma 3 
finally shows that the given independent k-part is injective while the adjoined 
flip-flop is a T (h) flip-flop. Q.E.D. 

Lemma 2 and Theorem 4 indicate the method by which all injective counters 
are built from smaller injective counters having no proper independent part. 
These "core" injective counters will be called simple counters. The importance 
of simple counters will be emphasized in Theorem 5, where we show that any 
circular counter is simple. First we present the counterparts of Lemmas 2 and 3 
for circular counters. This is done in Lemmas 5 and 6, respectively. 

LEMMA 5. An independent part of a circular counter is a circular counter. 

Proof. Denote by ql the state of the independent part and by q2 the state of 
its complement. Assume that the independent part is not circular. Thus  it has 
a state qi~ from which it is impossible to reach some other state, say qlb • In  that 
case, it is impossible to pass from the state (qla, q2) of the counter to any other 
state of the form (qlb, q~')- Q.E.D. 

Remark. An immediate consequence of Lemma 5 is that a circular counter 
cannot be made up of totally independent parts. I f  k and (n - -  k) denote the 
number of flip-flops in two totally independent parts, the counter would have a 
cycle of length L C M  (2 k, 2 ~-~) = max(2 ~, 2~-~). 

LEMMA 6. _A/ circular counter made up of n flip-flops (n ~ 2) does not contain 
any independent (n - -  1)-part. 

Proof. Assume that there exists an independent ( n -  1)-part. We know 
by Lemma 3 that the dependent flip-flop is a T (h) flip-flop and by Lemma 5 
that the independent part is circular, i.e., that its state graph has a single cycle 
of length 2 n-1. During the cycle, the T (h) flip-flop receives exactly 2 ~-2 ones; 
i.e., except for n = 2, it changes its state an even number of times and thus 
returns to its initial state when the cycle is completed. This completes the proof 
of the lemma. Q.E.D. 

Remark. There is only one circular counter with one flip-flop. I t  consists 
of a D flip-flop looped on itself. When such a flip-flop feeds a T flip-flop, one 
obtains a binary code counter (Fig. 6). This remark covers the case n = 2. 

Fro. 6. Pathological case n -- 2 (binary code). 
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THEOREM 5. A circular counter (n > 2) is simple.  

Proof. The  proof  rests upon the following observationl I f  a circular counter 
contains an independent part, it also contains an independent part  that controls 
a single of the two inputs of an F flip-fl0p. Indeed, i t  is possible to enlarge 
progressively the given independent part  while preserving its independent 
character by augmenting it with all the flip-flops it controls entirely. T o  avoid 
the situation forbidden by L e m m a  6, this progressive building up has to be 
stopped somehow; the only way to achieve this resul t  is precisely to control 
a single of t h e  two inputs to an F flip-flop. However, the latter situation is 
prevented by L e m m a  4. Q.E.D. 

Thanks to Theorem 4 and 5, we are now allowed to restrict our scope to 
simple counters. 

5. SIMPLE LINEAR COUNTERS 

By definition, linear counters are made up of linear flip-flops only; each of 
their component  flip-flops has a unique predecessor. Simple linear counters 
are thus loop-counters, i.e., linear strings the output of which is recirculated 
to the input. An elementary application of the isomorphism theorems shows 
that, in the case of loop-counters, we only have t o c o n s i d e r  three types of 
characteristic sequences: the T and T sequences are indeed equivalent. 

THEOREM 6. A n y  loop-counter is injective except when  its characteristic 
sequence is a pure T sequence. In the latter case, two complementary states always 
have the same successor. 

Proof• We consider (Fig. 7) the case of an arbitrary T sequence containing 
k T flip-flops and (n - -  k) D flip'flops• T o  achieve the proof, we only have to 
show that no two distinct states have the same successor. We thus consider 
the states 

Y = (Y0, Yl .... , Yn-0 and z ---- (Zo, zl ,..., z,_l). 

FF o FFk_ 1 FF k" FFn_ t 

FIG. 7. L oop -coun t e r  wi th  a character is t ic  T sequence.  

The  equality of their successor states Y and Z lmpl~cs 

Yo @ Yn-1 ---- Zo @ zn_l ,  

Yt-1 @ Y~ = z¢_~ @ z~ (i = 1, 2,..., k - -  1), 

y~_~ = z;_~ ( j  = k, k + 1 .....  n -  1). 

(25) 

(26) 

(27) 
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This  system of equations has the unique solution Yi = zi (i = 0, 1,..., (n - -  1)) 
if k < n; i.e., if there is at least one equation of type (27). I f  k = n (pure T 
sequence), the above system also has the solution y~ = z--~. (i = 0, 1,..., (n - -  1)). 
Finally, if the characteristic sequence is a D le) sequence, all the equations are 
of form (27) and the property is trivial. Q.E.D. 

THEOREM 7. Except for  n = 2, no loop counter is circular. 

Proof. Indeed, in all the counters the characteristic sequence of which is a 
D or a T sequence, the all-zero state is its own successor state. When the 
characteristic sequence is a / )  sequence (switch-tailed register (Manning, 1972)), 
all the cycle lengths divide 2n. For n = 2, one obtains a well-known Gray-code 
circular counter (Fig. 8). Q.E.D. 

.E]--D I 
YO Y4 

FIO. 8. Gray-code loop-counter (n ~ 2). 

In  what follows, we investigate the cycle structure of the transkion graph of 
injective linear counters. More precisely, we establish an isomorphism between 
the loop-counter displayed in Fig. 7 and the classical linear autonomous shift- 
register (Elspas, 1959) (Fig. 9). We shall then be in position to apply to our 
loop-counters the results available about linear autonomous shift registers. 

FIG. 9. AutonOmous linear shift-register. 

The  next state equations related to the counter of Figs. 7 and 9 may be 
written, respectively, under the matrix form 

[Y] = [B][y], (28) 

[Z] = [C][z], (29) 
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where the matrix product is computed over GF (2). Matrices [B] and [C] are 
easily derived from Figs. 7 and 9, respectively, while [Y], [y] (resp. [Z], [z]) 
are the corresponding state vectors. In the present context, an isomorphism 
between the two linear systems is defined by a regular matrix [M] such that one 
has simultaneously 

[z] = [M][y] ,  (30) 

[z] = [M][Y]. (31) 

It is known (Elspas, 1959) that the above relations are equivalent to similarity 
of matrices [B] and [C] under the transformation by [M], 

[C] = [M][B][M] -1, (32) 

which implies in turn the equality of characteristic polynomials q~(B) and 4(C). 
Since one has 

and 

4 (3 )  = (1 ® a)~A"-k ® 1 (33) 

n--1 

~(C) = h" @ ~ a y  @ I, (34) 

the coefficients aj are uniquely determined as 

/ b \ 

aj = { "" } ( j =  1,2 ..... n - - 1 ) ,  (35) 
n j~/  x 

where binomial coefficients are computed modulo 2 and where 

( ; )  = 0 whenever b < 0 or b > a. (36) 

Thus, aj = O i f j < n - - k .  
We now define the [M] matrix as 

[M] = 
01 

011/' 
(37) 

where ! is a unit matrix of order (n -- k) and where ]1~ is a square matrix of 
order k, the rows and columns of which are numbered from 0 to (k -- 1) and 
the (i, j )  entry of which is defined by 

k - - i - -  1) 
r~t~ = j -  i 8" (38) 
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Since mij = 0 i f j  < i, the matrix [M] defined by (37) and (38) is upper triangular 
and clearly regular. 

THEOREM 8. The loop-counter of Fig. 7 and the autonomous linear shift- 
register are isomorphic under the transformation [M]. 

The  proof of Theorem 8 is purely computational and has not been presented 
here, since it is rather tedious. The  importance of Theorem 8 is due to the 
fact that it allows one to derive the complete cycle structure of the state graph 
of a loop-counter from its characteristic polynomial ¢(B). In  particular, 

(i) if the characteristic polynomial ¢(B) is primitive, there exist a cycle 
of length 1 and a cycle of length 2 ~ - -  1 ; 

(ii) if the polynomial ¢(B) is irreducible and if k is the smallest integer 
such that 4,(B) divides (A ~ @ 1), there exist a cycle of length 1 and (2 ~ - -  1)/k 
cycles of length k; 

(iii) if the polynomial ¢(B) is not irreducible, the cycles of the state 
graph are in general of unequal length (for more detailed results, see Elspas, 
1959). 

Characteristic polynomials ¢(B) may be checked for primitive and/or 
irreducible character in classical tables such as the one of Peterson (1961). 

The  limitations of the loop-counters clearly appear when one notices that 
no ¢(B) is primitive for n = 8 and n = 12. 

6. SIMPLE INJECTIVE NONLINEAR COUNTERS 

The  present section completes the study of injective counters by showing that, 
apart f rom three pathological cases corresponding to n = 3, all the simple 
injective nonlinear counters share a common interconnection structure. Lemmas  
7 and 8 first exhibit some structures that are forbidden in injective counters. 

LEMMA 7. If, in a counter, a D I~l flip-flop only controls single inputs to F 
flip-flops, the counter is not injective. 

Proof. The  situation under discussion is sketched in Fig. 10. We assume 
that the D ~ flip-flop controls the input F% to the F flip-flop FF~. The  state 
of the counter is denoted by 

where 
(Y0, Yl .... , Y~,  Y), 

Y0 is the state of the D ~ flip-flop, 
Yl "'" Y~ are the states of the F flip-flops, 
y is the state of the remaining part  of the counter. 

643/33['4-4 
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Yl 

FIG. 10. First situation forbidden in an injective counter. 

Note that  the successor state of y only depends  on Yl ,..., Y~ and  y bu t  no t  on Yo • 

Fur the rmore ,  if Yi z es its successor only depends  on Fie i and  thus  no t  Oil Y0 • 
T h u s  the two states 

(x, e l ,  ~2 ..... ~ ,  y); (x e {0, 1}) 

have the same successor and  the counter  is no t  injective. Q .E .D .  

LEMMA 8. If, in a counter, a J K  flip-flop FF o only controls single inputs to F 
flip-flops along linear strings and if, furthermore, it is simultaneously possible to 
choose the states Yi of the F flip-flops so as to make their next states independent of y o 
and to apply complementary values to the control inputs of FFo , the counter is not 
injective. 

FIC. 11. Second s i tua t ion  forb idden  in  an inject ive counter .  

Proof. T h e  s i tuat ion unde r  discussion is displayed in Fig. 11. One  first 
notes that  the strings B 1 , . . . ,B~ are only made  up  of T le~ flip-flops. Otherwise, 
the counter  would  no t  be injective, as shown by L e m m a  7. We  may  fur thermore  
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assume that the s tr ing A only contains T (~) flip-flops. Indeed, if A were to 
contain a D(*) flip-flop, one could choose this flip-flop as FF o and the lemma 
would apply without any restriction since a D (e} flip-flop receives, by definition, 
complementary inputs. The state of the counter is then denoted by 

(Yo,Z, Zl ..... z ~ , y l , y 2  .... ,Y~,Y),  

where the symbols have the same meaning as in Lemma 7 and where furthermore 
z and zi represent the states of the strings A and B i , respectively. Finally if x 
is a vector all the components of which are equal to x, it becomes elementary 
to observe that both states 

(x, x, x,..., x, el ,  a2 ,-.-, ~ ,  y); (x • {0, 1}) 

have the same successor. Q.E.D. 

Remark I. Lemma 8 applies without restriction in many situations. Indeed, 
it is always possible to satisfy the hypotheses when 

(i) FF o is a D (e) flip-flop, 

(ii) p = 1, 

(iii) FF o is an F flip-flop which is not directly controlled by two of the 
F flip-flops Yl "'" Y~ • 

Remark 2. Another consequence of Lemma 8 is that a simple injective 
counter cannot contain only D (e) and F flip-flops. Indeed, the only way to avoid 
the situation forbidden by the lemma is to provide each D (~) flip-flop with at 
least one successor of the D type: in this case however, the set of D (~1 flip-flops 
forms an independent part and the counter is not simple. 

Before turning to  the main theorems of this section, we introduce the concept 
of basic three-pole: a basic three-pole is a set of flip-flops that consists of an F 
flip-flop together with three (possibly empty) linear strings (Fig. 12). 

C?--E)- 

FIG. 12. Basic three-pole. 

THEOREM 9. Each injective simple nonlinear counter (i.s.n.c.) is an inter- 
connection of basic three-poles each of which has a fan-out exactly equal to two. 
Alternatively, each i.s.n.c, consists of a tree of basic three-poles and a permutation 
network 

Pro@ Assume that the  counter contains exactly p F flip-flops. Since the 
counter is nonlinear~ there is at least one flip-flop of that type. Select arbitrarily 
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the J input of one of these flip-flops, say FF 1, find its predecessor, the predecessor 
of the J input of the latter, and so on, until the obtained predecessor is an 
already encountered flip-flop. The same process is then repeated from the 
remaining K inputs on and finally produces a tree made up of F flip-flops and 
of possibly empty linear cascades. A typical situation is described by the heavy 
frame in Fig. 13. Note that the n flip-flops in the counter, and, in particular, 
the p F flip-flops have been reached by the above process since, by hypothesis 
the counter is simple. At this stage, ther e are exactly (p + 1) inputs not yet 
connected. One notes, however, that the outpu t of FF1 has to be connected 
to one of these inputs, since otherwise there would exist an (n --  1)-independent 
part. This is exemplified by the dotted line in Fig. t3. In the present situation, 
there are exactly p unconnected inputs while p F flip-flops control a single 
input to another F flip-flop along a linear cascade. To prevent the situation 
forbidden by Lemma 8 (Remark l(ii)) each of these p cascades should be broken 
down in two strings by some fan-out connection. The circuit may thus only be 
completed by a permutation box rr that connects these p additional outputs to 
the p unconnected inputs I t  is then an elementary matter to redraw the circuit 
of Fig. 13 as an interconnection of basic three-poles each of which has a fan-out 
equal to 2. Q.E.D. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ] 

1 

/ -D -q :M_J  I ', 
i 
LE]_ FF, . 

FIG. 13. Illustration of the proof of Theorem 9. 

The number of trees and of permutation networks to be considered in con- 
structing injective counters is much lower than suggested by Theorem 9. 
Lemma 8 has only been used in a very particular case but, when it is used with 
its full strength, it eliminates a number of structures still covered by Theorem 9. 
Lemma 9 brings a further reduction in the number of allowable connections. 
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LEMMA 9. In an injective simple counter, an F flip-flop never reacts upon 
a single of its inputs along a linear cascade. 

Proof Thanks to Theorem 9, we may represent the situation under study 
as displayed in Fig. 14. We note furthermore, thanks to Lemma 8, that none 
of the strings A, B and C, contains a D (~) flip-flop We discuss two cases. 

B C 
• q o  , a , i t , -  ~ qf 

FIG. 14. Th i rd  situatiOn forbidden in an injective counter. 

(i) The cascade formed by the strings B and A is empty. In  this case, if 
we denote by qo the state variable corresponding to the F flip-flop, one has 
F0~ = q(0 ~) and the flip-fl0p input equation, which may be written in general as 

Q0 -(~)~(~) (~)'~(~) (39) ~/0 "tOe V q0 /*0g , 

becomes 

(~) (~) (40) 

Consider now the 2 ~ states of the counter. It  is clear from (40) that in the 
successors of these states Q0 takes the value 1 exactly 2 ~-z times if k --  1 and 
3 • 2 ~-2 times if k = 0. In  an injective counter, Q0 should take the value 1 
exactly 2 ~-a times. 

(ii) The  cascade formed by the strings B and d is not empty. In  that 
case, we denote by q~ the state of that cascade without its last flip-flop, the 
state of which is q~, and by ql '  and q~ the state of the string C and of the right- 
hand F flip-flop, respectively. Note that if the string _//is empty, the flip-flop q~ 
belongs to the string B: this does not affect the validity of the following proof. 
I t  now becomes clear that the states 

(~, qo, qx,  q~, qx', q,) = (~, x, x, x @ ~ @ ~, x, h) (x @ {0, 1}) 

have identical successors. Indeed the state 

Q0 = x ( ~ " ~  ® xl,l(~c0~ Q ~1~) _ ~l,~ 

is independent of x. Q.E.D. 

Thanks to Theorem 9 and Lemma 9 it is clear that, in an injective simpie 
counter, a basic three-pq!e should fulfill one of the two following conditions. 
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Condition 1. The  three-pole controls the two inputs of a seCond three-pole. 

Condition 2. The  three-pole controls one of the inputs of two three-poles. 
These conditions, illustrated by Fig. 15, will now be briefly discussed. 

Fro. 15. 
counter. 

A t C t A 2 
h A n 

i v I v l 

B ~ (a) Condition I. :, ' B 2 

- ...... - -:~- '-"-- -. .-- o,.-.--.r r2-., 

F', " 

L - ~ C  ~ ... ~ -  

s i 
L . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  J 

(b) Condition 2. 

The two possible conditions for a basic three-pole in an injective simple 

I f  Condition 1 is realized for all three-poles in the simple counter, the latter 
presents itself as a kind of " loop" and it will be called a generalized loop-counter. 
I t  is clear that in a generalized loop-counter the input strings A i ,  B~ do not 
contain any D (~) flip-flop (Lemma 8) and that all the D (~) flip-flops eventually 
present in the output strings C~ may be regrouped in a single output  string 
(Theorem 3). We may thus restrict our investigations to generalized loop- 
counters made up of: 

(a) a string of D (~) flip-flops, 

(b) basic three-poles containing only T (~) flip-flops in the input and 
output strings. 

The  structure of generalized loop-counters is illustrated by Fig. 16. These  
counters are the fundamental  injectiv e simple nonlinear counters (see Theorem 
11). They  are more precisely characterized by the following theorem. 

T (.e) I T (e)~-~j  

FIG. 16. Structure of the generalized loop-counter. 
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THEOREM 10. A generalized loop-counter is injective iff its D (e) string is not 
empty. 

Proof. I f  the D ~) string is empty, two complementary states such that Vi 
Fio = Fil have the same successor. I f  the D (~) string is not empty, it is easily 
shown that two distinct states always yield distinct successors; the reasoning is 
similar to that of Theorem 6, but applies to equations of the types (1'2)-(17): 

Q.E.D. 

COROLLARY. A generalized loop-counter containing p F flip-flops contains at 
least (2p + 1)flip-flops. 

We now turn to the discussion of Condition 2, illustrated by Fig. 15b. I t  is 
first clear that, to escape the situation forbidden by Lemma  8, the two controlled 
flip-flops FF2 and FF3 have to react directly (i.e., without interposed linear 
flip-flops) and with suitable polarities on the inputs F10 and Fll  of FF1. I t  turns 
out that FF2 and FF3 also fall under Condition 2 ,  and this implies the emptiness 
of the strings A, B, and C. Thus,  if in a simple injective counter a single flip-flop 
realizes Condition 2, there are no linear flip-flops and all the F flip-flops in the 
counter satisfy the same condition. The  general structure of these counters, 
called hereafter pathological counters, is illustrated in Fig. 17. The  name patho- 
logical counter is explained by the following theorem. 

i X 1 

FIo. 17. Structure of the pathological counters. 

THEOREM 11. Except for n = 3, no pathological counter is injective. 

Proof. We consider (Fig. 18) two neighbor flip-flops in a pathological 
counter. Clearly, we may assume that the input of FF o controlled by FF1 is the 
K 0 input (reduction to that situation is always possible by complementation 

Y2 ~ y~ 
FIG. 18. Il lustration of Theorem 11. 
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of Yo) and furthermore that K0 = y~ (if K 0 ~ Yl ,  the complementation of ye 
leads back to the former case). The  input equation for F F  o is thus 

Yo = YoY~ v YoYl. 

In  that situation, there are four possibilities with regard to F F  1 , namely, Yo 
{J1,  ]1,  K1, K~I} • In  these four situations, the excitation equations for F F  1 are 

1. Y l  = y l yo  v y l y 3 ,  

2. Y l  = y l y o  v y l y s ,  

3. Y1 = Y l y 3  V y l Y o ,  

4. Y1 = YlY~ v YlYo ; 

note that the polarity of Y2 and Y8 is irrelevant in the present proof. We now 
compute in these four situations the products Y1Yo.  I t  is clear that, if the 
counter is injective, these products should have a weight of 2 n-2 (i.e., assume 
the value 1 on exactly 2 ~-2 vertices of the n-cube). One obtains 

1. YIYo = .YsY~Y~ Y0 v YlY0 ; (5 • 2~-4), 

2. Y1Yo = y~ y~ Yo v Y3Y2Y~ Y0 ; (3 - 2~-4), 

3. Y1Yo = y~y~ Yl Yo v Y~Yl Yo v Y3 Y~Yo ; (5 • 2~-4), 

4. }71 Y0 = YsY2 Yl Y0 v Y3 YlY0 ; (3 - 2~-4), 

respectively. The associated weights are indicated under the hypothesis Y2 :/: 
Ya :fi :Y2 Which, by definition of a pathological counter, corresponds to n > 3. 
Since none of these weights is equal to 2 ~-e, no pathological counter is injective. 

Q.E.D. 

When Y2 = Yz, the solutions Yo = J1 and Yo = K71 are acceptable (with 
respect to the above weight argument), while, if Y2 = 373, one retains Yo = J~ 
and Yo = K~. The  same reasoning may be extended to the pairs of flip-flops 
{FFo, FF2} and {FFI,  FF2}. This process finally yields three nonequivalent 
injective pathological counters. These three counters are displayed in Fig. 19 
together with their state graphs. 

7. APPLICATIONS 

Circular Counters 

The foregoing section shows that any circular counter containing at least 
three flip-flops should belong to the class of generalized loop-counters. Indeed, 
it cannot be linear nor pathological. The  purpose of the present section is to 
present arguments that allow one to distinguish circular counters from non- 
circular injective ones. This wi!l bring down the ., number of candidate circular 
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counters. The  resulting computation will strengthen the conjecture that no 
circular counter exists for n >/4 .  

We thus refer to Fig. 16, which displays the structure of generalized loop- 
counters, and first state two additional properties of circular counters. 

I ~ YO = YoY2 v YoYl 

Y2 = %Yo v "y2y ~ 

( Y2 Y4 YO ) 

Yo = ?oYz" YoY~ 
Y~ = Yt Yo v Yt Y'::' 

vz : 72'7o v YzT~ 

(YzYt YO ) 

Yo = 'JoYz" YoY~ 

YI =y t yo  v YlYz 

Yz : 'Jz Yo v Y2 Y~ 

(y=y, yo ) 

FIG. 19. The three injective pathological counters. 

LEMMA 10. In a circular counter: 

(i) The output strings of the F flip-flops are empty. 

(ii) The input strings controlling the J and K inputs to a given F flip-flop 
are a T (e) and a Tce) sequence. 

Proof. (i) Consider the subcounter displayed in Fig. 20 and note that for 
any qo, there is a state q and an input letter x such that the following are all 
stable: 
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(a) the flip-flops in the output string A, 

(b) the flip-flops in the Fqo input string, 

(c) the F flip-flop. 

Furthermore, if the string A is not empty, the stabilizing value of x only 
depends on the polarity of the first T (~) flip-flop in the A string and is thus 
independent of q0 • It is thus always possible to stabilize a loop in the counter 
of Fig. 16. 

! I 

FIG. 20. A subcounter. 

(ii) The same argument applies since, if both input sequences have the 
same polarity, the input stabilizing value is again independent of q0- Q.E.D. 

The candidate circular counters are thus made up of a D(") sequence and of 
cells belonging to one of the following two types: 

(a) The Y cell where the J input string is a T sequence and where the K 
input string is a T sequence. 

(b) The Y cell where the J input string is a T sequence and where the 
K input string is a T sequence. 

Note that if one input string is empty, the corresponding input should be 
given the appropriate polarity. This is illustrated by Fig. 21, which displays the 
three types of 3"-cells. Finally, consider the cascade of a J'(~) and of a ~j'(h) cell. 

FIG. 21. The three types of f-cells. 
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Apply to the first F flip-flop the isomorphism of Theorem 1: the cascade is 
replaced by a y(el~--(~) cascade. There are thus only two types of candidate 
circular counters: we may characterize these counters by the sequences 

/ ) Y Y Y - ' - J "  (41) 

and 
D J - Y Y  " " Y ,  

where D and D stand for D and D sequences. The counters of the second type, 
however, are again eliminated by a loop stabilization argument so that we may 
normalize the investigated structures to type (41). 

The counters to be investigated are thus completely described by a vector 
having (2p - /  1) integer components, 

[ d ; j l ,  k l ; j 2 ,  k 2 ; ' " ; j ~  , k~], 

where d is the number of flip-flops in the D string and where ji (resp. ki) is the 
number of T flip-flops in the Ji (resp. K~) input string to the flip-flop F~. This 
vector is called the structure vector of the counter. 

The  number of structure vectors to be enumerated is furthermore reduced by 
the observation that the vectors 

[d;j~ , k~; j2 ,  h2; ... ; j ,  , k ,]  

and 
[d; j~ , k , ; j l  , kl; "" ; J , -1 ,  k,-1] 

describe isomorphic counters. 
Analysis results have been obtained by means of a computer program for 

3 ~ n ~ 9. For n = 3, one obtains the circular counter displayed in Fig. 22 
together with its state graph. This counter has been described by Manning (1972). 
No other circular counter has been found up to n = 9. This strongly supports the 
conjecture that no circular counter exists for n ~ 3. However, no proof of this 
fact has been obtained. Table I I  presents the cycle structure for 3 ~ n ~< 7. 

FIC. 22. The [1; 1, 0] circular counter. 
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TABLE II - -  Cycle Structure of Some Generalized Loop-Counters 

n p d Jl kl J2 ks J8 k3 Cycle lengths 

3 1  1 0 1  

4 1  1 0 2  
1 1 1 1  
1 2 0 1  

5 1  1 0 3  
1 1 1 2  
1 2 0 2  
1 2 1 1  
1 3 0 1  
2 1 0 1 0 1  

6 1  1 0 4  
1 1 1 3  
1 1 2 2  
1 2 0 3  
1 2 1 2  
1 3 0 2  
1 3 1 1  
1 4 0 1  
2 1 0 1 0 2  
2 1 0 1 1 1  
2 1 0 1 2 0  
2 2 0 1 0 1  

7 1  1 0 5  
1 1 1 4  
1 1 2 3  

1 2 0 4  
1 2 1 3  
1 2 2 2  
1 3 0 3  
1 3 1 2  
1 4 0 2  
1 4 1 1  
1 5 0 1  
2 1 0 1 0 3  1 
2 1 0 1 1 2 ,  
2 1 0 1 2 1  ! .  
2 1 0 1 3 0  
2 1 0 2 0 2  
2 1 0 2 1 1  
2 1 1 1 1 1  
2 2 0 1 0 2  
2 2 0 1 1 1  
2 , 2 0 1 2 0  
2 3 0 1 0 1  
3 1 0 1 0 1 0 1  
3 

8 

6 10 
8 8 
7 9 

14 18 
6 6 8 12 
5 27 
8 24 
3 29 
6 26 

30 34 
10 54 
4 4 8 16 16 16 
5 59 

24 40 
3 16 17 28 
4 60 

11 53 
12 52 
6 6 22 30 

31 33 
3 6 22 33 

8 8 10 102 
6 6 12 104 

20 24 24 60 

36 92 
16 24 26 62 
16 16 48 48 
8 9 15 16 40 40 

36 92 
38 90 

4 12 28 84 
13 115 
8 120 
6 8 14 18 26 56 

48 8 0  
61 167 
14 ~19 34 61 ! 
12 '22 28 66 
4 4 60 60 
3 27 48 50 

32 96 
3 125 

31 97 
3 5 15 16 41 48 

1 0 1 1 0 0 1 11 23 ~ 65 
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8. CONCLUSIONS 

As the Introduction stated, the main goal of this study was the establishment 
of a tight relationship between a structural property (essentially the generalized 
loop structure) and a behavioral property (the injective character). 

So far, it seems that the interest of the counters that have been studied is 
more theoretical than practical. For example, it is possible to count in binary 
by means of JK flip-flops and only one additional two-input AND gate per 
flip-flop. For small values of n, these A N D  gates are not even required if an 
adequate use is made of available multiple-input JK flip-flops. However, our 
knowledge about counters composed only of JK flip-flops is not complete 
enough to draw final conclusions. 

Among the problems left open by this study, are: 

(i) the realization of cycles of arbitrarily prescribed length with a 
minimum number of flip-flops, 

(ii) synthesis methods for counters whose transition graph is connected, 

(iii) synthesis methods for reliable counters. 

With respect to point (i), it is very easy to exhibit an existence proof since the 
shift register trivially produces cycles of length n. The counters obtained in this 
way are obviously far from being minimal. Finally, from experimental results, 
we conjecture that generalized loop-counters have an even number of cycles 
for n > /4 .  
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