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Abstract

We obtain necessary and sufficient conditions for a finitely supported monomial ideal I in a poly-
nomial ring of dimension at least three for MI to be integrally closed. This is obtained via the
higher-dimensional analogue of the formula of Hoskin and Deligne for the length of a finitely sup-
ported ideal in a regular local ring.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

It is well known that the theory of complete ideals in a two-dimensional regular lo-
cal ring was founded by Zariski [33]. His work was inspired by the birational theory of
linear systems on smooth surfaces. Due to the complexity in higher dimension, an higher-
dimensional analogue was not easy to obtain, as observed by Zariski and evident from the
work of Lipman, Cutkosky, Piltant, Lejeune, etc. For example see [1,3,20,21]. Their work
also reveals that a trivial generalization of Zariski’s work is not possible to obtain.

Zariski proved that in a two-dimensional regular local ring product of complete ideals
is complete. Moreover, every complete ideal can be uniquely factorized as a product of
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simple complete ideals. Both these results do not hold true in higher dimension. A sub-
stantial amount of work on the unique factorization has been done by Cutkosky, Lipman
and Piltant.

Of recent interest is the following question. If I is an ideal in a Noetherian local ring
(R,M), when is MI integrally closed (see [2,12])? This is closely related to the Cohen–
Macaulayness of the fiber cone of I , F(I) := R[I t] ⊗R R/M = ⊕

n�0 In/MIn. Hence
two topics of interest arise: the integral closedness of MI and the Cohen–Macaulayness
of F(I). By an example we show that if the dimension of the ring is at least three and I is
a finitely supported complete ideal in a regular local ring, then the fiber cone of I need not
be Cohen–Macaulay, in contrast to the case of dimension two where the fiber cone of an
M-primary complete ideal is always Cohen–Macaulay [6, Corollary 2.5].

Let (R,M) be a regular local ring. In this paper we give necessary and sufficient condi-
tions in terms of the number of generators of a finitely supported monomial complete ideal
I for MI to be integrally closed. In a two-dimensional regular local ring, if I is an M-
primary ideal, then μ(I) � 1 + o(I), where o(I) is the M-adic order of I and μ(I) is the
minimal number of generators of I . If I is complete, then equality holds [28, Lemma 3.1].
More generally, if I is an M-primary complete ideal in a regular local ring R of dimension
d � 2, then μ(I) �

(
o(I )+d−1

d−1

)
[5]. If I is finitely supported, then, μ(I) � o(I)d−1 + d − 1

(see Theorem 5.3). There exists examples of finitely supported complete ideals where the
upper bound is attained (see Example 7.1).

In this paper we prove:

Theorem 1.1. Let I be a finitely supported monomial complete ideal in a regular local
ring (R,M) of dimension at least three. Assume that k = R/M is algebraically closed
field. Then MI is integrally closed if and only if

μ(I) =
(

o(I) + d − 1

d − 1

)
.

An essential ingredient in the proof is the formula of Hoskin and Deligne which ex-
presses the length of a finitely supported complete ideal in terms of the order of the strict
transform of I (see Theorem 1.4). Note that the condition “finitely supported” is neces-
sary (see [21, Lemma 1.21.1]). This formula was known only for complete ideals of height
two in a two-dimensional regular local ring and was proved independently by Hoskin [11]
and Deligne [8]. Due to several hurdles the higher-dimensional analogue was not easy to
obtain. A formula in dimension three was obtained by Lejeune-Jalabert [20]. One of the
main obstacles is that the theory of complete ideals in a two-dimensional regular local ring
which was founded by Zariski [33] does not directly generalize to higher dimension even
though the definitions do. In this paper we obtain the higher-dimensional analogue of this
length formula.

Let I denote the integral closure of I . A formula for �(R/In) for all n � 1 was ob-
tained by Morales in [23]. In fact, his formula holds true for a finitely generated normal
k-algebra over an algebraically closed field. He also gave a geometrical interpretation for
the coefficients of the Hilbert–Samuel polynomial of I .

For the sake of completeness we state the formula of Hoskin and Deligne:
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Theorem 1.2. ([11, Theorem 5.2], [8, Theorem 2.13]) Let (R,M) be a two-dimensional
regular local ring with infinite residue field. Let I be an M-primary complete ideal in R.
Let CI = {Q0,Q1, . . . ,Qt } be the base points of Iand Ri the local ring at Qi (R0 = R).
Then

�

(
R

I

)
=

t∑
i=0

(
o(IRi ) + 1

2

)
[Ri/Mi :R/M]

where Mi is the maximal ideal of Ri (M0 = M) and [Ri/Mi :R/M] denotes the degree of
the field extension Ri/Mi ⊇ R/M .

In higher dimension one can verify that:

Theorem 1.3. Let (R,M) be a regular local ring of dimension d with infinite residue field.
Let I be a finitely supported complete ideal. Let CI = {Q0,Q1, . . . ,Qt } be the base points
of Iand Ri the local ring at Qi (R0 = R). Then

�

(
R

I

)
�

t∑
i=0

(
o(IRi ) + d − 1

d

)
[Ri/Mi :R/M]

where Mi is the maximal ideal of Ri (M0 = M) and [Ri/Mi :R/M] denotes the degree of
the field extension Ri/Mi ⊇ R/M .

If the dimension of the ring is at least three then the inequality in Theorem 1.3 may be
strict (see Examples 7.2, 7.3). The gap between the terms on the left and the right can be
estimated in terms of the length of the right derived functors of the direct image sheaf.

In this paper we prove:

Theorem 1.4. Let (R,M) be a regular local ring. Assume that k = R/M is an
algebraically closed field. Let I be a finitely supported complete ideal. Let CI =
{Q0,Q1, . . . ,Qt } be the base points of I and let σ :X(CI ) → SpecR be the birational
map obtained by a sequence of blowing up of points of CI . Then

�

(
R

I

)
+

d−2∑
i=1

(−1)i+1�
(
Riσ∗(IOX(CI ))

) =
t∑

i=0

(
o(IRi ) + d − 1

d

)

where Ri the local ring at the point Qi (R0 = R) and Mi is the maximal ideal of Ri

(M0 = M).

As a consequence of Theorem 1.4 we are able to recover the formula for the multiplicity
and the mixed-multiplicities of finitely supported complete ideals [17,19,26].

It is evident, from Theorems 1.3 and 1.4 that
∑d−2

i=1 (−1)i+1�(Riσ∗(IOX(CI ))) � 0.
This inequality can be strict if I is not a monomial ideal (see Example 7.2). If I is a
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monomial ideal, then
∑d−2

i=1 (−1)i+1�(Riσ∗(IOX(CI ))) = 0. This is a consequence of the
length formula obtained by Morales [24, Lemma 3]. We independently obtain a closed
formula for finitely supported monomial ideals (see Theorem 4.3) which implies the same
result.

We also list a few applications. Let (R,M) be a regular local ring of dimension d � 2.
Then the graded ring associated to the filtration F = {In}n�0, G(F) := ⊕

n�0 In/In+1 is

of interest. The normalization of the Rees ring R[I t] denoted by R[I t] is the graded ring⊕
n�0 In. Since the depth of G(F) � 1, depth(G(F)) = depth(R[I t] ⊗R R/I).
In a two-dimensional regular local ring, it is well known that if I is a complete ideal

then G(F) = G(I) := ⊕
n�0 In/In+1 and G(I) is Cohen–Macaulay [18,22]. Even in the

three-dimensional case G(I) need not be Cohen–Macaulay. The first example was given by
Cutkosky in [4]. In this paper, under certain conditions we are able to deduce the Cohen–
Macaulayness of G(F) for a finitely supported complete ideal in a regular local ring of
dimension three.

We end this paper with some examples which probably will put more light on the results
of this paper.

2. Preliminaries

Let (R,M) be a regular local ring. For all the definitions in this section we refer to
[1,21,33].

Let I be an ideal in R. The integral closure of I denoted by I is the set

{
x ∈ R | xn + a1x

n−1 + · · · + an = 0; aj ∈ I j , 1 � j � n
}
.

The completion of I is the ideal I ′ = ⋂
v∈S IRv where S denotes the set of all non-trivial

valuations which are non-negative on R. Zariski proved that I ′ = I . Hence the integral
closure of I is an ideal of R. An ideal I is integrally closed or complete if I = I .

Let X be a non-singular variety and let O be a point on X. Put R = OX,O and let M

be the maximal ideal of R. Let f :X1 → SpecR denote the blowing up of M . The (first)
quadratic transforms of R are the local rings OX1,P , where P ∈ f −1{M} is a point on X1.

A point Q on a variety Y is infinitely near to a point O on X, Q � O in symbol, if

(1) there exists a sequence of blowing ups

σ :Y = Xn
fn−→ Xn−1

fn−1−→ · · ·−→X1
f1−→ X0 = SpecR

where each fi+1, 0 � i � n − 1, is obtained by blowing up Mi , the maximal ideal of
OXi,Pi

, Pi ∈ f −1
i {Mi−1} ⊆ Xi (M0 = M , P0 = O);

(2) Q ∈ f −1
n−1{Mn−1}.

Put Ri := OXi,Pi
and S := Rn. The sequence R = R0 ⊂ R1 ⊂ · · · ⊂ Ri ⊂ · · · ⊂ Rn = S

is called the quadratic sequence from R to S. We say that S is infinitely near to R and
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denote it by S � R. Given any ideal I ⊂ R, the transform of I in S = Rn = OXn,Pn denoted
by IS is defined inductively as follows:

(1) IR0 = I ;
(2) IRi = M

−mi−1
i−1 IRi−1 , where mi−1 = o(IRi−1) = max{n | Ii−1 ⊆ Mn

i−1}.

The point basis of a non-zero ideal I is a family of non-negative integers B(I ) =
{o(IS) | S � R}. We say that a point Q ∈ Y is a base point of I if Q � O and o(IS) < ∞,
where S = OY,Q. We say that an ideal I is finitely supported if I �= 0 and if I has at most
finitely many base points [21]. For a finitely supported ideal I we will denote the set base
points of I by CI = {Q0 = O,Q1, . . . ,Qt }.

3. Hoskin–Deligne formula for finitely supported complete ideals

Let k be an algebraically closed field and let X be a non-singular variety of dimension
at least two. Let O ∈ X be a point. Put R = OX,O . Let M be the maximal ideal at O .

The notion of ∗-product was introduced in [21]. Let I and J be ideals in R. The
∗-product of I and J denoted by I ∗ J is the ideal IJ . An ideal I is ∗-simple of it cannot
be decomposed as a ∗-product of proper complete ideals [21]. Notice that I ∗ J = I ∗ J .

To prove Theorem 1.4 we first need to consider the first blow up. The following lemma
is basically a consequence of [21, Lemma 2.3]. We prove it since it is the crucial result in
proving Theorem 1.4.

Lemma 3.1. Let f :X1 → SpecR denote the blowing up of M . Let I be the coherent
OX1 -ideal whose stalk at any point P ∈ f −1{M} is a complete ideal and IP = OX1,P

if P /∈ f −1{M}. Then there exists a complete ideal I ⊆ R such that IP = IOX1,P , where
P ∈ f −1{M}. Moreover, there exists a positive integer N such that for all n � N

(1) Rjf∗(Mo(I)+nI) = 0 for all j > 0;
(2) �R

(
R

Mn ∗ I

)
=

(
o(I) + n + d − 1

d

)
+

∑
P∈f −1{M}

�R

(OX1,P

IP

)
.

Proof. The existence of a complete ideal I ⊆ R satisfying the assumptions in the lemma
was proved in [21, Lemma 2.3].

From [10, Proposition 8.5, p. 251]

Rjf∗
(
Mo(I)+nI

) = Hj
(
X1,M

o(I)+nI
)

and for j � 0 and all n large, Hj(X1,M
o(I)+nI) = 0.

We now prove (2). The exact sequence

0 → Mo(I)+nIOX → Mo(I)+nOX → MnOX /IOX → 0
1 1 1 1
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gives the long exact sequence

0 → H 0(X1,M
o(I)+nIOX1

) → H 0(X1,M
o(I)+nOX1

) → H 0(X1,M
nOX1/IOX1

)
→ H 1(X1,M

o(I)+nIOX1

) → H 1(X1,M
o(I)+nOX1

) → ·· · . (1)

Now H 0(X1,M
o(I)+nIOX1) = MnI and H 0(X1,M

o(I)+nOX1) = Mo(I)+n (see
[21, proof of Lemma 2.3]). Since H 0(X1,M

nOX1/IOX1) = ∑
P∈f −1{M} �(OX1,P /IP )

and for all n � 0, H 1(X1,M
o(I)+nIOX1) = 0 (see [10, Theorem 5.2, p. 228]), plugging

these in the exact sequence (1) gives the result. �
Proposition 3.2. [21, Proposition 2.1, Corollary 2.2] Let S � R. Then there exists a unique
∗-simple complete ideal pRS ⊆ R satisfying the following properties:

(1) R/pRS is artinian;
(2) pRR is the maximal ideal of R;
(3) For all regular local rings T with S � T � R, pT S = (pRS)T .

We now apply Lemma 3.1 recursively to a sequence of point blowing ups.

Lemma 3.3. Let I be a finitely supported ideal and CI = {Q0 = O,Q1, . . . ,Qt } the base
points of I . Let Ri denote the local ring at Qi ∈ CI . Put mi = o(IRi ). There exists integers
N0, . . . ,Nt such that for all ni � Ni ,

(1) Rjf∗

( ∗t∏
i=0

(
p

ni

RRi
∗ I

)
OX1(CI )

)
= 0 for all j � 0;

(2) �

(
R∏∗t

i=0 p
ni

RRi
∗ I

)
=

t∑
i=0

(
mi + ∑

Rj �Ri
nj + d − 1

d

)
.

Here
∏∗ denotes ∗-product.

Proof. The first part follows from [10, Proposition 8.5, p. 251].
We prove (2) by induction on t = |CI |−1. If t = 0, then I = Mn for some n > 0 and (2)

follows trivially.
Let t > 0. Let f :X1 → SpecR denote the blowing up of SpecR at M . Let I be the

OX1 -ideal sheaf whose stalk at every point Qi ∈ CI ∩ X1 is

IQi
= IRi = M−o(I )IOX1,Qi

and IQ = OX1,Q for Q ∈ X1 \ (X1 ∩ CI).
Let CIQi

= {Qi(0) = Qi, . . . ,Qi(si )}. For all Qi ∈ X1 ∩ CI , CIQi
⊂ CI and hence

|CI | < |CI |.

Qi
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By induction hypothesis, for each Qi ∈ CI ∩ X1, there exist integers Ni(0), . . . ,Ni(si )

such that for all ni(j) � Ni(j), 0 � j � si ,

�

( OX1,Qi∏∗si
j=0 p

ni(j)

RiRi(j)
∗ IQi

)
=

si∑
j=0

(
mi(j) + ∑

Rk�Ri(j)
nk + d − 1

d

)
. (2)

Fix ni � Ni , 0 � i � t . Let J (n1, . . . , nt ; I ) be the OX1 -ideal sheaf whose stalk at every
point Qi ∈ CI ∩ X1 is

J (n1, . . . , nt ; I )Qi
:=

( ∗si∏
j=0

p
ni(j)

RiRi(j)
∗ IQi

)

and J (n1, . . . , nt ; I )Q = OX1,Q for Q ∈ X1 \ (X1 ∩ CI). Let n0 � 0 and for each n0 let

J (n0, n1, . . . , nt ; I ) = p
n0
RR ∗

∗t∏
j=1

p
nj

RRj
∗ I.

Here pRR = M , the maximal ideal of R. Then

M−o(J (n0,n1,...,nt ;I ))J (n0, n1, . . . , nt ; I )OX1,Qi
= J (n1, . . . , nt ; I )Qi

at all points Qi ∈ X1 ∩ CI .
Now by Lemma 3.1 there exists an integer N0 such that for each n0 � N0,

�R

(
R

J(n0, n1, . . . , nt ; I )

)

= �R

(
R

p
o(J (n0,n1,...,nt ;I ))
RR

)
+

∑
Qi∈CI ∩X1

�OX1,Qi

( OX1,Qi

J (n1, . . . , nt ; I )Qi

)

=
(

o(I) + n0 + · · · + nt + d − 1

d

)
+

∑
Qi∈CI ∩X1

�OX1,Qi

( OX1,Qi

J (n1, . . . , nt ; I )Qi

)
. (3)

Substituting (2) in (3) proves the lemma. �
Let CI = {Q0 = O,Q1, . . . ,Qt } denote the base points of a finitely supported ideal I .

Let X(CI ) denote the variety obtained by blowing up Xt at Qt . Let Ei be the excep-
tional divisor obtained by blowing up Qi and let E∗

i denote the exceptional divisor
in Xh, i � h � n + 1. Let AI = {CI ,B(I)} where B(I ) = {m0, . . . ,mt } is the point ba-
sis of I . Then D(AI ) = ∑t

i=0 miE
∗
i is the divisor associated to the ideal sheaf IOX(CI ).

Let Ri be the regular local ring at Qi . Then the exceptional divisor corresponding to
(
∏t

p
ni ∗ I )OX(C ) is

∑t
hiE

∗ where hi = mi + ∑
nj .
i=0 RRi I i=0 i Rj �Ri
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Proof of Theorem 1.4. Denote Li = OX(CI )(−E∗
i ) and let hi = mi + ∑

Rj �Ri
nj . We

have

χ
(
L⊗h0

0 ⊗ · · · ⊗L⊗ht
t

)
= �

(
R∏t

i=0 p
ni

RRi
∗ I

)
+

d−1∑
i=1

(−1)i+1�

(
Riσ∗

(
t∏

i=0

(
p

ni

RRi
∗ I

)
OX(CI )

))

(
by [22, Theorem 1.4]

)
=

t∑
i=0

(
mi + ∑

Rj �Ri
nj + d − 1

d

)
+

d−1∑
i=1

(−1)i+1�

(
Riσ∗

(
t∏

i=0

(
p

ni

RRi
∗ I

))
OX(CI )

)

(by Lemma 3.3) (4)

for all n0, . . . , nt � 0.
On the other hand, for all non-negative integers r0, . . . , rt there exist rational numbers

ai0,...,it such that [29, Theorem 9.1]

χ
(
L⊗r0

0 ⊗ · · · ⊗L⊗rt
t

) =
∑

i0+···+it�d

ai0,...,it

(
r0 + i0

i0

)
. . .

(
rt + it

it

)
. (5)

If we put ri = hi in (5), then for n0, . . . , nt � 0 large the polynomials in (4) and (5)
agree. This gives

ai0,...,it =
⎧⎨
⎩

1, if (i0, . . . , it ) = (0, . . . , d, . . . ,0),

−1, if (i0, . . . , it ) = (0, . . . , d − 1, . . . ,0),

0, otherwise.

Hence

χ
(
L⊗h0

0 ⊗ · · · ⊗L⊗ht
t

) =
t∑

i=0

[(
hi + d

d

)
−

(
hi + d − 1

d − 1

)]

for all values of h0, . . . , ht � 0. Hence (5) is true for all values of n0, n1, . . . , nt . If we put
n0 = n1 = · · · = nt = 0 in (4) and (5) we get

�

(
R

I

)
=

t∑
i=0

(
mi + d − 1

d

)
−

d−1∑
i=1

(−1)i+1Riσ∗(IOX(CI )).

It remains to show that Rd−1σ∗(IOX(CI )) = 0. Consider the exact sequence

0 → F →OX(C ) → IOX(C ) → 0

I I



C. D’Cruz / Journal of Algebra 304 (2006) 613–632 621
where F is a coherent OX(CI )-module. This gives the exact sequence

Rd−1σ∗(OX(CI )) → Rd−1σ∗(IOX(CI )) → Rdσ∗F → Rdσ∗(OX(CI )).

Since σ is the composition of sequence of blowing ups and X is non-singular,
Riσ∗(OX(CI )) = 0 for all i � 1. And Rdσ∗F = 0 since σ−1{M} has dimension d − 1.
Hence, Rd−1σ∗(IOX(CI )) = 0. �

4. The length formula for finitely supported monomial ideals

The following result was proved by Morales:

Theorem 4.1. [24, Lemma 6] Let I1, . . . , It be monomial ideals of height d in R =
k[x1, . . . , xd ]. Then for all non-negative integers r1, . . . , rt , �(R/I

r1
1 . . . I

rt
t ) is a polyno-

mial of degree d in r1, . . . , rt .

Remark 4.2. Let d � 2 and let R = k[x1, . . . , xd ] be a polynomial ring in d variables over
a field k and let I ⊆ R be a complete ideal of height d .

(1) Since M = (x1, . . . , xd) is the only maximal ideal which contains I , �(R/I) =
�(RM/IM).

(2) The first quadratic transform of RM are the local rings Si = R[M/xi]M/xi
. Each Ti =

R[M/xi] is a polynomial ring in d variables over the field k.
(3) Let I be a monomial ideal in R and o(I) = max{n | I ⊆ Mn}. Then ITi := x

−o(I )
i I is

a monomial ideal and ISi = I
Ti

Mi
, where Mi is the maximal ideal of Si .

(4) If I is a finitely supported ideal, then �(Ti/I
Ti ) is finite and �(Ti/I

Ti ) = �(Si/I
Si ).

Hence it is possible to use the theory of length of ideals in local rings to obtain our main
result.

Theorem 4.3. Let I be a finitely supported monomial ideal in a polynomial ring R =
k[x1, . . . , xd ]. Let M = (x1, . . . , xd). Then

�(R/I) =
∑
S�R

(
o(IS) + d − 1

d

)
[S/MS :R/M]

where [S/MS :R/M] denotes the degree of the field extension S/MS ⊇ R/M . Here MS is
the maximal ideal of S and MR = M .

Proof. We prove the theorem by induction on �R(R/I). If �(R/I) = 1, then I = M and
the result is trivially true.
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Let �(R/I) > 1. Let Si denote the first quadratic transform of R and Mi the maximal
ideal of Si . By Theorem 4.1, �(Si/(ISi )s) is a polynomial in s for all s � 0. Fix s > 0.
Then by Lemma 3.1, there exists an integer rs so that for all r � rs ,

�
(
R/MrI s

) =
(

r + so(I ) + d − 1

d

)
+

∑
Si

�R

(
Si/

(
ISi

)s)

=
(

r + so(I ) + d − 1

d

)
+

∑
Si

�Si

(
Si/

(
ISi

)s)[Si/Mi :R/M]. (6)

But �(R/MrI s), is a polynomial in r, s for all r, s � 0. Put r = 0 and s = 1 in (6). Then
we have

�(R/I) =
(

o(I) + d − 1

d

)
+

∑
Si

�Si

(
Si/ISi

)[Si/Mi :R/M].

Since �Si
(Si/ISi ) < �R(R/I), the result follows by induction hypothesis. �

5. Mixed-multiplicities and the integral closedness of MI

Let (R,M) be a normal local ring of dimension d with infinite residue field. It is well
known that if I1, . . . , Ig are M-primary ideals in R, then for all n1, . . . , ng � 0,

�
(
R/I

n1
1 . . . I

ng
g

) =
∑

i1+···+ig�d

ei1,...,ig (I1, . . . , Ig)

(
n1 + i1

i1

)
. . .

(
n1 + ig

ig

)

where ei1,...,ig (I1, . . . , Ig) are integers. For i1 + · · · + ig = d , ei1,...,ig are the mixed-
multiplicities of the ideals I1, . . . , Ig (see [28,30]). We let i denote the multi-index
{i1, . . . , ig}, such that

∑
ij = d .

For the rest of this section we will assume that k is an algebraically closed field. There is
a more precise formula for the mixed multiplicities of finitely supported monomial ideals.

Theorem 5.1. ([17, Corollary 3.14], [26, Proposition 2.2]) Let I1, . . . , Ig be finitely sup-
ported ideals in a regular local ring (R,M) of dimension d . Then

ei(I1, . . . , Ig) =
∑
S�R

(
o
(
IS

1

))i1 . . .
(
o
(
IS
g

))ig .

Proof. Imitating the proof of Lemma 3.1 for several ideals, we get that for fixed n1, . . . , ng

there exists an N0 � 0 depending on n1, . . . , ng such that for all n0 � N0
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�
(
R/Mn0I

n1
1 . . . I

ng
g

)
=

(
n0 + n1o(I1) + · · · + ngo(Ig) + d − 1

d

)
+

∑
Si

�Si

(
S/

(
I

Si

1

)n1 . . .
(
I

Si
g

)ng
)

where Si are the first quadratic transform of R. Choose n0, n1, . . . , ng � 0 so that both

�(R/Mn0I
n1
1 . . . I

ng
g ) and �Si

(S/(I
Si

1 )n1 . . . (I
Si
g )ng ) are polynomials. Now use the fact that

e0,i1,...,ig (M, I1, . . . , Ig) = ei1,...,ig (I1, . . . , Ig). �
It is well known that e0,...,d,...,0(I1, . . . , Ig) = e(Ii) where (0, . . . , d, . . . ,0) denotes the

tuple where d is at the ith spot [27]. When we deal with two ideals, we will use the notation
ei(I | J ) := ed−i,i (IJ ). Note that ei(I | J ) = ei(I | J ).

In a regular local ring of dimension at least two, for any M-primary complete ideal we
have e1(M | I ) = o(I) ([31, Theorem 4.1], [32, Lemma 1.1]). We have an analogue of this
result for finitely supported complete ideals in regular local rings of dimension at least two.

As an immediate consequence we have:

Corollary 5.2. Let I be finitely supported ideal in a regular local ring (R,M) of dimension
d � 2. Then

(1) e(I ) = ∑
S�R o(IS),

(2) ei(M | I ) = o(I)i for 1 � i � d − 1.

Proof. Both (1) and (2) follow directly from Theorem 5.1. �
It is well known that for every M-primary complete ideal in a two-dimensional regular

local ring, μ(I) = 1 + o(I). We have a generalization of this result.

Theorem 5.3. Let I be a finitely supported ideal in a regular local ring (R,M) of dimen-
sion d � 2. Assume that R/M is an algebraically closed field. Then

(1) �(I/MI) �
(
o(I )+d−1

d−1

)
and equality holds if and only if

d−2∑
i=1

(−1)i+1�
(
Riσ∗(IOX(CI ))

) = 0.

(2) Assume that I integrally closed.
(a) MI is integrally closed of and only if

μ(I) =
(

o(I) + d − 1
d − 1

)
+

d−2∑
i=1

(−1)i+1[�(Riσ∗(IOX(CI ))
)

− �
(
Riσ∗(MIOX(CI ))

)]
.
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(b) μ(I) �
(
o(I )+d−1

d−1

)
and equality holds if and only if MI is integrally closed and∑d−2

i=1 (−1)i+1�(Riσ∗(IOX(CI ))) = 0.
(3) For i = 1, . . . , d − 1,

(
o(I) + d − 1

d − 1

)
� μ(I) � o(I)d−i + d − i + (i − 1) �(R/I).

In particular when i = 1, μ(I) � o(I)d−1 + d − 1.

Proof. We can choose an element x ∈ M \ M2 such that MI :xR = I [5, Lemma 3.1].
The exact sequence

0 → I

MI
→ Mo(I)

MI

.x−→ Mo(I)

MI
→ Mo(I)

MI + xMo(I)
→ 0

gives

�

(
I

MI

)
= �

(
Mo(I)

MI + xMo(I)

)
� �

(
Mo(I)

Mo(I)+1

)
=

(
o(I) + d − 1

d − 1

)
.

This proves (1).
From Theorem 1.4 it follows that

�(R/MI) = �(R/I) −
(

o(I) + d − 1

d

)
+

(
o(I) + d

d − 1

)

+
d−2∑
i=1

(−1)i+1�
(
Riσ∗(IOX(CI ))

) −
d−2∑
i=1

(−1)i+1�
(
Riσ∗(MIOX(CI ))

)

= �(R/I) +
(

o(I) + d − 1

d − 1

)
+

d−2∑
i=1

(−1)i+1�
(
Riσ∗(IOX(CI ))

)

−
d−2∑
i=1

(−1)i+1�
(
Riσ∗(MIOX(CI ))

)
.

Hence

�

(
I

MI

)
=

(
o(I) + d − 1

d − 1

)
+

d−2∑
i=1

(−1)i+1�
(
Riσ∗(IOX(CI ))

)

−
d−2∑

(−1)i+1�
(
Riσ∗(MIOX(CI ))

)
.

i=1
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Applying (1) we get

d−2∑
i=1

(−1)i+1�
(
Riσ∗(IOX(CI ))

)
�

d−2∑
i=1

(−1)i+1�
(
Riσ∗(MIOX(CI ))

)
.

Recursively we can prove:

d−2∑
i=1

(−1)i+1�
(
Riσ∗(IOX(CI ))

)
�

d−2∑
i=1

(−1)i+1�
(
Riσ∗(MIOX(CI ))

)
�
...

�
...

�
d−2∑
i=1

(−1)i+1�
(
Riσ∗

(
MnIOX(CI )

))
.

But

d−2∑
i=1

(−1)i+1�
(
Riσ∗

(
MnIOX(CI )

)) = 0

for n � 0. Now, equality holds if and only if

d−2∑
i=1

(−1)i+1�
(
Riσ∗

(
MnIOX(CI )

)) = 0

for all n � 0.
If MI is integrally closed if and only if MI = MI . Now apply (1). This proves (2)(a).

(2)(b) follows from that fact that μ(I) � �(I/MI).
From [7, Theorem 2.2] it follows that, for all i = 1, . . . , d − 1,

μ(I) � d − i + (i − 1)�

(
R

I

)
+ ed−i (M | I )

= d − i + (i − 1)�

(
R

I

)
+ o(I)i (by Corollary 5.2).

This proves (3). �
As an immediate consequence we have:
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Theorem 5.4. If in addition to the conditions in Theorem 5.3, I is a monomial ideal and
M is the maximal homogeneous ideal in k[x1, . . . , xd ], then

(1) �(I/MI) = (
o(I )+d−1

d−1

)
.

(2) Let d � 3. If I is integrally closed, then MI is integrally closed of and only if

μ(I) =
(

o(I) + d − 1

d − 1

)
.

Proof. If I is a monomial ideal then MI is also a monomial ideal. Now, for any monomial
ideal I ,

∑d−2
i=1 (−1)i+1�(Riσ∗(IOX(CI ))) = 0. �

Remark 5.5. If I is a complete M-primary ideal in a ring of dimension at least three and
if I is not finitely supported, then Corollary 5.2 and Theorem 5.3(3) may not hold true.

6. The associated graded ring and the Rees ring

Let (R,M) be a Noetherian local ring of positive dimension d . Let I be an M-primary
ideal in R. Here R(I) and G(I) will denote the ordinary Rees ring and the associated
graded ring, respectively. The filtration F = {In}n�0 is a Hilbert filtration. The Rees ring

of F , R(F) := ⊕
In (respectively the associated graded ring of G(F) := ⊕

In/In+1), is
a graded ring which is Noetherian and R(F) (respectively G(F)) is a finite R(I) (respec-
tively G(I)) module.

An ideal J ⊆ I is a reduction of F if JIn = In+1 for all n � 0 [25]. A minimal reduc-
tion of F is a reduction of F which is minimal with respect to containment.

Since R(F) is a finite R(I)-module, any minimal reduction of I is also a minimal
reduction of F . By [25], minimal reductions always exist and if the residue field R/M

is infinite, then any minimal reduction of I is generated by d elements. For any minimal
reduction J of F we set rJ (F) = sup{n ∈ Z | JIn−1 �= In}.

The reduction number of F , denoted by r(F) is defined to be the least rJ (F) over all
possible minimal reductions of J of F . For any M-primary ideal I in a local ring (R,M),
let J = (x1, . . . , xd) be a minimal reduction of I and let C.(n) := C.(J,F , n) denote the
complex

0 → R

In−d
→ ·· · → R

In
→ 0

where the maps are those of the Koszul complex of R with respect to x1, . . . , xd . For details
see [14]. Let Hi(C.(n)) denote the ith-homology. Let

hi(J,F) =
∑
n�1

�
(
Hi

(
C.(n)

)) =
∑

n�i+1

�
(
Hi

(
C.(n)

))

since Hi(C.(n)) = 0 for n � i.
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If I is an M-primary ideal in a regular local ring of dimension two, then r(I ) � 1 [15]
and hence G(I) is Cohen–Macaulay [18] and hence the Rees ring is Cohen–Macaulay
by [9].

In higher dimension, if I is not a finitely supported complete ideal then it is easy to see
that both the Rees ring R(F) and the associated graded ring G(F) need not be Cohen–
Macaulay.

Lemma 6.1. Let I be a finitely supported M-primary ideal in a regular local ring (R,M)

of dimension at least three. Assume that for all n � 1

�

(
R

In

)
=

∑
S�R

(
no(IS) + 2

3

)
[S/MS :R/M]

where MS is the maximal ideal of S, MR = M . Then

(1) depthG(F) � 2 if and only if r(F) � 2.
(2) G(F) is Cohen–Macaulay if and only if

�

(
J + I 2

J

)
=

∑
S�R

(
o(IS)

3

)
[S/MS :R/M]

where J is a minimal reduction of I .
(3) If o(I) � 2, then G(F) is Cohen–Macaulay.
(4) If o(I) � 3, then rJ (F) � 2 for any minimal reduction J of I .

Proof. First note that for all n � 3,

�

(
R

In

)
− 3�

(
R

In−1

)
+ 3�

(
R

In−2

)
− �

(
R

In−3

)
= e(I ).

Since
∑

i�2 hi(J,F) � 0 [14, Theorem 3.7],

∑
i�2

hi(J,F)

= h2(J,F) − h3(J,F)

=
∑
n�3

�
(
H2

(
C.(n)

)) − �
(
H3

(
C.(n)

))

=
∑
n�3

[
�
(
H1

(
C.(n)

)) − �
(
H0

(
C.(n)

)) + �

(
R

In

)
− 3�

(
R

In−1

)
+ 3�

(
R

In−2

)

− �

(
R

)]

In−3
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=
∑
n�3

[
�

(
J ∩ In

J In−1

)
− �

(
R

J + In

)
+ e(J )

]

=
∑
n�3

�

(
In

J In−1

)

� 0.

Equality holds if and only if rJ (F) � 2. And when equality holds then depthG(F) �
3 − 2 + 1 = 2 [14, Theorem 3.7].

Similarly,

∑
i�1

hi(J,F) = h1(J,F) − h2(J,F) + h3(J,F)

=
∑
n�2

[
�
(
H1

(
C.(n)

)) − �
(
H2

(
C.(n)

)) + �
(
H3

(
C.(n)

))]

=
∑
n�2

[
�
(
H0

(
C.(n)

)) − �

(
R

In

)
+ 3�

(
R

In−1

)
− 3�

(
R

In−2

)
+ �

(
R

In−3

)]

=
∑
n�2

�

(
R

J + In

)
−

∑
n�3

e(J ) − �

(
R

I 2

)
+ 3�

(
R

I

)

= −
∑
n�2

�

(
J + In

J

)
+

∑
S�R

(
o(IS)

3

)
[S/MS :R/M]

� 0.

If the above inequality is an equality, then depthG(F) � 3. Conversely, if depthG(F) � 3
then there exists a minimal reduction J such that above inequality is an equality. But if
depthG(F) � 3, then J In = In+1 for all n � 2, i.e., J + In = J for all n � 3. Hence

∑
S�R

(
o(IS)

3

)
[S/MS :R/M] = �

(
J + I 2

J

)
.

Suppose o(I) � 2, then o(IS) � 2 for all S � R. Hence

∑
i�1

hi(J,F) = −�

(
J + I 2

J

)
� 0.

Since the length of the module appearing above is positive, it is equal to zero. Hence∑
i�1 hi(J,F) = 0 which implies that depthG(F) � 3, i.e., G(F) is Cohen–Macaulay.

This proves (3).
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If rJ (F) = 1 for some minimal reduction of J of I , then G(F) is Cohen–Macaulay.
Hence we have

0 = �

(
J + I 2

J

)
=

∑
S�R

(
o(IS)

3

)
[S/MS :R/M].

This implies that o(I) � 2. �

7. Examples

We end this paper with a few examples which will clarify our results and the assump-
tions we use.

If μ(I) = d − 1 + o(I)d−1, then F(I) is Cohen–Macaulay if and only if there exists
an ideal J ⊆ I generated by d elements such that JI = I 2 [6]. Here we demonstrate an
example of a monomial ideal I whose fiber cone is not Cohen–Macaulay. This example
also shows that MI is not integrally closed. It is easy to see that μ(I) = 11 > 10.

Example 7.1. Let I = (x4, x3y, x2z, x2y2, xy2z, xyz2, xz3, y3, y2z2, yz3, z5) be an ideal
in the polynomial ring k[x, y, z]. Assume that k is an algebraically closed field. Then

(1) I is a finitely supported ideal.
(2) J = (x4 + yz3, x2z, y3 + z5) is a minimal reduction of I and rJ (I ) = 2.
(3) Since μ(I) = 11 = o(I)2 + 2. Since r(F) = r(I ) = 2, F(I) is not Cohen–Macaulay

[6, Corollary 2.5]. The Hilbert series of F(I) is

H
(
F(I), t

) = 1 + 8t

(1 − t)3
.

Notice that MI �= MI since xy2z ∈ MI \ MI .
(4) In = In for all n � 1 and J ∩ In = In+1 for all n � 2.
(5) B(I ) = {o(IS) | S � R} = {3,2,1,1,1,1,1}. The Hilbert function HI (n) = �(R/In)

is equal to the Hilbert polynomial PI (n) for all n � 0. In particular,

�

(
R

In

)
= �

(
R

In

)

=
(

3n + 2

3

)
+ 5

(
n + 2

3

)
+

(
2n + 2

3

)

= 40

(
n + 2

3

)
− 22

(
n + 1

2

)
+

(
n

1

)
.

(6) By [16, Theorem 17], G(F) = G(I) is Cohen–Macaulay.

(7) Since �(J + I 2/J ) = ∑
S�R

(
o(IS)

3

) = 1, by Theorem 6.1, G(F) = G(I) is Cohen–
Macaulay.
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We now show that Theorem 1.4 does not hold true if I is not a monomial ideal.

Example 7.2. (The author is very grateful to Oliver Piltant for bringing this example into
light.) Consider the following example. Let k be an algebraically closed field. Let R =
k[x, y, z] and let I = (z3, y3 − x2z, y2z2, xyz2, x2z2, xy2z, x2yz, x3z, x2y2, x3y, x4) be
an ideal of R. Then it is easy to verify that

(1) I is complete and �(R/I) = 18.
(2) The strict transform of I in S = R[y/x, z/x] is IS = (x, (y/x)3 − (z/x), (z/x)3) and

�(S/IS) = 9. But
(
o(I )+2

3

) = 10. Hence �(R1σ∗(IOX(CI ))) = 1.
(3) Note that if J = (z3, y3 − x2z, x4), then J is generated by a system of parameters

in I and JI = I 2. Hence F(I) is Cohen–Macaulay [6, Corollary 2.5]. Also G(I) is
Cohen–Macaulay.

We now present an infinite class of ideals where �(Riσ∗(IOX(CI ))) > 0. This is a gen-
eralization of the example in [13].

Example 7.3. Let R = C[x, y, z] where x, y, z are variables and let

I = (
xr+1, (x, y, z)

(
yr + zr

)
, (x, y, z)r+2).

Then I is a finitely supported complete ideal. Put S = R[x/y, z/y]. Then

�

(
R

I

)
=

(
r + 3

3

)
+

(
r + 3

2

)
− 4,

�

(
S

IS

)
+

(
o(I) + 2

3

)
= 2

(
r + 1

2

)
+

(
r + 3

3

)
,

�
(
Riσ∗(IOX(CI ))

) = �

(
R

I

)
− �

(
S

IS

)

=
(

r − 1

2

)
.

Using the argument on the lines in [13] one can show that G(I) is not Cohen–Macaulay
for all r � 3. In particular, x3(yr + zr )3 ∈ J ∩ I 3 \ JI 2 where J = (xr+1, z(yr + zr ),

y(yr + zr) + yzr+1) is a minimal reduction of I .

We end this paper with the following example.

Example 7.4. Let k be an algebraically closed field. Let R = k[x, y, z]. Let M = (x, y, z),
I1 = (x, y2, yz, z2) and I2 = (x2, y, z) and put I = I1I2. Then I is not a finitely supported
ideal. We demonstrate the fact that Corollary 5.2(2) and Theorem 5.3(2), (3) does not hold
true if the ideal is not finitely supported.

By [30] and [28]
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e2(M | I1) = e
(
x, y, z2) = 2,

e2(M | I2) = e(x, y, z) = 1,

e(M | I1 | I2) = e1,1,1(M, I1, I2) = e(x, y, z) = 1.

Hence

e2(M | I1I2) = e2(M | I1) + e2(M | I2) + 2e(M|I1|I2) = 5 > 4 = o(I),

μ(I) = 7 > 6 = o(I)2 + (3 − 1).

It is also easy to verify that MI1 is integrally closed, but

μ(I1) = 4 > 3 =
(

o(I1) + 2

2

)
.
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