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In this paper we shall find necessary and sufficient conditions for integral
representation rings of Hopf-algebra orders to have non-zero nilpotent elements,
when the order is a module over a discrete valuation ring, and an order in a group
of prime order.

1. INTRODUCTION

Let R be a discrete valuation ring of characteristic 0 with field of quotients
K. Let A{u, 5,4, ¢) be a Hopf-algebra over R. 4 is called a Hopf-algebra
order in a Hopf-algebra H over K if K ®, A ~ H. An element A4 of 4 is
called a left integral if a4 =e&(4) A for all a € A. Let L, be the ideal of all
left integrals in A. The ideal (L ,) gives much information on the structure
of H and A. It plays a role similar to that played by the order of the group in
the representation theory of a finite group. In fact, it is always a divisor of
dim H. R. G. Larson [6] has used properties of ¢(L ) to apply the theory of
Hopf-algebra orders to the representation theory of finite groups and has
obtained a new bound on the degrees of the absolutely irreducible represen-
tations of a finite group.

Integral representation theory developed from matrix representation of
associative algebras and number theory, especially from ideal theory.
Methods of homological algebra have played an increasingly important role
in recent years.

By definition all integral representation rings are free Z-modules. Let M
denote a finitely generated 4-module which is R-torsion free. Let [M] denote
the isomorphim class of the 4-module M. The integral representation ring
47 is the free Abelian group with generators |[M], addition defined by
[M]+ [N]=[M®N]| and multiplication defined by [M]|[N]=[M ® N].
The action of 4 on M ® N is given by a(m @ n)=3"a,,m® a;n.
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I Reiner [7-9] has shown that when G is a cyclic group of order n, R has
maximal ideal P and the Krull-Schmidt theorem holds for R G-modules, then
rg/ contains at least one non-zero nilpotent element if n € P2 If n ¢ P?
then ;7 contains no non-zero nilpotent element.

Let p be a fixed rational prime and A a Hopf-algebra order in KZ,. We
show in this paper that if p is odd then ,7 contains a non-zero nilpotent
element if (L)< P?, and ,7 contains no non-zerc nilpotent elements if
&(L,) & P’. This is a generalization of Reiner’s result for # = p, since for the
group ring RG, (L) = PR, the ideal generated by the order of the group.

Tate and Oort [13] have shown that when 4 is a Hopf-algebra order in
KZ, and P=(I), then A has a basis {1,X, X’..,X""", where
X? =, [1*X for some a >0 and some w,, a unit in R. We shall refer to
this basis as the “Tate Oort basis.” It will be used throughout this paper.
The ideal of integrals in 4 is a rank 1 free R-module with basis 4, = X7~ ' —
w, 1% and e(4 ) = —w, II°

R is assumed to be a discrete valuation ring of characteristic 0 with
maximal ideal P, field of quotients K and residue class field k.

All A-modules are assumed to be finitely generated torsion-free R-
modules. K is assumed to be a splitting field for G, and so the Krull-Schmidt
theorem holds for 4-modules [1].

2. THE CASE WHERE p Is ODD AND ¢(L,) < P?

In this section we prove that ,.7° contains a non-zero nilpotent element if
(L ,) < P*. We shall use the following test due to I Reiner [7] when a non-
zero element is nilpotent.

Lemva 21 If X and Y are a pair of nonisomorphic A-modules
satisfying PACX <A, PACYCA and X/PX~Y/PY as A/PA-modules,
then [X| — Y] is a non-zero nilpotent element of 7.

THEOREM 2.2. Let p be an odd prime and let A be a Hopf-algebra order
in KZ,. .7 contains a non-zero nilpotent element if e(L,) < P’

£

Progf. We shall construct an element that satisfies the conditions of
Lemma 2.1. Let X be the Tate-Oort generator for 4. Since e(L,) < P? we
have that X? =, [1®X, where a >2. Let M=A" + II4, where 4* is the
augmentation ideal of 4. M has an R-basis m, =X, m, =X",..,m, ,=X""",
my,=1II. Let N =RA + IIA, where A is the integral of A. N has an R-basis
ny=IH, n,=MX,.,n, =IX""? m,=A.

Observe that PACM S A and PA S N C A. Let M denote M/PM and N
denote N/PN. By Lemma 2.1, to show |[M]— [N] is a non-zero nilpotent
element of .7 we have to show that (a) M~ N and (b) M % N. To prove
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this consider the action of X on M. With respect to the given basis this is
given by

0 0 0 w,1® II
1 0O 0 0
0 1 o 0 0
00 1 0 0
00 - 0 0 0

PXDp
This shows that M=U® ﬁmp, where )_(__n"zp =0 and U=Y?"}Rim;
moreover, X, =m,; , for | <i<p—2 and Xm, =0, since a > 2.

The action of X on N with respect to the given basis is given by

0 0 « oI 0
10 -« 0 0
01 .« 0 0
00 - 0 0
00 - I 0

PXp

Hence N=W@®Rn,, where Xn,=0, W=3YfRn, Xa,=m,, for
1<i<p—2and X, ,=0. S0 M~N and (a) has been proved. We must
show that M and N are not isomorphic as A-modules.

Now U=>7?""Rm; is an R direct summand of M and M/U is
isomorphic to the trivial 4A-module. Suppose we have constructed a
submodule ¥ of N such that V is an R-direct summand of N, N/V ~ R and
K@y V~K®,U.

U is the augmentation ideal of 4, hence Hom (U, R) = 0. Let ¢ be any 4-
module homomorphism from M to N and consider the following diagram
with exact rows:

0—wU-"SM—R—0
Jw
0—V—NLHR—0

Here mpi =0 since Hom (U, R)=0. Therefore ¢ induces ¢’ : U— V and
®” : R > R such that the following diagram commutes:

0—oU-"SM—R—0

0O—V-—>N-—>SR-—0
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By the 5-lemma, ¢ is an isomorphism if and oniy if ¢’ and ¢” are
isomorphisms. In partlcular, if M~N as A-modules then U~V as 4-
modules and U~V as A-modules. We shall now show that U is not
isomorphic o V by showmg that the trivial A-module R is not an A-direct
sum of U, but we shall construct ¥ such that R is an A-direct summand of
V.

Looking at the representation of U it is obvious that U has no proper
direct summands by the uniqueness of the Jordan canonical form.

Now let ¥ be the R-module with basis

v, =11X, v, =X, v,_,=IX"""
v, \=A+w, I =XP""1

P

V' is R-pure and R is a principal ideal domain, hence V is an R-direct
summand of N. K ®; V is the augmentation ideal of KG, so K ®, V'~
K®zU and N/V~R since KQN/V~K@N/KRQV~KGIK®@U~K.
We see that

Xv,=v;,, for 1<ig<p—13,
Xv, ,=IX"""=Mv
Xv

b1

o1 =XP =, X = 0,11 v,

Therefore, since ¢ > 2 Xv o =0and V=37"Rv;® Rv,_,, ie., the trivial
A-module R is a direct summand of ¥V, so V& U e, N#& M. This concludes
the proof of (b). Hence N and M satisfy the conditions for Lemma 2.1 and
we may conclude that [M] — [N] is a non-zero nilpotent element of 7.

3. Toe CASE WHERE p Is ODD AND (L, )2 P

We show that if p is an odd prime, and 4 is a Hopf-algebra order in KZ ,,
then ,7 contains no non-zero nilpotent elements when &(L,) D P. In the
case where (L) =P we shall first find all indecomposable A-modules. If
e(L,)=P=1IIR, and X is-the Tate~Oort generator for 4, then X’ = w, [IX
and A ~ R[X]/(X” — w,IIX). Let S denote the ring R[X]/(X?~' —p), where
p=w,ilL

LEmMA 3.1. Let S =R|X|/(X*~' —p) and let M be a Rfree S-module.
If m is a non-zero element of M then m, mX,.., mX?™* are R-linearly
independent.

Proof. Suppose 0=372"2a mX'=m> ?-Ja,X for some a; E R. View
P~2a, X" as an element of K®, S. K®, S is a field since X’J ' —pis
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irreducible by Eisenstein’s criterion. Hence m - Y ?-7a,X'=0 and m#0
implies a;=0 for all i=0,.,p—2, so m, mX,.., mX?~? are R-linearly
independent.

Notation. Let M be a R-free S-module. For m € M, let N,, denote a
maximal S-submodule of M subject to the conditions that # € N,, and N,,
has a R-basis of the form m, mX,..., mX?~? for some m € N. Note that #i is
not necessarily equal to m, for example, if #i=rm, r ER, m € N, then in
order to get the maximal submodule we must choose the basis !
m, mX,..., mX?~* instead of i, miX,.., mXP~2. ‘

LEmMMA 3.2. Let N,, be as above. N,, is an R-direct summand of M.

Proof. Since R is a principal ideal domain we must show that N, is R-
pure. It suffices to show that for any m’' € M, IIm' € N,, implies that
m' € N,. So choose m’ € M such that IIm' € N,,. Since IIm' € N,, there
are elements o, of K for 0 i< p — 2 such that

p—2

m=> amX'. (%)
i=0

Since R is a discrete valuation ring we may assume that each «; is of the
form a; =u,/II or a,=r,;, where u, is a unit in R and r; € R. If a; = r, for all
{ then m’ € N, and the lemma is proved.

We shall prove this by contradiction. Suppose «; is not in R for some i,
and let i, be the smallest { with ;&€ R, ie., a@y..,q;_, are in R and
a; =u,/Il. Using (x) we get

X m! =y omp + o mpX + - a, _ympXP T3
+agmXP72 4 gmX P
and we let
v=X""""im! —q;, mp—a;  mXp— - —a,_ ;mXP T =a,mXP 2
vEM since Ilo;ER and «q,---a;_; are elements of R.
Xv=Xa,mX?~?=a,mp=cw,u;m. Hence m is an element of the S-
submodule ¥ of M generated by v. But v = (u,/II) mX? > & N,,, therefore

N,, & V. This contradicts the maximality of N,,, so we conclude that ¢, € R.
This proves Lemma 3.2.

ProposiTiON 3.3. Let M be an R-free S-module. Then M is a free S-
module.

Progf. The proof is by induction on the R-rank of M. Assume that the R-
rank of M is less than or equal to p — 1. Take 0 i € M. Then i, miX,...,
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mXP~? are R-linearly independent, so the R-rank of M is p— 1: Using
Lemma 3.2 we see that for some m € M and some R-submodule U of M,
M =N, ® U as R-direct sum, but the R-rank of N, is p— 1. Therefore the
R-rank of U is zero. Hence M =N,,, but N,,~ S, so M is a free S-module.
Now let the R-rank of M be ¢, and assume that every R-free S-module
with R-rank less than ¢ is S-free. Choose N, as before, i.e., N, is a pure R-
submodule of M with R-basis m, mX,..., mX?"? for some m € M, and N, is a
S-submodule of M. Hence we have a short exact sequence of S-modules

0-N,—»M->M/N,—0O.

Let B=M/N,. B is a free R-module since N, is R-pure. Hence
M =N, ® B as R-modules and the R-rank of B is less than the R-rank of M,
so by induction B~ ®'S, ie., B is a free S-module, hence 0 - N, — M -
B—0 splits as S-modules, ie, M=~ N,®B as S-modules, and
M~ @ '*' S. This proves that M is a free S-module.

PROPOSITION 3.4. If e(L,)=1IIR then up to isomorphism the only
indecomposable R-free A-modules are the trivial A-module R, the augmen-
tation ideal A and A itself.

Proof. Since  e(L,)=IIR, A~R[X]/(X?—pX) and A4 =~
R[X]/(X*~'~p)=S, as A-modules.

Let M be an R-free A-module. Set M' = {m e M|Xm=0}. M' is a free
R-module.

We have a short exact sequence of 4-modules 0 - M' - M - M/M' - 0.
M/M’ is a free S-module by Proposition 3.3.

Hence M is an extension of a free R-module by a free S-module. Let us
calculate Ext)(S, R). We have a short exact sequence of 4-modules

O XP ' —p)A—>A—-A/(XP " —p)d—0.
So since 4 is a projective A-module and 4/(X?~' —p)A ~ S, we have
0 - Hom,(S, R) - Hom (4, R) > Hom {(X? ' —p)4,R)
- Ext}(S,R)—- 0
is exact. Hence
Ext!(S, R) ~ Hom ,((X”~' — p) 4, R)/-7 m(Hom (4, R))
~ R/pR ~ k.

Let s be the S-rank of M/M’ and r the R-rank of M’'. Now [14]
Ext(M/M', M') ~ Ext(®° S, ®" R)) ~ (Ext(S, R))"™** = (k)™**, where (k)™*°
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denotes » by s matrices with entries in k. Thus M corresponds to an r X s
matrix with entries in k. Also Hom (R, S) =0, since § is isomorphic to the
augmentation ideal of A. Hence the isomorphism classes of M’s correspond
bijectively to isomorphism classes of r X s matrices with entries in & under
the actions of GL(r,R) and GL(s, Aut,(S)) >~ GL(s,R) [10]. Now k is a
field so every matrix in (k)"*® can be diagonalized by elementary row and
column operations. Since R is a principal ideal domain each such operation
comes from one in GL(r,R) or GL(s,R), so each isomorphism class
contains a diagonal matrix. Thus the indecomposable A-modules are R, S
and non-split extensions, M :R > M — §, corresponding to a non-zero
k, € k. The isomorphism class of M is determined by the isomorphism class
of &k, under the action of the units in R. But £ is the residue class field of R,
hence there is only one isomorphism class. This isomorphism class
corresponds to the non-split extension 4 : R -4 — S.

In order to find the multiplication table for ,”° we need the following
lemma and proposition.

LemMmA 3.5. Let M be an A-module. Assume M has an R-basis of
cardinality s. Then 4 ®x M ~ @®* A.

Note. Lemma 3.5 is valid for any Hopf-algebra order 4.

Proof. Let N, =4 ®z M with A-module action given by
§
b(a ® m)= ba @ m. N,~® A.

Let Ny,=A4 ®z M. The A-module action on N, is given by b(a ® m)=
2 byha® bg,m.

Define f:N,—»N, by b®m— b, ®b,m. The inverse of f
SN, N, is given by b@m— 3 by, ® S(b,,) m. Hence N, ~ N, and
AR M~D A

PROPOSITION 3.6. S®S~@®" 4 ®R.

Proof. A~k[Y]/(Y"), where k is the residue class field and AY =
Y®1+1R® Y. We will compute § ® S by computing § ® S. We can do
this since S ® S is a direct sum of indecomposable A-modules, and S, 4 and
k are not isomorphic. Hence

sos-(55)o (6r)o(64
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if and only if
Se5=(®5)0 (®r) 0 (@4)

Now § is the augmentation ideal of A. Thereore S® S has a k-basis_
VRY,i<s<p—land ICt<p—1L. Lety,=Y @Y for1<i<p—2,

Claim:

Yo, w|l0<j<p—1,1<i<p—2},

where w= 37" (—~1)*1 Y'® Y7~ is also a k-basis for § ® §.

Since Y -w =0 this will prove that S®S~ @ A @k and hence
SOS=@®PF ?APR.

To prove the claim we must prove that Y/v, for 0<j<p—1,
IiK<p—-2and w=Y72'(-1)""Y'® Y?"! are hnearly mdepeqdent

Y/, can be expressed in terms of Y° ® Y7, where s +t=i+/+ 1, s0 it
sufﬁces to prove that for fixed c,

(a) Yo, forj+i+1=cand2<c<p~— 1 are linearly independent,

v, for j+i+1l=p and w= * are
(b) Yo, for j l1=p and Y1ty g v
linearly independent,

() Yo, for j+i+1l=c and p+1<e<2(p—1) are linearly
independent.

For (a) the representation of the Y=y, for 1 <ie—1,2<e<p—1
in terms of the Y@ Y**for I kCe—1is given by

ye- i— 1 2 alek®YC k

where
4 c—i—1 . > .
s = . I?
ki c—k—1 K2
=0, k<1
Hence the Y™~ 'y, are linearly independent in case (a).

For (b) the representation of the Y?7 ! !y, for 1 <i<p—2 in terms of
Y@ YP*for 1 <k p—1is given by

p—1

p—i—1 _ k p—k

Yrritly = 3 a, Y @ vk
k=1
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where

Il

—i—1
w= (Tl )
0,

k<i

Obviously Y?~%v,, Y7 %0, ..., Yv,_, are linearly independent. Hence if w,
Y?~ .., Yv,_, are dependent, then there exists a,,...,a,_, in k such that
Yrola,v? ‘i‘lv = w. Looking at the coefficients of Y?~! ® Y, this implies
that (1) ~2a;=p— 1. We shall show by induction that ;=1 for all i.
Hence (1) ylelds p —2=p—1, which is a contradiction, and we can
conclude that w, Y”~*v,,..., Yv,_, are linearly independent. Clearly a, = 1.
Assume that ¢, =a,=--- =¢a;_, =1 and consider

p—2 p—3 p—U—D) «—@
a+(_1>+(i__2>+-'+< ()
We will show that
L p—s .
= d
Z(i—s+l>p0 if iisodd,

-2 if iiseven.

Now
< p—s )_ (p—s)
i—s+1) (—s+D(p—i—1)
_(p—=D--(p—s)
T (i—s+ 1)
— i~s+1 i!
> b (i—s+ DI (s— 1)
i—s+1 i
=D (s—1>'
Hence
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=03 ()~ e = D
=—(~1)—1

=2 if 7iseven,

=0 if iisodd.

Hence if i is even a; —2=,p — 1, that is, a; =, 1, and if { is odd @, =, 1
For (c) the representation of the Y ' ~'v, for ¢ — p <i < p — 2 in terms of
VA Y kfore—(p—1)<k<p—1is given by

p—1
YC7i_IU[: 2 aki Yk® YC-—k’
k=c—(p—1)
where
c—i—1
() e
=0, k<i.

A direct computation shows that

)= (p—=)p—=2)-(p—(2p—c—1))

det ; s
(@ @2p—c—1)!
which is clearly different from zero for c=p + 1, p + 2,..., 2p — 2. Since the
Y*® Y% are linearly independent, this implies that the Y '~'u, are

linearly independent. This concludes the proof of Proposition 3.6.

TusoreM 3.7. Let p be an odd prime and let A be a Hopf-algebra order
in KZ,. 7 contains no non-zero nilpotent elements if e(L ;)2 P.

Proof. If ¢(L,)=R, then A4 is separable [5]| and so , 7 = 7, which
has no nilpotent elements [2].

If &(L,)=P, then using Proposition 3.6 and Lemma 3.5 we have the
multiplication table for ,.7° with respect to the Z-basis [R], [S], [4]:

[R] [S] (4]
[R]  [R] [S] [4]
s} [s] (p—2)[4] + [R] (p—1)4]

4] 4] (p—Dl4] rl4]
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0 ®, +7 has a basis of orthogonal idempotents E, = 1/p [4], E,=3([R] +
[S]— [4]) and E, = 1([R] — [S] + (p— 2)/p |4]). Therefore 0 ®, .7 is a
commutative semisimple ring. Hence ,7 < (Q®, ,” has no non-zero
nilpotent elements and the proof of Theorem 3.7 is complete.

4. THE CASE WHERE p =2

Let G be the group of order 2 and as before let 4 be a Hopf-algebra order
in KG containing RG, where &(L,)=pR, p=w,II% Also let S denote
R[X]/(X — p). First we classify the indecomposable A-modules. Then we
compute the multiplication table for the integral representation ring and,
finally, we prove that the integral representation ring has no non-zero
nilpotent elements if p = 2.

PrROPOSITION 4.1. The R-free indecomposable A-modules are R, S and
Joreach i,i=0,1,..,a—1, a module M;. Note A =M,.

Proof. Let M be an R-free A-module. Set M' = {m € M| Xm=0}. M’ is
a free R-module. We have a short exact sequence of 4-modules 0 - M’ —
M->M/M' - 0.

M/M' is a free S-module, since it is a finitely generated torsion-free R-
module and S is isomorphic to R. Hence M is an extension of a free R-
module by a free S-module. To calculate Ext}(S, R) consider the short exact
sequence of A-modules

0-X—p)4d->A4->A4/(X—p)Ad—0.
Now A/(X —p)d ~ S and 4 is a projective 4-module. Hence

0 - Hom,(S, R) - Hom (4, R} - Hom (X —p 4, R)
— Ext}(S,R)-0
is exact, and ‘
Ext}(S, R) ~ Hom,((X — p4, R)/-” m Hom (4, R) ~ R/pR).

Let s be the S-rank of M/M' and r the R-rank of M’. Now [14]
Exty,(M/M',M’') ~ Extj(®°S, ®"R) ~ (Ext}(S, R))™** = (R/pR)*".
(R/pR)™* denotes r by s matrices with entries in R/pR. Thus M corresponds
to an r X s matrix with entries is R/pR. The same argument as the one used
in Proposition 3.4 shows that there is a one-to-one correspondence between
isomorphism classes of non-split extensions M:R->M—- S and
isomorphism classes of non-zero elements r € R/pR under the action of the
group of units in R. Recall p = w,II*, Thus for each i =0, 1,...,a — 1 we get
an isomorphism class represented by a non-split extension M R > M;— S,
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and up to isomorphism the R-free indecomposable 4-modules are R, S and
the Ms for i=0,1,.,a—1. M; has an R-basis v;, and v,, such that
Xv;, =0 and Xv,, = —I*v;, + ull'v,;, where u is a unit in R. A has an R-
basis 1 and X. To see that M,~A4 change this to v, =X+ I7* and
v, =1+ X, then Xv, =0 and Xv, = -II%v, + v,.

PrRoOPOSITION 4.2. With the above notation the multiplication table jor
s
4

(R] [S] M, - (a,] (M,

R R (ST M. AN
[S] [S] [R] [M_i] (M, ] [M,]
M, ] M, ] M, ] 2[M, ] 2{M | 2{M,}
[M1] [Ml] [MI] 2[M1] 2{M1} ZIMO}
iMGJ iMo} {LMO] 2{Mo} 2&”0} 2iM-a]

Proof. The Tate—Oort basis for 4 is 1, X, where X P=gX and 4X =
IX+XR1I+bXR®Xanda-b=2.
4~ is commutative and [R] is the identity, so it suffices to show that

@ [S][S]=IR],
(b) [S][M,]=[M,], and
© M]M]=2M

J min(j,i)}'

(a) Let s be an R-generator for §, then § ® § is generated by s ® s
and

AXG®Rs)=—a(s ®s)—als ®s) + a*b(s ® s)
=0, since ab=2.

(b} S &® M, has R-generators s ® v, and s ® v;,,

X ®@ v ) =—als ®v;),
X ®v,)=—als ®vy,)+5s® (—avy, +ull'v;,)
+ b(—as ® (—av,, + ull'v,;))
=(—a—a+a*h)(s®v;)
+ (ul' — abIT'u)(s ® v;,)
= —ull'(s ® v;,), since ab=2.
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Choose j and u, such that », [I'*/ = a and an R-basis
X, =5 Qv —uu, (s @ vyy),
X, =5®v;, for S®M,.

Now XX, =0 and XX, = —aX, — ulI'X,. Hence [S}[M,| = [M,].
() M;® M, has R-generators v;; ® ;y, Uiy ® Vjp» Ui ® 015 013 @ Vo
AX(v; ®v;) =0,
AX(, ® v;y)=—av; @Vj; + ujHjU“ ® vy,
AX (v, ® ;) = —av;, @ vy + u v, ® vy,
AX Wy, ® v)) = (—avy, + udl'vy) ® v),
+ 0, ® (—avy, + u,Iv;,)
+ b(—av,, + u; ;) ® (—avy, + ujHjUjl)
= bl uuv, @v;)
+ (udT — w, T'ab)(vy ® vj)
+ (Al — udlab)(v,, ® v;,)
+(-a—a+a’b)(v, ®vp)
= all’*uu;v, @ v — w4, 10 @ vpy
—u v, @ ).
Assume j<i and choose v ®Upy, Uy ®Up, u,bll'v; ® vj, —
(uyfu;) I 70, ® vj, — v, ® vy, vy @ ), as an R-basis for M; ® M;. To see
that [M;][M;] =2[M,], note
AX(upI'v,y ® v;y — (wy/u) I vy @ v — v @ 1))
= —(u/u) ' (—avy ® vy, + u v, @ v)y)
=—(—av, ® v;y + u; v @ vjy)
= —a(—(u/u;) 1" 70,y @ vjy — vy @ vjy + w; b0, @ ;).

We can now prove the following:
THEOREM 4.3. Let p=2, let G be the cyclic group of order 2 and let A

be a Hopf-algebra order in KG containing RG. The integral representation
ring ,~ does not contain any non-zero nilpotent elements.
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Proof. Q ®, ,~ has a basis of orthogonal idempotents.

Hence .7 has no nilpotent elements.
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