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Abstract In contrast with the accelerated degradation observed
in tumor cells in response to sterols, hepatic 3-hydroxy-3-meth-
ylglutaryl coenzyme A (HMG-CoA) reductase turnover in whole
animals was not increased by dietary cholesterol. Furthermore,
treating rats with lovastatin to lower hepatic cholesterol levels
did not decrease the rate of degradation. The half-life remained
in the 6 h range. Co-immunoprecipitation studies revealed that
the amount of ubiquitin associated with the reductase was en-
tirely dependent upon the amount of microsomal protein sub-
jected to immunoprecipitation. The results indicate that in
liver, neither the rate of reductase protein degradation nor the
ubiquitin-proteasome system appear to play roles in mediating
changes in HMG-CoA reductase protein levels in response to
dietary cholesterol.
� 2005 Published by Elsevier B.V. on behalf of the Federation of
European Biochemical Societies.
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1. Introduction

The enzyme, 3-hydroxy-3-methylglutaryl coenzyme A reduc-

tase (HMG-CoA reductase), catalyzes the rate-limiting reac-

tion of cholesterol biosynthesis. The expression of this

enzyme is regulated by various hormonal and dietary factors

and particularly by the end product, cholesterol [1]. The cur-

rently proposed mechanism for the sterol-dependent downreg-

ulation of HMG-CoA reductase entails increased degradation

by the ubiquitin-proteasome system [2] and involvement of the

membrane-spanning regions, particularly sterol-sensing do-

mains of the enzyme [3–7]. This mechanism is based on studies

of cultured tumor cells grown in the presence of inhibitors of

HMGR. Various Chinese hamster ovary cell lines have been

used to study the degradation of HMG-CoA reductase [8–

12]. Other cells used in these studies include: Met-18b-2, squa-
Abbreviations: HMG-CoA reductase, 3-hydroxy-3-methylglutaryl co-
enzyme A reductase; HMGR, HMG-CoA reductase; BCA, bicinch-
oninic acid; SDS, sodium dodecyl sulfate; PAGE, polyacrylamide gel
electrophoresis; PBS, phosphate-buffered saline; ECL, enhanced che-
miluminence; CHAPS, 3-[(3-cholamidopropyl)dimethylammonio]-1-
propanesulfonate
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lene synthase deficient, human embryonic kidney (HEK-293),

LP-90, C100, and SV-589 fibroblasts [2,7,13–18]. These studies

have been carried out in either tumor cells or immortalized

cells grown in lipoprotein depleted media in the presence of

inhibitors of HMG-CoA reductase. The conclusion that accel-

erated degradation of the reductase mediated by sterols ap-

pears to involve the ubiquitin-proteasome system has

resulted from these studies.

The degradation of HMG-CoA reductase in liver, the major

site of sterol-mediated feedback regulation [19], has not been

extensively investigated. It has been reported [20] that choles-

terol-mediated feedback regulation primarily occurs at the le-

vel of translation in liver. The question of whether ubiquitin

is involved in the degradation of hepatic HMG-CoA reductase

has not been investigated. The data obtained in the present

study indicate that the rate of hepatic reductase degradation

is not accelerated by dietary cholesterol nor is the amount of

ubiquitin associated with the enzyme changed in response to

excess cholesterol or depletion of cholesterol caused by an

inhibitor of HMG-CoA reductase. Thus, feedback regulation

of HMG-CoA reductase in liver fundamentally differs from

that previously characterized for the tumor enzyme.
2. Materials and methods

2.1. Experimental animals
Male Sprague–Dawley rats were purchased from Harlan Industries,

Madison, WI. At the time of experimentation, the rats were about
200 g. All experiments were conducted in accord with NIH guidelines
and as approved by the University of South Florida IACUC, protocol
2317. The rats were housed in a 12 h/12 h reversed cycle light-
controlled room at 21 ± 1 �C with a humidity of 45–55% and 10 com-
plete changes of air/hour. The animals were provided Harlan Teklad
Global 18% protein rodent chow and water ad libitum. Groups of ani-
mals were fed chow, chow supplemented with 1% cholesterol or 0.02%
lovastatin or both. Rats were given 2.5 mg/kg of cycloheximide subcu-
taneously [21] at the fourth hour of the dark cycle and killed 0, 2, 4 or
6 h later. Three groups of four animals each were employed for each
condition – normal, cholesterol fed, lovastatin-treated and lovastatin
and cholesterol treated. Additional rats were injected subcutaneously
with 1 mg/kg of lactacystin in DMSO or were given just DMSO.

2.2. Materials
The A9 monoclonal antibody to HMG-CoA reductase was har-

vested from A9 hybridoma cells obtained from American Tissue Cul-
ture Collection (ATCC) (cat# CRL-1811) cultured according to
directions from ATCC. Ubiquitin monoclonal IgG1 antibody (Ub-
(P4D1) cat# C2404) and ubiquitin control protein (Ub (FL-76) cat#
sc-4274), a 35 kDa tagged fusion protein corresponding to amino acids
1–76 of human ubiquitin, were purchased from Santa Cruz Biotechnol-
ogy. Monoclonal anti-b-actin, clone AC-15 (cat# A5441), lactacystin
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(cat# L-6785) and Colorburst electrophoresis markers (cat# C-4105)
were obtained from Sigma. Anti-mouse HRP conjugated secondary
antibody was purchased from Jackson ImmunoResearch Laboratories.
Enhanced chemiluminence (ECL) Western blotting reagents and Pro-
tein G Sepharose-4 Fast Flow were purchased from Amersham Biosci-
ences. Pre-cast, 4–15% Tris–HCl gradient Ready Gels (cat# 161-1104)
were purchased from Bio-Rad. Complete protease inhibitor cocktail
tablets (cat# 1697498) were from Roche Diagnostics. The bicinchoni-
nic acid (BCA) protein assay kit was purchased from Pierce. Lova-
statin was a generous gift from Merck.

2.3. Microsomal isolation
Liver was minced in ice-cold 0.25 M sucrose and then homogenized

with a motor-driven serrated Teflon pestle in a Thomas glass homog-
enizer vessel in 10 volumes of 0.25 M sucrose [22]. The resulting
homogenate was centrifuged for 10 min at 12000 · g at 4 �C. The
supernatant was transferred to a fresh tube and centrifuged at
100000 · g for 1 h at 4 �C. The pellet was resuspended in 1 ml of
0.25 M sucrose containing 1· complete protease inhibitor per 2 g of
original liver. Microsomal protein concentration was determined by
the BCA protein assay based on absorbance readings at 562 nm
according to the manufacturer�s (Pierce) recommendations.

2.4. Immunoblotting
Liver microsomal protein, 25 lg, or immunoprecipitated protein,

25–800 lg, was denatured by boiling in Western sample buffer
(62.5 mM Tris–HCl, pH 6.8, 2% sodium dodecyl sulfate (SDS),
0.2 M sucrose, 8 M urea, 0.01% bromophenol blue and 5% b-mercap-
toethanol). The proteins were analyzed by SDS–PAGE using 4–15%
gradient gels at 100 V for 2 h. The separated proteins were transferred
electrophoretically to polyvinylidene difluoride membranes at 100 V
for 60 min (overnight). The membranes were blocked by soaking in
5% skim milk containing PBST (phosphate-buffered saline (PBS)/
0.1% Tween 20) for 60–90 min. The membranes were then incubated
in primary antibody/5% skim milk overnight at 4 �C. Three 10-min
washes in PBST were then conducted at room temperature. The blot
was then incubated for 60 min with the secondary anti-mouse HRP
conjugate antibody solution at a 1:50000 dilution. HMG-CoA reduc-
tase or ubiquitin proteins were detected using ECL reagents as previ-
ously described [23].

2.5. Immunoprecipitation
Varying amounts of microsomal protein (25–800 lg) were solubi-

lized in 100 ll of immunoprecipitation buffer [100 mM Tris–HCl, pH
7.5, 1% SDS and 20 mM 3-[(3-cholamidopropyl)dimethylammonio]-
1-propanesulfonate (CHAPS)] [24] and then diluted 1:10 with deion-
ized water. The solution was pre-cleared with a Protein G Sepharose
bead slurry at a 1:10 ratio of beads to sample and incubated for
30 min at 4 �C. The mixture was spun in a microfuge at 1000 · g for
5 min. The supernatant was transferred to a fresh tube. An excess of
A9 mouse anti-HMG-CoA reductase or anti-b-actin monoclonal anti-
body was added to this pre-cleared microsomal solution, which was
then incubated overnight on a rocker platform. Protein G Sepharose
bead slurry (100 ll) was then added and the mixture incubated for
2 h at 4 �C on a rocker platform. The reactions were centrifuged for
30 s at 1000 · g and the supernatant discarded. The pelleted beads were
washed three times with immunoprecipitation buffer and twice with
ice-cold 1· PBS. The beads were then spun at 10000 · g for 5 min
and any remaining supernatant was discarded. The beads were resus-
pended in 50–75 ll of Western blotting sample buffer and centrifuged
at 10000 · g for 5 min. The supernatant was subjected to immunoblot-
ting analysis.
Fig. 1. Immunoblotting of hepatic HMG-CoA reductase. Liver
microsomes from rats fed normal, 1% cholesterol, 0.02% lovastatin
or 0.02% Lovastatin + 1% cholesterol and killed at 0, 2, 4 or 6 h after
inhibiting protein synthesis with cycloheximide were subjected to
immunoblotting for HMG-CoA reductase. For the normal, lovastatin
and lovastatin + cholesterol samples, 25 lg of protein was applied to
each lane. In the case of the samples from cholesterol fed rats, 75 lg of
protein was applied to each lane. A 10-min exposure time was used for
all. This is a representative experiment.
3. Results

3.1. Degradation of hepatic HMG-CoA reductase

The question of whether the relative levels of cholesterol act

to alter the stability of liver endoplasmic reticulum HMG-CoA

reductase was investigated using cholesterol fed and lovastatin-

treated rats as models of cholesterol excess and cholesterol de-

pleted states, respectively. The half-life of hepatic HMG-CoA
reductase was determined by following the rate of decline in

HMG-CoA reductase immunoreactive protein after adminis-

tration of the protein synthesis inhibitor, cycloheximide. Wes-

tern blots of HMG-CoA reductase protein are shown in Fig. 1.

As expected reductase protein levels are markedly increased in

microsomes isolated from livers of lovastatin-treated animals

and severely depressed in the cholesterol fed rats. Animals gi-

ven both lovastatin and cholesterol exhibited a low level of

reductase protein. To determine half-lives, the blots were

scanned and the data displayed on semi-log plots (Fig. 2).

The half-life for hepatic HMG-CoA reductase from rats fed

a normal diet was 5.8 ± 0.6 h. In a previous study with younger

animals a half-life of 2.5 h was observed [20]. This likely re-

flects the higher level of expression of hepatic HMG-CoA

reductase in the younger animals [25]. Surprisingly, the half-

life was actually increased to over 12 h when 1% cholesterol

was added to the diet (Fig. 2B). Lovastatin treatment did

not stabilize hepatic reductase protein, as the half-life was

6.1 ± 1.5 h (Fig. 2C). This is in contrast with a previous study

in which lovastatin (Mevinolin) and the bile acid binding resin,

cholestyramine, were fed. In that study a half-life of about 12 h

for hepatic HMG-CoA reductase was observed [26]. Addition

of 1% cholesterol to the diets of lovastatin-treated animals did

not affect the half-life which was still 6.7 ± 2.7 h (Fig. 2D) de-

spite a large decrease in HMG-CoA reductase protein levels.

3.2. Ubiquitination of hepatic HMG-CoA reductase

In view of the numerous reports [2,15,16,18,27–29] conclud-

ing that HMG-CoA reductase in tumor cells becomes ubiqi-

nated and then degraded more rapidly in proteasomes under

sterol excess conditions, the degree of ubiqination of hepatic

HMG-CoA reductase in high and low states of liver cholesterol

levels was investigated. Varying amounts of liver microsomal

protein from normal, cholesterol fed, lovastatin-treated and

cholesterol and lovastatin-treated rats were subjected to immu-

noprecipitation using HMG-CoA reductase antibody (Fig. 3).

The immunoprecipitates were probed for both ubiquitin and



Fig. 2. Determination of hepatic HMG-CoA reductase half-life. The relative amounts of HMG-CoA reductase protein remaining after
cycloheximide treatment is displayed on semi-log plots to determine half-lives. Results obtained for normally fed (A), 1% cholesterol fed (B), 0.02%
lovastatin-treated (C) and lovastatin-treated and 1% cholesterol fed (D) rats are presented. In all cases, the zero time value is assigned as 100%.

Fig. 3. Ubiquitin content in hepatic microsomes immunoprecipitated
with HMG-CoA reductase antisera. Varying amounts of microsomal
protein indicated as 15, 50, 250, 500 or 650 lg from normally fed (N),
1% cholesterol fed (CH), 0.02% lovastatin-treated (L) or 0.02%
lovastatin-treated and fed 1% cholesterol (CL) were subjected to
immunoprecipitation with the A9 monoclonal HMG-CoA reductase
antibody. The lane on the left contains 10 lg of green fluorescent
protein-ubiquitin as a control. Lanes without HMG-CoA reductase
antibody with beads only (BO) and in which b-actin antibody (Actin)
was used in place of the HMG-CoA reductase are displayed on the
right. The upper panel was developed with ubiquitin antibody while
HMG-CoA reductase antibody was used for the lower panel. The
arrow indicates the position of the IgG heavy chain.

Fig. 4. Effect of lactacystin on hepatic HMG-CoA reductase protein.
Rats were injected with 1 mg/kg of lactacystin in DMSO (LC) or with
only DMSO (DS) and killed 5 h later. A Western blot of liver
microsomal HMG-CoA reductase is shown. Molecular weight markers
are on the right side. Each lane contained 25 lg of protein.
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HMG-CoA reductase (Fig. 3). Ubiquitin in these immunopre-

cipitates migrated as smears from the top of the gels. This is the

same behavior as previously observed by several investigators

[2,18,27,30,31]. The apparent amount of ubiquitin associated

with HMG-CoA reductase was proportional to the amount

of microsomal protein used rather than uniquely increased in

samples from cholesterol fed animals. This likely reflects non-

specific trapping, despite very stringent washing conditions,
as a beads only lane (Fig. 3) had a similar amount of ubiquitin

as a corresponding lane with HMG-CoA reductase antibody.

Additionally, antibody to b-actin gave the same result as the

HMG-CoA reductase antibody.

3.3. Lack of proteosome involvement

To more directly access the involvement of the proteosome

in degradation of hepatic HMG-CoA reductase, an experi-

ment was conducted in which the proteosome inhibitor, lact-

acystin was administered to normally fed rats. If the

proteosome was responsible for degradation of the reductase,

one would expect to observe an increase in HMG-CoA

reductase protein levels as compared with the DMSO control.

As shown in Fig. 4, the levels of liver microsomal HMG-CoA

reductase were nearly the same, certainly not increased, in the

lactacystin treated animals as in controls indicating that pro-

teosome inhibition does not decrease the rate of HMG-CoA

reductase degradation in normal animals.
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4. Discussion

4.1. Degradation rate

Physiologically, feedback regulation of the endoplasmic

reticulum enzyme, HMG-CoA reductase, occurs mainly if

not solely in liver [19]. Thus, it is most appropriate to study

feedback regulatory mechanisms in liver. As shown in Fig. 2,

feeding cholesterol to raise liver cholesterol levels did not

accelerate the rate of degradation of hepatic HMG-CoA

reductase. Actually, stabilization was observed in the present

study. This may reflect the lower initial level of hepatic

HMG-CoA reductase in these cholesterol fed animals; so that

reductase protein levels cannot drop further. In a previous

study in which cholesterol feeding had lowered reductase pro-

tein levels to about 50% of control, the half-life was the same

as in the normal chow fed animals [20]. This finding is in con-

trast with results obtained in CHO tumor cells where the half-

life of HMG-CoA reductase decreased from 6 to 2 h upon

addition of 25-hydroxycholesterol and cholesterol to the cul-

ture media [9]. Additionally, hepatic HMG-CoA reductase

protein was not stabilized when liver cholesterol levels were

lowered as a result of lovastatin treatment. Furthermore, feed-

ing cholesterol to lovastatin-treated animals did not signifi-

cantly decrease the half-life of reductase protein (Fig. 2). It

does not appear that feedback regulation of hepatic HMG-

CoA reductase expression involves alterations in the rate of

degradation of the enzyme. Rather, feedback regulation by

cholesterol in liver appears to primarily involve regulation at

the level of translation as we have previously demonstrated

[19,32]. Perhaps, tumor cells no longer express a protein that

binds to HMG-CoA reductase mRNA to slow its rate of trans-

lation in response to cholesterol or a metabolite. Thus, feed-

back regulation of HMG-CoA reductase in liver and tumor

cells appears to occur by distinctly different mechanisms.

This is not surprising as over 30 years ago it was demon-

strated that feedback regulation of HMG-CoA reductase is

lost in all hepatomas [33–36]. In general HMG-CoA reductase

activity was found to be higher in various hepatocellular carci-

nomas. This may reflect the need for more cholesterol synthesis

for membranes in a population of rapidly dividing cells. It was

shown that of the 17 rat tissues examined, cholesterol feeding

only decreased cholesterol synthesis in liver [37]. In normal or

host livers, feeding cholesterol enriched diets typically lowers

hepatic HMG-CoA reductase to 1–2% of controls while in

hepatomas reductase activity is increased 3–4-fold as com-

pared with host liver [33–35].

4.2. Ubiquitination

In order to determine whether alterations in the degree of

ubiquitination might play a role in the turnover of hepatic

HMG-CoA reductase, immunoprecipitation experiments were

performed. Our initial results were similar to those observed

previously [2], showing an apparent trail of ubiquitin extending

down from the top of the gel. This was most pronounced with

liver microsomal samples from cholesterol fed rats. Further

experiments demonstrated that the ubiquitin present was pro-

portional to the amount of microsomal protein used. Consid-

erably more protein was taken from cholesterol fed samples

because of very low levels of reductase protein. The ubiquitin

trail was also seen without addition of HMG-CoA reductase

antibody (beads only) and in samples in which b-actin anti-

body was added (Fig. 3). The ubiquitin appears to be trapped;
however, additional washes did not remove it. Thus, ubiquitin

associated with the enzyme does not appear to explain the dif-

ferences in hepatic HMG-CoA reductase expression observed

in these studies.

4.3. Proteosome

It is well established that the proteosome degrades mis-

folded, mutated or damaged proteins as well as the normal

turnover of cellular proteins [38]. The several studies with

immortalized cells or tumor cells that reported proteosomal

involvement in the degradation of HMG-CoA reductase have

all added a statin, such as compactin (mevastatin) to the

media, in order to induce high expression of HMG-CoA

reductase [2,15,16,18,27–29]. HMG-CoA reductase from ani-

mals treated with a statin is predominantly in a 100 kDa

monomer form rather than the usual disulfide-linked dimer

[39,40]. This monomer form might be recognized as abnormal,

become ubiquinated and then degraded by the proteosome. In

immortalized SV 589 human fibroblasts grown in lipoprotein-

deficient serum with compactin and mevalonate, lanosterol,

24,25-dihydrolanosterol and 27-hydroxylanosterol were found

to bind to the reductase and potently stimulate ubiquitination

of the reductase [41]. If this were the case in rats treated with

lovastatin; one would expect to see increased ubiquination

and turnover of liver microsomal HMG-CoA reductase. This

was not observed (Figs. 2 and 3). Perhaps the difference be-

tween liver and tumor cells relates to the lost of normal feed-

back regulation of HMG-CoA reductase by cholesterol in

tumor cells [33–36].
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