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a b s t r a c t

We consider a distance generalisation of the strong chromatic index and the maximum
induced matching number. We study graphs of bounded maximum degree and
Erdős–Rényi random graphs. We work in three settings. The first is that of a distance
generalisation of an Erdős–Nešetřil problem. The second is that of an upper bound on
the size of a largest distance matching in a random graph. The third is that of an upper
bound on the distance chromatic index for sparse random graphs. One of our results gives
a counterexample to a conjecture of Skupień.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Given a graph G = (V , E), a strong edge-colouring of G is a proper edge-colouring such that no edge is adjacent to two
edges of the same colour. Equivalently, a strong edge-colouring ofG is a colouring of the edges such that no two edgeswithin
distance 2 are given the same colour. (The distance between two edges is defined as the number of vertices in a shortest
path between them. Adjacent edges have distance 1.) The strong chromatic index of G, which we denote as χ ′

2(G) in this
paper, is the least integer k such that there exists a strong edge-colouring of G using k colours. The strong chromatic index
has a rich history, going back to problems posed by Erdős and Nešetřil in 1985 (cf. [5]).

We shall study a distance-based generalisation of the strong chromatic index. Given a positive integer t , a distance-t
edge-colouring of G is a colouring of the edges such that no two edges within distance t are given the same colour. Note
that a distance-1 edge-colouring is a proper edge-colouring. A distance-2 edge-colouring is a strong edge-colouring. The
distance-t chromatic index of G, denoted as χ ′

t (G), is the least integer k such that there exists a distance-t edge-colouring
of G using k colours. The distance-t chromatic index was first considered by Skupień [11] in the early 1990’s. Recently,
Ito et al. [7] developed two polynomial-time algorithms for finding distance-t edge-colourings of partial k-trees and planar
graphs.

The distance-t edge-colouring problem is related to the colouring of powers of graphs. Observe that χ ′
t (G) = χ((L(G))t),

where χ(·) denotes the chromatic number, L(·) denotes the line graph, and the tth power of a graph is the graph obtained
by adding the edges between pairs of vertices at distance at most t .

We will also study another parameter that is related to maximum induced matchings. Given a graph G = (V , E), a
distance-t matching of G is a set of edges no two of which are within distance t . This particular generalisation of matchings
was first studied by Stockmeyer andVazirani [12]. (A distance-1matching is amatching; a distance-2matching is an induced
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matching.) Note that a distance-t edge-colouring is an edge-colouring such that each colour class induces a distance-t
matching. The distance-t matching number of G, here denoted as µt(G), is the largest integer k such that there exists a
distance-t matching in Gwith k edges. Observe that χ ′

t (G) ≥ |E|/µt(G), since in any distance-t edge-colouring, each colour
class has at most µt(G) edges.

In this paper, we will consider three relatively self-contained problems concerning the distance-t chromatic index. In
Section 2, we consider graphs of boundedmaximumdegree and propose a distance-t version of the Erdős–Nešetřil problem.
In Propositions 1 and 2, we describe examples that give good lower bounds on the distance-t chromatic index. In Sections 3
and 4, we study Erdős–Rényi random graphs: in the former section we upper bound the distance-t matching number
(Theorem 4) which also implies a lower bound for the distance-t chromatic index, and in the latter we upper bound the
distance-t chromatic index (Theorem 5) for sparse enough random graphs.

2. A distance-t Erdős–Nešetřil problem

If G has maximum degree ∆, then

χ ′

t (G) ≤ 2
t

j=1

(∆ − 1)j + 1

is a trivial upper bound, as the maximum degree of (L(G))t is at most 2
t

j=1(∆ − 1)j. Note that 2
t

j=1(∆ − 1)j ∼ 2∆t

as ∆ → ∞. By Vizing’s theorem, if G has maximum degree ∆, then χ ′

1(G) ∈ {∆, ∆ + 1}. Erdős and Nešetřil in 1985 asked
what is the optimal upper bound on χ ′

2(G) in terms of the maximum degree (cf. [5]). They mentioned a natural lower bound
example, which consists of a 5-cycle with its verticesmultiplied; this example demonstrates that there exists a graph Gwith
arbitrarily large maximum degree ∆ such that χ ′

2(G) ≥ 5∆2/4. Over a decade later, Molloy and Reed [9] showed using the
probabilistic method that, if G has maximum degree ∆ for ∆ sufficiently large, then χ ′

2(G) ≤ 1.998∆2. The example in the
following proposition shows that any general upper bound on χ ′

t for graphs of maximum degree ∆ is Ω(∆t).

Proposition 1. Fix an integer t ≥ 2. For arbitrarily large ∆, there exists a regular graph with degree ∆ such that χ ′
t (G) >

∆t/

2(t − 1)t−1


.

Proof. Fix an integer x > 1. Let the vertex set consist of (t−1)-tuples with coordinates chosen from {1, . . . , x}. The number
of vertices is xt−1. Two vertices (x1, . . . , xt−1) and (x′

1, . . . , x
′

t−1) are adjacent if and only if there exists i ∈ {1, . . . , t−1} such
that xj = x′

j for all j ≠ i, i.e. if and only if they differ in exactly one coordinate. Every vertex has degree exactly (t −1)(x−1),
and thus the number of edges in G is (t−1)(x−1)xt−1/2. Between any pair of vertices there is a pathwith atmost t vertices,
so between any pair of edges there is a path with at most t vertices. Therefore, (L(G))t is a clique, and so

χ ′

t (G) = (t − 1)(x − 1)
xt−1

2
>

((t − 1)(x − 1))t

2(t − 1)t−1
.

Since xwas an arbitrary integer greater than 1, the result follows. �

This example is tight neither for t = 2 (because of the multiplied 5-cycle) nor for t = 3 (as we shall soon see from the
next proposition); however, we have been unable to find any better alternative constructions for when t ≥ 4. For a graph
G of maximum degree ∆, we believe that it is possible to obtain an upper bound of (2 − ε)∆t for some fixed ε > 0, by
bounding the number of edges that span the neighbourhood sets of (L(G))t , as Molloy and Reed did in the case t = 2, but
the details seem more complicated for t ≥ 3.

It should be noted that the above example is a ∆-regular graph with Ω(∆t) edges that has distance-t matching number
1. Skupień [11] suggested such a graph could be found by multiplying the cycle C2t+1; however, this results in a ∆-regular
graph of distance-t matching number 1 with only O(∆2) edges.

Faudree et al. [5] asked about the optimal upper bound for the strong chromatic index in terms of the maximum degree
when restricted to bipartite graphs. Note that the complete bipartite graph K∆,∆ shows that, for graphs of maximum degree
∆, any such bound is at least ∆2. The following example demonstrates that any upper bound on χ ′

3 for bipartite graphs of
maximum degree ∆ is at least ∆3

− o(∆3). Furthermore, this example disproves Conjecture 2 in [11].

Proposition 2. For arbitrarily large ∆, there exists a bipartite, regular graph with degree ∆ such that χ ′

3(G) = ∆3
− ∆2

+ ∆.

Proof. Let q be a prime power and let P be the projective plane with q2 + q + 1 points and q2 + q + 1 lines. Consider the
point–line incidence graph for P , i.e. the bipartite graph Gwith parts A and B, where A is the set of points, B is the set of lines,
and there is an edge between two vertices a ∈ A and b ∈ B if the point a lies in the line b. Note that G is a regular graph with
degree q + 1. Consider two edges a1b1 and a2b2 in G. If a1 ≠ a2, then there is a unique line b which contains both points a1
and a2. The path a1ba2 verifies that a1b1 and a2b2 are at distance at most 3 in G. As a1b1 and a2b2 were arbitrary, this shows
that µ3(G) = 1; thus, χ ′

3(G) = |E(G)| = (q + 1)(q2 + q + 1) = (q + 1)3 − (q + 1)2 + (q + 1). �
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3. The distance-t matching number of random graphs

As is standard, we let Gn,p denote a random graph on vertex set [n] = {1, . . . , n} where each possible pair of vertices is
included as an edge independently at randomwith probability p. The inducedmatching number of Gn,p was first considered
by El Maftouhi and Márquez Gordones [4] and they obtained a fairly tight estimate. In this section, we shall bound µt(Gn,p)
for p = d/n, with d sufficiently large, by estimating the expected number of distance-t matchingswith k edges. Our approach
is inspired by the method used by Atkinson and Frieze [2] to study what they called b-independent sets, which are vertex
subsets in which no two vertices are within distance b. We use the following lemma in this estimation.

Lemma 3. Suppose K is a matching with k edges in the complete graph on [n] and

pd =
d(dt−1

− 1)
(d − 1)n

where p = d/n satisfies p < 1/2. Then, in Gn,p, letting

qK = P (Kis a distance-t matching) ,

we have

pk (1 − pd)
4


k
2


≤ qK ≤ pk (1 − pd)

4


k
2


exp


O

k3n2t−3p2t−1 ,

as n → ∞.
Proof. We first count the edge sets of paths on atmost t vertices (including endpoints) which could connect a pair of distinct
edges in K . Given two edges in K , the endpoints of such a potential path can be chosen in four ways. We may enumerate
these path edge sets as follows: Pi, i ∈ [N], where

N = 4

k
2

 t
r=2

(n − 4) · · · (n − r − 1) .

Now let Pi, i ∈ [N], be the event that the edges of Pi are all present in Gn,p. Note that since p < 1/2 and K is a matching, we
have that P(Pi) < 1/2 for all i. Note also that, given that the edges of K are present, then K is a distance-t matching if and
only if none of the Pi occur. We use Janson’s inequality (cf. [1, Theorem 8.1.1]) to bound this probability. Set

∆ =


Pi∩Pj≠0|i≠j

P

Pi ∩ Pj


and M =

N
i=1

(1 − P (Pi)) .

Then, by Janson’s inequality (also using P(Pi) < 1/2 for all i),

M ≤ qK = P


N
i=1

P̄i


≤ e∆M.

We have, by splitting the product according to path lengths,

M =


t

r=2


1 − pr−1(n−4)···(n−r−1)

4


k
2



=


1 −

t
r=2

pr−1nr−2

4


k
2


eO(1)

=


1 −

d(dt−1
− 1)

(d − 1)n

4


k
2


eO(1).

Observe that the eO(1) term is at least 1, so this implies the lower bound on P .
For the upper bound, we bound ∆ as follows. Subject to a penalty factor of 2 in the final count, let us assume that Pi is

the shorter of Pi and Pj. If we fix a quantity ℓi for the path length of Pi, then the probability weight on the choices for Pi is

at most 4


k
2


nℓi−1pℓi . Next we fix a quantity ℓj ≥ ℓi for the path length of Pj and condition on s ≥ 1 being the size of the

common edge set between Pi and Pj. With this conditioning, we see that the probability weight on the choices for Pj is at
most knℓj−s−1pℓj−s. We thus have

∆ ≤ 2
t

ℓi=3

4

k
2


nℓi−1pℓi

t
ℓj=ℓi

ℓi−1
s=1


ℓi

s


knℓj−s−1pℓj−s

= O

k3n2t−3p2t−1 .

Since the probability that the edges of K are present is pk, we obtain the desired upper bound. �
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With this lemma we can prove an upper bound on µt(Gn,p) with the first moment method. Clearly, this also implies a
lower bound for χ ′

t (Gn,p) (a.a.s.).

Theorem 4. Let ε > 0 and suppose p = d/n and p < 1/2. Furthermore, let

kt =
n

2dt−1 (t log d − log log d − log et + ε) .

There exists d0 such that, if d ≥ d0, then a.a.s. µt

Gn,p


≤ kt .

Proof. Let the random variable Xk denote the number of distance-t matchings with k edges in Gn,p. Set k = kt and compute
the expectation as follows using Lemma 3:

E (Xk) =


matching K ,|K |=k

P (K is a distance-t matching)

≤

 n
2k

 2k
2, . . . , 2


pk

k!
(1 − pd)

4


k
2


exp


O

k3n2t−3p2t−1

≤
n!

k!(n − 2k)!

p
2

k
exp


−4


k
2


pd


exp


O

k3n2t−3p2t−1

≤ n2k
 p
2ek

k
exp


−4


k
2


pd


exp


O

k(log d)2

dt


= exp


k

log


n2p
2ek


− 2 (k − 1) pd + o(1)


as d → ∞. Now, we have

log

n2p
2ek


= t log d − log log d − log et + o(1) and

2(k − 1)pd = t log d − log log d − log et + ε + o(1)

as d → ∞. Combining these, E (Xk) ≤ exp(−εk/2) for d large enough. Then, by Markov’s inequality, P

µt(Gn,p) > k


≤

P (Xk > 0) ≤ E (Xk) → 0 as n → ∞. This establishes the required upper bound for µt(Gn,p). �

If we consider together the precise a.a.s. formulas obtained by El Maftouhi and Márquez Gordones for µ2(Gn,p) and by
Atkinson and Frieze for the b-independence number of Gn,p, as well as the lower bound on qK given in Lemma 3, then it is
natural to speculate that the expression kt in the above theorem is close to the correct formula for the asymptotic value of
µt(Gn,p). Proving the required lower bound on µt(Gn,p) is likely to demand significant technical overhead, which we defer
to future work.

4. Distance-t edge-colouring of sparse random graphs

The strong chromatic index of random graphs was first considered by El Maftouhi andMárquez Gordones [4]. It was then
considered in a succession of papers by Palka [10], Vu [13], Czygrinow and Nagle [3] and Frieze et al. [6]. Frieze et al. gave
a precise description of the strong chromatic index of Gn,p for p satisfying np ≤ (log n/ log log n)1/2/100. In this section, we
show that their method can be extended to show an analogous result for the distance-t chromatic index. Before stating the
result, we need to give a few definitions.

Let G = (V , E) be a graph and s be a positive integer. If v ∈ V , then degs(v) is defined to be the number of edges within
distance s of v (so deg1(v) is just the usual degree of v); if e ∈ E, then degs(e) is defined to be the number of edges within
distance s of e (including e itself). We let

∆t(G) =


max


deg
t/2

(e) : e ∈ E


if t is even

max


deg

(t+1)/2
(v) : v ∈ V


if t is odd

(deviating slightly from the notation of Frieze et al.) and

λt =


log n

log log n

1/t

.

We remark here that ∆t(G) is the size of a largest clique in (L(G))t .
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Theorem 5. If p satisfies np ≤ λt/100, then χ ′
t (Gn,p) = ∆t(Gn,p) a.a.s.

Proof. Let G = (V , E) be a graph with maximum degree ∆. Consider the subgraph β(G) induced by the set of vertices of G
that are at distance at most t from the set of vertices of degree at least (∆/4)1/t . By an induction argument that is similar to
Lemma 3 of Frieze et al., we can show that if β(G) is acyclic thenχ ′

t (G) = ∆t(G). Then it suffices to show that if np ≤ λt/100,
then β(Gn,p) is acyclic a.a.s. For this, consider the subgraph ξ of Gn,p induced by the set of vertices that are at distance at
most t from the set of vertices of degree at least λt/3.

Let C be a shortest cycle in ξ and let ℓ be the length of C . We claim that there are at least ℓ/(4t + 2) vertex-disjoint paths
of length at most t connecting vertices of the cycle to vertices of degree at least λt/3. Since there is always at least one such
path, assume that ℓ ≥ 4t + 2. Let v1, . . . , vs be a largest set of vertices of C such that the distance along the cycle between
any pair of them is at least 2t + 1. Clearly s = ⌊ℓ/(2t + 1)⌋ ≥ ℓ/(4t + 2). Since C is the shortest cycle in ξ , the distance in
ξ between any pair vi ≠ vj is also at least 2t + 1. By the definition of ξ , for each i ∈ {1, . . . , s} there is a path Pi of length
at most t from vi to a vertex wi of degree at least λt/3. All vertices of Pi belong to ξ and two paths Pi, Pj, i ≠ j are vertex
disjoint since the distance in ξ between vi and vj is at least 2t + 1. The subgraph induced by the intersection of Pi and C is
connected; otherwise C would not be a shortest cycle in ξ ; thus, there is a unique vertex ui in the intersection that has a
neighbour in Pi \ C . We let P ′

i denote the part of Pi which is edge-disjoint from C . (P ′

i contains wi and ui.) Let H be the union
of all paths P ′

i and C . We now estimate the probability that Gn,p contains such a subgraph H .
For this estimation, we use Lemma 4 of Frieze et al. which holds with λ replaced by λt . That is, the following holds.

Lemma 6. Let p be such that np ≤ λt/100. Let A be a set of vertices of size x and let B be a set of edges of size at most cx for
some constant c. Conditioning on the event that all edges in B are present in Gn,p, the probability that all vertices in A have degree
at least λt/3 is at most 2e−λt x/10.

Now, the number of ways to choose C is at most nℓ and the probability that it appears in Gn,p is pℓ. We can choose

the set of vertices ui in at most


ℓ

s


≤ 2ℓ ways. The path between ui and wi has length 0 up to t and there are at most

(t+1)ℓ/(2t+1) ways to choose the lengths for all the paths P ′

i . The number of paths of length r is atmost nr and the probability
that such a path appears is pr . After we choose the paths P ′

i , the vertices wi are determined and we expose a set B of at most
ℓ + t(ℓ/(2t + 1)) ≤ 2ℓ ≤ 2(4t + 2)s edges of Gn,p. Therefore, by the above lemma, the probability that all of the vertices wi

have degree at least λt/3 is bounded by 2e−λt s/10 ≤ 2e−λtℓ/(10(4t+2)).
In summary, the probability that there is a cycle in β(Gn,p) is at most


ℓ≥3

nℓpℓ2ℓ(t + 1)ℓ/(2t+1)


t

r=0

(np)r
ℓ/(2t+1)

2e−λtℓ/(10(4t+2))

≤


ℓ≥3

(2(t + 1)np)ℓ

(t + 1)(np)t

ℓ/(2t+1) 2e−λtℓ/(10(4t+2))

≤


ℓ≥3

((t + 1)λt/50)2ℓ2e−λtℓ/(10(4t+2))
= o(1).

This completes the proof. �
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