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In this paper we shall find necessary and sufficient conditions for integral 
representation rings of Hopf-algebra orders to have non-zero nilpotent elements, 
when the order is a module over a discrete valuation ring, and an order in a group 
of prime order. 

1. INTRODUCTION 

Let R be a discrete valuation ring of characteristic 0 with field of quotients 
K. Let A@, r, d, F) be a Hopf-algebra over R. A is called a Hopf-algebra 
order in a Hopf-algebra H over K if K OR A N H. An element /i of A is 
called a left integral if aA = E(A) n for all a E A. Let L, be the ideal of all 
left integrals in A. The ideal &(LA) gives much information on the structure 
of H and A. It plays a role similar to that played by the order of the group in 
the representation theory of a finite group. In fact, it is always a divisor of 
dim H. R. G. Larson [6] has used properties of &(LA) to apply the theory of 
Hopf-algebra orders to the representation theory of finite groups and has 
obtained a new bound on the degrees of the absolutely irreducible represen- 
tations of a finite group. 

Integral representation theory developed from matrix representation of 
associative algebras and number theory, especially from ideal theory. 
Methods of homological algebra have played an increasingly important role 
in recent years. 

By definition all integral representation rings are free Z-modules. Let M 
denote a finitely generated A-module which is R-torsion free. Let [M] denote 
the isomorphim class of the A-module M. The integral representation ring 
,3’ is the free Abelian group with generators [Ml, addition defined by 
[M] + [N] = [M @ N] and multiplication defined by [M] [N] = [M @ N]. 
The action of A on M@ N is given by a(m @ n) = C a,,,m @ aC2)n. 
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I. Reiner [7-91 has shown that when G is a cyclic grou 
maximal ideal P and the Krull-Schmidt theorem holds for 
RGY contains at least one non-zero nilpotent element i 
then RGT contains no non-zero nilpotent el 

Let p be a fixed rational prime and A a 
show in this paper that if p is odd then J’ contains a non-zero nilpotent 
element if e(LA) E P2, and J’ contains no non-zero nil~~te~t elements if 
s(LA) S& P2. This is a generalization of Reiner’s result for FZ =p, since for the 
group ring s(LRG) =pR, the ideal generated by th 

Tate an rt [13] have shown that when A is a 
KZ, and P = (D), then A has a basis { 1, X 

“X for some (Y > 0 and some oP, a unit in 
as the “Tate Oort basis.” It will be used t 

The ideal of integrals in A is a rank 1 free R-module with basis AA = Xp-’ - 
wpIP and &(A,) = -w,lF. 

R is assumed to be a discrete valuation ring of characteristic 0 with 
maximal ideal P, field of quotients K and residue class field k. 

Ml A-modules are assumed to be finitely generated 
modules. K is assumed to be a splitting field for 6, and so the 
theorem holds for A-modules [ 11. 

2. THE CASE WHERE p Is ODD AND e(&A)~B2 

In this section we prove that J contains a non-zero nilpotent element if 
&(La> E P2. We shall use the following test due to I. einer [7] when a non- 
zero element is nilpotent. 

LEMMA 2.1. If X and Y are a pair of ~on~sornorph~~ A-modules 
satisfying PA G XL A, PA G Y c A and XfPX N Y/PY as Al~A-rnod~~e~, 
then [X] - [Y] is a non-zero nilpotent element of,.3’. 

THEOREM 2.2. Let p be an odd prime and let A be a copy-algebra order 
in KZpa ilC 7 contains a non-zero nilpotent element $sE(L~) i P2. 

Prooj We shall construct an element that satisfies the conditions of 
Lemma 2.1. Let X be the Tate-Oort generator for A. Since E(E,) E P2 we 
have that X* = w,PX, where a > 2. Let M = A’ + IIA, where A’ is the 
augmentation ideal of A. M has an R-basis m, = X, m, =X2,...? rnp- 1 = Xpp iy 
mP = 17. Let N = RA + DA, where A is the integral of A. N has an -basis 

II, n2 = IIX ,..., npp, = IIXpe2, mp =A. 
bserve that PAGMGA and PAENGA. Let denote M/PM and P7 

denote N/PN. By Lemma 2.1, to show [M] - [N] is a man-zero nilpotent 
element of ,J” we have to show that (a) ic? N # and (b) M 71: PC To prove 
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this consider the action of X on M. With respect to the given basis this is 
given by 

/ 

i 

0 1o.v.o 0 .a* 0 o.+pa 0 l7 0 

\ 

\ 

OO... 0 Ol.*.O : 0 : *** 0 i 
OO... 0 0 Ol.*.O 1o.v.o : 0 0 : *** .a* 0 0 i 4 o.+pa 0 0 0 0 l7 0 0 0 0 

0 0 0 : 0 0 0 :I* 
pxp pxp 

This shows that &!i = U@ RrF$,, where z?ii,=O and U=Cf:;Rtii; 
moreover, TrFii = B,, r for 1 < i <p - 2 and XCi,- r = 0, since a > 2. 

The action of X on N with respect to the given basis is given by 

i i 0 Ol... ii’... 0 IO... : 0 0 : **. ... 0 Ol... ii’... 0 IO... : 0 0 : **. ... qJP-t’ 17 0 0 0 0 0 0 0 0 qJP-t’ 17 0 0 0 0 0 0 0 0 

4 4 pxp pxp 

Hence N= w@R_n,b, where XEP = 0, I?‘= Cf:-’ Rfii, xgi = @,+ r for 
1 < i <p - 2 and XtiP,_ r = 0. So MN fi and (a) has been proved. We must 
show that A4 and N are not isomorphic as A-modules. 

Now U= Cf:,’ Rmi is an R direct summand of M and M/U is 
isomorphic to the trivial A-module. Suppose we have constructed a 
submodule V of N such that V is an R-direct summand of N, N/V- R and 
K@, VcrK@, U. 

U is the augmentation ideal of A, hence Hom,(U, R) = 0. Let p be any A- 
module homomorphism from M to N and consider the following diagram 
with exact rows: 

O-U-fM-R-O 

O-V---tNAR-0 

Here qi = 0 since Hom,(U, R) = 0. Therefore a, induces p’ : U + V and 
p” : R + R such that the following diagram commutes: 

O-ULM-R-0 

I-’ I- lo” 
0-V---tN-R-O 
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By the 5-lemma, 9 is an isomorphism if and only if q~’ and q~” are 
isomorphisms. In particular, if A4 N N as A-modules then Ur V as A-- 
modules and 0~ p as x-modules. We shall now show that &7 is not 
isomorphic to v by showing that the trivial x-module I? is not an x-direct 
sum of 0, but we shall construct p such that I? is an x-direct summand of 
v. 

Looking at the representation of l? it is obvious that ki has no pro 
direct summands by the uniqueness of the Jordan canonical form. 

Now let Y be the R-module with basis 

v1 =17x, v2 = 17x2,..., vpu2 = p-2 
9 

V pp1 =A + q,lIa =Xp-I. 

Y is R-pure and R is a principal ideal domain, hence V is an R-direct 
summand of N. K OR V is the augmentation ideal of KG, so K OR VZ 
K@, U and N/V-R since K@N/VZKGJN/K@ V-KG/K@ U-K. 

e see that 

xv,=v,+, for 1 <g<p-3, 

XV p-2=17xp-1 =nvppl, 

xv p--l=X*=WpnaX=W 
- 

Therefore, since o > 2 Xv, _ 1 = 0 and v = C 
x-module Ih is a direct summand of VT so v 
the proof of (b). Hence N and M satisfy the conditions for Lemma 2.1 and 
we may conclude that ]M] - [N] IS a non-zero nikpotent element of A3. 

3, THE CASE WHERE p Is ODD AND c(LA) 2 %a 

We show that if p is an odd prime, and A is a Hopf-algebra order in KZ, 1 
then ,,J contains no non-zero nilpotent elements when E(LA) 3 
case where &(LA) = P we shall first find all ~ndecom~osabl~ A-modules. Hf 

= IIR, and X is. the Tate-Oort generator for A, then Xp = 
[X]/(Xp - oJlX). Let S denote the ring R [X]/(XpP1 - p> 5 

LEMMA 3.1. Let S = R[X]/(XP-’ -p> and let M be a R-free 
If m is a non-zero element of M then m, mX>..., mXPe2 are 
~~~e~e~~e~t. 

Proof. Suppose 0 = Cfz; a,mX’ = m CF:: a,X’ for some ai E R. View 
x?: a$? as an element of K OR S. M OR S is a field since XpP’ -p is 
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irreducible by Eisenstein’s criterion. Hence m . 2::: a,X’ = 0 and m # 0 
implies ai = 0 for all i = 0 ,..., p - 2, so m, mX ,..., mXp-2 are R-linearly 
independent. 

Notation. Let M be a R-free S-module. For G E M, let N, denote a 
maximal S-submodule of M subject to the conditions that 5 E N,,, and N, 
has a R-basis of the form m, mX,..., mXp-2 for some m E N. Note that 6 is 
not necessarily equal to m, for example, if rii = rm, r E R, m E N, then in 
order to get the maximal submodule we must choose the basis 
m, mX,..., mXpe2 instead of 6, liiX ,..., riiXp-2. 

LEMMA 3.2. Let N,,, be as above. N, is an R-direct summand of M. 

Prooj Since R is a principal ideal domain we must show that N, is R- 
pure. It suffices to show that for any m’ EM, Ilm’ EN, implies that 
m’ E N,. So choose m’ E M such that Ilm’ E N,. Since Llm’ E N, there 
are elements ai of K for 0 < i <p - 2 such that 

P-2 
m’= 2 aimXi. 

i=O 
(*> 

Since R is a discrete valuation ring we may assume that each ai is of the 
form ai = ui/17 or ai = ri, where ui is a unit in R and ri E R. If czi = ri for all 
i then m’ E N, and the lemma is proved. 

We shall prove this by contradiction. Suppose ai is not in R for some i, 
and let i, be the smallest i with ai 6C R, i.e., a0 ,..., aiP1 are in R and 
ai = u,/fl. Using (*) we get 

Xp-2-iml =ai+lmp +q+,mpX+ .a. + ap-2mpXp-3-i 

+ aomXp-2pi + . . . + aifl*-2 

and we let 

VEM since lIajER and a0 ... aiPl are elements of R. 
Xv = XaimXp-2 = crimp = wpuim. Hence m is an element of the S- 
submodule V of A4 generated by v. But v = (u,/I7) mXPp2 & N,, therefore 
N,,, & V. This contradicts the maximality of N,,,, so we conclude that ai E R. 
This proves Lemma 3.2. 

PROPOSITION 3.3. Let M be an R-free S-module. Then M is a free S- 
module. 

Proofi The proof is by induction on the R-rank of M. Assume that the R- 
rank of M is less than or equal to p - 1. Take 0 f 2 E M. Then &, 6X,..., 
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JiiXpe2 are R-linearly independent, so the R-rank of 
Lemma 3.2 we see that for some m E M and some R- 
M = N, @ U as R-direct sum, but the R-rank of N, is p - 1. Therefore the 
R-rank of U is zero. Hence M = N,) but N, N S, so M is a free S-module. 

Now let the R-rank of M be t, and assume that every R-free S-module 
with R-rank less than t is S-free. Choose N, as before, i.e., N, is a pure 
submoduie of M with R-basis m, mX,..., mXpe2 for some m E M, and N, i 
S-submodule of M. Hence we have a short exact sequence of S-modules 

O+N,+M+M/N,+O. 

B is a free R-module since N, is R- 
as R-modules and the R-rank of B is less than the 

so by induction B N 0’ S, i.e., B is a free S- le, hence O-N,+ 
+ 0 splits as S-modules, i.e., 

M 1 @ l+ ’ S. This proves that M is a free S-module. 

PROPOSITION 3.4. If e(LA) =L!R then up to isomorphi~m the only 
indecomposable R-free A-modules are the trivial A-module 
tation ideal A + and A itself. 

ProoJ Since s(L,) = IlR, A = R [X]/(Xp - pX) and A- v 
R [X]/(Xp- ’ - p) = S, as A-modules. 

Let M be an R-free A-module. Set M’ = {m E M 1 Xm = 0). ’ is a free 
R-module. 

We have a short exact sequence of A-modules 0 + M’ -+ M + ’ + 0. 
M/M’ is a free S-module by Proposition 3.3. 

Hence M is an extension of a free R-module by a free S-module. Let us 
calculate Ext:(S, R). We have a short exact sequence of A-modules 

O-1 (XpP1 -p)A+A+A/(XP-’ -p>A+O. 

So since A is a projective A-module and A/(XP--] - p) A N S, we have 

O-tHom,(S,R)+Hom,(A,R)~Hom,((XP~’-p)A?R) 

--) Ext;(S, R) + 0 

is exact. Hence 

Ext:(S, R) N Hom,((XP-’ -p) A, R)/J’m(Hom,(A, R)) 

N R/pR ‘v k. 

Let s be the S-rank of M/M’ and Y the R-rank of M’. NOW [I4] 
Ext(M/M’, M’) N Ext(@$ S, @‘R)) N (Ext(S, R))rxs = (k)‘xs, where (k)“’ 
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denotes r by s matrices with entries in k. Thus M corresponds to an r X s 
matrix with entries in k. Also Horn,@, S) = 0, since S is isomorphic to the 
augmentation ideal of A. Hence the isomorphism classes of M’s correspond 
bijectively to isomorphism classes of r x s matrices with entries in k under 
the actions of GL(r, R) and GL(s, AutA(S)) E GL(s, R) [lo]. Now k is a 
field so every matrix in (k)‘xS can be diagonalized by elementary row and 
column operations. Since R is a principal ideal domain each such operation 
comes from one in GL(r, R) or GL(s, R), so each isomorphism class 
contains a diagonal matrix. Thus the indecomposable A-modules are R, S 
and non-split extensions, M : R + M+ S, corresponding to a non-zero 
k, E k. The isomorphism class of M is determined by the isomorphism class 
of k, under the action of the units in R. But k is the residue class field of R, 
hence there is only one isomorphism class. This isomorphism class 
corresponds to the non-split extension A : R + A -+ 5. 

In order to find the multiplication table for AY we need the following 
lemma and proposition. 

LEMMA 3.5. Let M be an A-module. Assume M has an R-basis of 
cardinality s. Then A OR M N 0” A. 

Note. Lemma 3.5 is valid for any Hopf-algebra order A. 

ProoJ: Let N, = A OR M with A-module action given by 

b(a @ m) = ba @ m. N,p@A. 

Define f:N,-tN2 by barn-t2 b(,, @ bC2)m. The inverse of f, 
f-’ : N2 --f N, is given by b 0 m -+ C b(,, 0 S(b& m. Hence N, N N, and J 

A 

Let N, = A OR M. The A-module action on N, is given by b(a 0 m) = 
C bu,a 0 bc,,m. 

PROPOSITION 3.6. S@SP@~-*A@R. 

ProoJ: A- k[ Y]/(p), where k is the residue class field and AY = - - 
Y @ 1 + 10 Y. We will compute S @ S by computing S @ S. We can do 
this since S @ S is a direct sum of indecomposable A-modules, and S, A and 
k are not isomorphic. Hence 

S@S= (+ (&R)@(&A) 
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I’dow s is the augmentation ideal of A. Thereore .?@ s has a k-basis 
I”@Y’, I<s<p-1 and l~t~p-l.Letvj=Y’OYf~r %<i<i;--2.~ 

Claim: 

{Yjv,,w1O<j<p- l,l<i<p-2}, 

where w = cp:: (-1) ‘+ l Y’ @ Yp-’ is also a k- 
Since Y ~ w = 0 this will prove that ,?@ 

rove the claim we must prove that Yjv, for 0 <j <p - 1, 
1< i <p - 2 and w = Cf:: (-1) ‘+’ Y’ @ Yp-’ are linearly i~de~e~de~t. 

Yjvi can be expressed in terms of Y” 0 Y”, where s + t = i i-j + 1, so it 
suffices to prove that for fixed c, 

(a) Yjz,, for j + i + 1 = c and 2 < c <p - ! are linearly i~de~en~e~t~ 

(b) Yjvi for j + i + 1 =p and w= Cf:i (--I”’ Y’@ YPP’ are 
linearly independent, 

(c) Yjjvi for j+ i+ 1 =c and p + I <c< 2(p- 1) are linearly 
independent. 

For (a) the representation of the YCPi-‘vj for 1 < i < c - I, 2 < c <<p - 4 
in terms of the Yk 0 YCPk for 1 < k < e - 1 is given by 

C-l 

Yc-‘-59, = z, ski Yk @ Ycek, 

where 

ZZ Q, k < i. 

Hence the Yc-‘-“vi are linearly independent in case (a). 
For (b) the representation of the YP-iP1~i for I < i <JJ - 2 in terms of 

Yk@Yp-kfor l<k<p--l isgivenby 

P--l 
yp-i-lvi = )J aik Yk @ Yp-k, 

k=l 
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where 

= 0, k < i. 

Obviously Yp-‘uI, YpP3v, ,..., Yv,-, are linearly independent. Hence if w, 
Yp-2v 1,.e-9 yv,-2 are dependent, then there exists ar,..., ape2 in k such that 
-y-f ai p--i--l - v, - w. Looking at the coefficients of Yp-’ @ Y, this implies 
that (1) Cf:f a, =p - 1. We shall show by induction that ai = 1 for all i. 
Hence (1) yields p - 2 =p - 1, which is a contradiction, and we can 
conclude that w Yp-‘v I,..., yv,-2 
Assume that a, L a2 = . . . 

are linearly independent. Clearly a, = 1. 
=aiel= 1 and consider 

a,+ (;I;)+ (pr:)+...+(“-‘:-“)+(“ri). 

We will show that 

0 if i is odd, 

=-2 - if i is even. 
P 

Now 

(j;; 1 )= (p--s)! 
(i-s+ I)! (p-i- I)! 

= (P-4 --a (P -s> 
(i-s+ l)! 

7 (-l)i-f+l i! 
(i-s+ I)! (s-l)! 

= (-q-1 (s 4 1 ). 

Hence 

I 
z( 

p-s i 
s=2 i-s+1 i 

T $J2 (-l)i-s+l 
( 1 s-l 

i-l 

= z1 (-1)i-f i 
0 t 



REPRESENTATIONS OF HOPF-ALGEBRA ORDERS 419 

= (-1)’ i (-I)’ (J - (-l)i - (-l)i (-I)i 
t=o 

z-(-l)‘- 1 

=-2 if i is even, 

=o if i is odd. 

ence if i is even ai - 2 asp - 1, that is, ai zp 1, and if i is odd ai -p 1. 
P’or (c) the representation of the Ycp’-“u, for c -p < i <p - 2 in terms of 

Yk @ Ye-k for c - (p - 1) < k <p - 1 is given by 

P-1 
ycp’-lui= c 

ski Yk 0 Ycmk, 
k=c-(p-1) 

where 

= 0, k < i. 

A direct computation shows that 

det(ak,) = (P - l)(P - 2) ... (P - (2P - c - 1)) 
I (2p-c-l)! 9 

which is clearly different from zero for c =p + 1, p + 2,..., 2p - 2. Since the 
Yk @ Yc-k are linearly independent, this implies that the YC-i-i~i are 
linearly independent. This concludes the proof of Proposition 3.6. 

THEOREM 3.7. Let p be an odd prime and let A be a ~op~-~~geb~a order 
in KZD. ,4i 7 contains no noyt-zero nilpotent elements 8 F(k,) 2 P. 

Proof. If e(LA) =R, then A is separable [5] and so aT = KGY, which 
has no nilpotent elements [2]. 

If &(LA) = P, then using Proposition 3.6 and Lemma 3.5 we have the 
multiplication table for A.7 with respect to the Z-basis [I?], [S]> [A]: 

PI ISI [A 1 

PI 
is1 
IA I 

PI 
[Sl 
[A ! 

!Sl 
(P-2)[Al+ [RI 

(P - l)[Al 
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Q oZ Ar has a basis of orthogonal idempotents E, = l/p [A], E, = +([R] + 
[S] - [A]) and E, = $([R] - [S] + (p - 2)/p [A]). Therefore Q OZ J’ is a 
commutative semisimple ring. Hence J’ c Q aZ AJ’ has no non-zero 
nilpotent elements and the proof of Theorem 3.7 is complete. 

4. THE CASE WHERE p = 2 

Let G be the group of order 2 and as before let A be a Hopf-algebra order 
in KG containing RG, where E(L*) =pR, p = WAXY. Also let S denote 
R[Xl/(X-p). First we classify the indecomposable A-modules. Then we 
compute the multiplication table for the integral representation ring and, 
finally, we prove that the integral representation ring has no non-zero 
nilpotent elements if p = 2. 

PROPOSITION 4.1. The R-free indecomposable A-modules are R, S and 
for each i, i = 0, l,..., a - 1, a module Mi. Note A =M,. 

Proof. Let M be an R-free A-module. Set M’ = {m E M 1 Xm = 0). M’ is 
a free R-module. We have a short exact sequence of A-modules 0 --f M’ --f 
M+MfM’+O. 

M/M’ is a free S-module, since it is a finitely generated torsion-free R- 
module and S is isomorphic to R. Hence M is an extension of a free R- 
module by a free S-module. To calculate Ext:(S, R) consider the short exact 
sequence of A-modules 

0+(X-p)A+A+A/(X-p)A+O. 

Now A/(X - p)A IV S and A is a projective A-module. Hence 

O+Hom,(S,R)+Hom,(A,R)-tHom,((X-pA,R) 

+ Ext:(S, R)-, 0 

is exact, and 

Ext:(S, R) N Hom,((X-pA, R)/3’m Hom,(A, R) N R/pR). 

Let s be the S-rank of M/M’ and r the R-rank of M’. Now [14] 
Ext;(M/M’, M’) cz Ext;(@ S, @‘R) N (Ext:(S, R))rxs = (R/PR)‘~~. 
(RIPR>'~~ denotes r by s matrices with entries in R/pR. Thus M corresponds 
to an r x s matrix with entries is R/pR. The same argument as the one used 
in Proposition 3.4 shows that there is a one-to-one correspondence between 
isomorphism classes of non-split extensions M : R + M + S and 
isomorphism classes of non-zero elements r E R/pR under the action of the 
group of units in R. Recall p = ~+lI7~. Thus for each i = 0, l,..., a - 1 we get 
an isomorphism class represented by a non-split extension Mj: R + Mi -+ S, 
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and up ts ~somorphi§m the R-free indecomposable ~-rnod~~e§ are 
the Mi)s for i= 0, I,..., a - 1. Mi has an R-basis uil an 
Xvi1 = 0 and Xui, = -Ilnvi2 + ulTivil, where 21 is a unit in 
basis 1 and X* To see that ikl, N A change this to 
~,=I+X~thenXu,=OandXv,=-II”u,+v,. 

WI”, WI1 iI1 2[M,] ... 2w, I 2Wol 

Pfol Pfol iM,l 2[M,] .‘. 

ProoJ The Tale-Oort basis for A is I, X, where X2 = aX and AX = 
lOX+XO1+bXOXanda.b=2. 

A3 is commutative and [R] is the identity, so it suffices to show that 

(a> ISl[Sl= PI, 
(b) [S] [Mi] = [“i], and 
(‘1 i”jl I”il = 21Mmin(j,i)l. 
(a> Let s be an R-generator for S, then S @ S is generated by s 3 s 

and 

dX(s @ s) = -a(s 0 s) - a(s @ s) + db(s 0 s) 

= 0, since ab = 2. 

(b) S @ Mi has R-generators s @ vi1 and $0 viz4 

X(s @ VJ = -a(s 0 Vi& 

X(s @ vi*) = -a(5 @ VjJ + s @ (-avi2 + 2L11’vJ 

+ b(-as @ (-aviz + u47’ql)) 

= (-a -a + a2b)(s @ viz) 

+ (~17’ - ab&)(s @ vi!) 

= -zdI’(s @ VJ, since ab = 2. 
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Choose j and u, such that u,ll”j = a and an R-basis 

x, = s @ vi1 - uu,IP(s @ VJ, 

X2=SoVi2, for SOMi. 

NOW XX, = 0 and XX, = -u& - uIFX, . Hence [S] [Mi] = [Mi]. 

(c) Mi @I Mj has R-generators Vii ~3 Vjl) Vi, 0 Vj2, Vi2 0 Vjl) Vi2 0 Vj2* 

dX(v,, @ VjJ = 0, 

dX(V,, @ Vjz) = -au,, @I Vj2 + Ujl7jVil@ Vjl T 

dX(Vi2 @ Vjl) = -avi2 @ Vjl + Uil7’Vi, 0 Vjl5 

dX(Vi, @ Vj2) = (-aviz + U~~‘V~~) @ Vj* 

+ vi2 @ (-avj2 + ujIPvj,) 

+ b(-au,, + UiIliV~,) @ (-avjz + UjnjVjl) 

= bn’+juiuj(vil @ Vjl) 

+ (UjH - uiPab)(vi, @ Vjz) 

+ (ujHj - ujZZjab)(vi2 @ vjl) 

+ (-a - a + a’b)(Uf, 0 vj2) 

= a17j+‘uiujvil @ vi2 - uiIZivi, @ vj2 

- ujHjvi2 @ Vjl. 

Assume j< i and choose vil 0 “jl) vil 0 vj2 3 UibHiVi, @ Vjl - 

(Uj/Uj) II-jVil @ Vj2 - Vi2 0 vjl 3 vi2 @ vj2 as an R-basis for Mi @ Ml* TO see 
that [Mi] [Mj] = 2[Mj], note 

LlX(&!ibl7’Vi~ @ Vjl - (UJUj) II-jVi, 0 Vjz - Vi2 0 “jl) 

= -(uj/uj) IPj(-au,, 0 Vj* + ujnjVi, 0 Vjl) 

= -(-avi2 @ Vjl + Uil7’Vi, @ Vjl) 

= -a(-(ui/uj) Pjvj, @ Vj2 - Vi2 @ Vjl + UibII’Vf, @ Vjl). 

We can now prove the following: 

THEOREM 4.3. Let p = 2, let G be the cyclic group of order 2 and let A 
be a Hopf-algebra order in KG containing RG. The integral representation 
ring J does not contain any non-zero nilpotent elements. 
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Oz ,Y has a basis of orthogonal ~~ern~Qte~ts. 

e, = t pf,], 

e, = #Y-~l - [ 
e ail = ml + ISI - wfa-llh 

e a+2 = WI - ISI>. 
Hence ,.J has no nilpotent elements. 
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