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Abstract The aim of this research was to develop a low price adsorbent with the abundant of

source to remove manganese and cobalt from water samples. Tea waste solid-phase extraction cou-

pled with flame atomic absorption spectrometry (FAAS) was used for the extraction and determi-

nation of manganese and cobalt ions. Response surface methodology (RSM) and hybrid of artificial

neural network-particle swarm optimization (ANN-PSO) have been used to develop predictive

models for simulation and optimization of tea waste extraction process. The pH, amount of tea

waste, concentration of PAN (complexing agent), eluent volume, concentration of eluent, and sam-

ple and eluent flow rates were the input variables, while the extraction percent of Mn and Co were

the output. Two approaches for their modeling and optimization capabilities were compared. The

generalization and predictive capabilities of both RSM and ANN were compared by unseen data.

The results have shown the superiority of ANN compared to RSM. Under the optimum conditions,

the detection limits of Mn and Co were 0.5 and 0.67 lg L�1, respectively. This method was applied

to the preconcentration and determination of manganese and cobalt from water samples.
ª 2013 Production and hosting by Elsevier B.V. on behalf of King Saud University.
2 2226765.
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1. Introduction

Many elements are important to life, but in excess, these same
substances can be toxic. The contamination of environmental
waters by heavy metals is a major concern today because of

their potential influences on living organisms. Heavy traffic,
industrial development and urbanization lead to pollution of
waters by heavy metals (Lemos et al., 2010; Beiraghi et al.,

2012). For the formation of vitamin B12 cobalt is necessary,
ing Saud University.
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while manganese is an important element to all forms of life,
which has both structural and enzymatic functions (Lemos
et al., 2010). Cobalt is one of common poisonous elements that

affect the environment and is present in waste water industries
such as electroplating, pigments, paints and electronic. The
low amounts of this element could lead to poisonous influences

such as flushing and vasodilatation in animals and humans
(Beiraghi et al., 2012). If humans for long period exposed to
excessive levels of manganese, this element can develop emo-

tional and mental disturbances and clumsy and slow body
movements (Lemos et al., 2008). It is evident that the determi-
nation of these metals, at trace levels in natural water samples
is necessary.

In this study, tea wastes have been utilized as adsorbent for
the extraction of cobalt and manganese from water samples.
Tea waste is a household waste available in large amount in

Iran. Tea waste is an oxygen pollutant demanding and also re-
quires a long period for biodegradation (Uddin et al., 2009).
Insoluble cell walls of tea leaf are largely made up of hemicel-

luloses and cellulose, structural proteins, condensed tannins
and lignin. One-third of the total dry matter in the tea leaf
due to contain functional groups must be good potential as

metal sorbent from aqueous solution (Tee and Khan, 1988).
Response surface methodology (RSM), in statistical-based

methods has been usually used in extraction process optimiza-
tion (Khajeh and Musavi Zadeh, 2012). In this technique, the

experimental responses to experimental design are fitted to
quadratic function. The effective application number of this
technique proposes that second-order relation can reasonably

approximate many extraction systems.
Artificial neural network (ANN), in last two decades as an

attractive tool for non-linear multivariate modeling has been

developed (Desai et al., 2004, 2008). ANN’s power is that it
is generic in structure and has the capability to learn from his-
torical data. The major advantages of ANN compared to

RSM are (i) it does not need a prior specification of appropri-
ate fitting function and (ii) ANN is capable of universal esti-
mation, i.e. ANN can estimate nearly all types of non-linear
functions such as quadratic functions, where RSM is suitable

only for quadratic estimations (Desai et al., 2008).
Particle swarm optimization (PSO) is a stochastic optimiza-

tion procedure motivated by the behavior of a bird flock or the

sociological behavior of a people group (Lazzus, 2010).
The present work describes the efficiency of tea waste for

the extraction of manganese and cobalt from water samples.

The effects of various parameters including pH, amount of
tea waste, eluent volume and concentration, concentration of
PAN and sample and eluent flow rates were investigated.
The aims of this study are: (i) to obtain a predictive model

based on ANN and RSM techniques for prediction of the
extraction percent of manganese and cobalt, (ii) to maximize
the extraction percent of manganese and cobalt using RSM

and ANN models, and (iii) to develop a cheap, simple and fast
method for the extraction of analytes.
2. Experimental

2.1. Materials

1-(2-pyridylazo)-2-naphthol (PAN) was obtained from Merck
(Darmstadt, Germany). All acids used were of the highest
Please cite this article in press as: Khajeh, M. et al., Modeling of solid-pha
water samples by using PSO-artificial neural network and response surface
10.1016/j.arabjc.2013.06.011
purity available from Merck. Reagent grade Co(NO3)2 and
MnSO4 (from Merck) were of the highest purity available. A
stock solution of cobalt and manganese (1000 mg L�1) was

prepared by dissolving the proper amount of these elements
in double distilled water in a 10 mL flask. Dilute solutions were
prepared by an appropriate dilution of the stock solution in

double distilled water.

2.2. Instrumentation

The measurements were performed with a Konik Won M300
(Barcelona, Spain) flame atomic absorption spectrometer
(FAAS), equipped with a conventional pneumatic nebulizer.

Hollow cathode lamp for the determination of manganese
and cobalt were used. The most sensitive wavelengths for man-
ganese at 279.5 nm and cobalt at 240.7 nm were used. The pH
was determined with a model 630 Metrohm pH meter with a

combined glass-calomel electrode.

2.3. Preparation of the adsorbent

Tea waste was taken from the tea waste leaves after the process
of tea making. Colored and soluble components have been re-
moved from tea waste with washing by boiling water. This

washing was repeated until the water was virtually colorless.
Then, it was immersed in 0.5 mol L�1 nitric acid about 5 h
to eliminate traces of alkalinity and other impurities. The acid
treated tea waste was washed with distilled water to remove ex-

cess of nitric acid and other coloring materials until wash
water is colorless. Finally, the tea leaves were then washed
by deionized water and were oven dried for 5 h at 105 �C.
The dried tea was sieved between 400 and 500 lm and stored
in sealed polythene bags.

2.4. Procedure

A plastic syringe with two filters was applied as a cartridge and
then, was filled with different amounts of dried tea waste

(according to experimental design). One filter was placed at
the bottom of adsorbent and other to avoid disturbance during
solution passage was placed on the top of adsorbent. First, the
cartridge was treated with 5 mL nitric acid and then, was

washed with deionized water. A portion of solution containing
manganese and cobalt was prepared. After that, the solutions
were adjusted to the desired pH values with dropwise addition

of 0.1 mol L�1 NaOH and HCl and passed through the car-
tridge with various flow rates. Subsequently, manganese and
cobalt retained on the tea waste adsorbent were eluted with

the desired volume of nitric acid as eluent. The eluent was ana-
lyzed for the determination of manganese and cobalt
concentration.

Adsorption equilibrium studies were done under optimum
condition at pH 9.5 for tea waste adsorbent. Isotherm studies
were performed with a constant tea waste (0.5 g) and varying
initial concentration of manganese and cobalt in the range of

1–100 mg L�1. The amount of adsorption was calculated based
on the difference between manganese and cobalt concentra-
tions in sample solution before and after adsorption. Accord-

ing to this formula:

Adsorption capacityðqeÞ ¼
ðC0 � CeÞV

m
ð1Þ
se tea waste extraction for the removal of manganese and cobalt from
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Table 1 Box–Behnken design matrix of independent variables and their corresponding experimental and predicted extraction percent of manganese and cobalt.

Run pH Mass of

adsorbent (g)

[PAN]

(molL�1)

Eluent

volume (mL)

Eluent

concentration

(molL�1)

Sample

flow

rate (mLmin�1)

Eluent

flow rate

(mLmin�1)

Experimental Predicted (Mn) Predicted (Co)

R % (Mn) R (%) (Co) R (%) (RSM) R (%) (ANN) R (%) (RSM) R (%) (ANN)

1 9.5 0.3 2 2 0.1 2 2 95 92 95.4 95 93.0 91.3

2 9.5 0.3 2 5 0.1 2 2 96 91 97.1 95.6 88.0 91.4

3 9.5 0.3 2 2 1.5 2 2 95 87 96.8 95 89.9 86.5

4 9.5 0.3 2 5 1.5 2 2 96 83 96.9 96 83.4 83.9

5 9.5 0.3 2 2 0.1 6 2 98 84 97.1 98 83.6 83.6

6 9.5 0.3 2 5 0.1 6 2 97 89 95.3 96.9 86.1 89.1

7 9.5 0.3 2 2 1.5 6 2 99 87 97.9 99 90.0 85.5

8 9.5 0.3 2 5 1.5 6 2 95 92 94.6 95.1 91.0 91.3

9 7 0.3 2 3.5 0.8 2 1 93 91 91.1 93.4 97.3 90

10 12 0.3 2 3.5 0.8 2 1 89 77 88.8 89 76.3 77.3

11 7 0.3 2 3.5 0.8 6 1 93 87 94.3 93 85.5 86.7

12 12 0.3 2 3.5 0.8 6 1 88 61 88.4 88 63.0 61.1

13 7 0.3 2 3.5 0.8 2 3 86 86 85.6 86.2 84.0 86.7

14 12 0.3 2 3.5 0.8 2 3 98 67 96.8 97.8 68.5 65.8

15 7 0.3 2 3.5 0.8 6 3 85 95 85.3 85 95.7 95.7

16 12 0.3 2 3.5 0.8 6 3 91 85 92.9 91 78.7 85

17 9.5 0.1 2 3.5 0.1 4 1 98 79 97.8 97 80.9 79.6

18 9.5 0.5 2 3.5 0.1 4 1 98 93 97.4 98 89.5 90.5

19 9.5 0.1 2 3.5 1.5 4 1 99 80 99.6 99 79.8 80

20 9.5 0.5 2 3.5 1.5 4 1 98 89 98.8 98 85.9 89.4

21 9.5 0.1 2 3.5 0.1 4 3 99 74 98.3 99 77.1 74.9

22 9.5 0.5 2 3.5 0.1 4 3 99 89 98.4 99 89.2 89.2

23 9.5 0.1 2 3.5 1.5 4 3 97 79 97.6 96.8 82.5 78.9

24 9.5 0.5 2 3.5 1.5 4 3 97 94 97.3 97.1 92.1 93.3

25 7 0.1 2 2 0.8 4 2 92 84 91.3 92 81.5 84.8

26 12 0.1 2 2 0.8 4 2 94 63 93.4 95.3 61.0 64.8

27 7 0.5 2 2 0.8 4 2 92 93 92.4 92 94.0 92.7

28 12 0.5 2 2 0.8 4 2 92 71 91.1 92 73.5 71

29 7 0.1 2 5 0.8 4 2 87 84 87.9 87 81.5 84.1

30 12 0.1 2 5 0.8 4 2 95 65 94.6 95 64.0 65.2

31 7 0.5 2 5 0.8 4 2 89 85 89.6 88.8 87.0 87

32 12 0.5 2 5 0.8 4 2 92 67 92.8 92 69.5 67.1

33 9.5 0.3 1 2 0.8 4 1 97 93 97.6 97.1 91.2 93.1

34 9.5 0.3 3 2 0.8 4 1 99 92 99.3 99 90.5 91.2

35 9.5 0.3 1 5 0.8 4 1 96 91 95.8 96 91.2 91.3

36 9.5 0.3 3 5 0.8 4 1 97 89 96.4 96.7 91.0 89.3

37 9.5 0.3 1 2 0.8 4 3 94 93 94.6 94.2 91.0 92.8

38 9.5 0.3 3 2 0.8 4 3 98 98 98.3 98 97.8 97.6

39 9.5 0.3 1 5 0.8 4 3 96 85 95.8 96 86.5 85.6

40 9.5 0.3 3 5 0.8 4 3 99 92 98.4 99 93.8 92
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Table 1 (continued)

Run pH Mass of

adsorbent (g)

[PAN]

(molL�1)

Eluent

volume (mL)

Eluent

concentration

(molL�1)

Sample

flow

rate (mLmin�1)

Eluent

flow rate

(mLmin�1)

Experimental Predicted (Mn) Predicted (Co)

R % (Mn) R (%) (Co) R (%) (RSM) R (%) (ANN) R (%) (RSM) R (%) (ANN)

41 7 0.3 1 3.5 0.1 4 2 87 86 86.9 87.5 86.4 86.7

42 12 0.3 1 3.5 0.1 4 2 96 63 97.6 96 64.9 60.6

43 7 0.3 3 3.5 0.1 4 2 87 89 88.6 87.3 89.7 89.6

44 12 0.3 3 3.5 0.1 4 2 94 69 94.3 94 69.7 69

45 7 0.3 1 3.5 1.5 4 2 90 87 89.8 90 86.3 86.6

46 12 0.3 1 3.5 1.5 4 2 91 69 89.4 91 68.3 68.7

47 7 0.3 3 3.5 1.5 4 2 99 90 97.4 98.8 88.1 90.2

48 12 0.3 3 3.5 1.5 4 2 92 72 92.1 92.2 71.6 72.2

49 9.5 0.1 1 3.5 0.8 2 2 96 88 95.8 96 87.2 88.4

50 9.5 0.5 1 3.5 0.8 2 2 97 97 96.9 96.2 95.3 96.8

51 9.5 0.1 3 3.5 0.8 2 2 98 95 98.4 98 92.5 95

52 9.5 0.5 3 3.5 0.8 2 2 98 99 97.6 96.8 97.6 98.3

53 9.5 0.1 1 3.5 0.8 6 2 95 83 95.4 95.1 84.4 83

54 9.5 0.5 1 3.5 0.8 6 2 96 95 95.6 96.7 97.5 94.1

55 9.5 0.1 3 3.5 0.8 6 2 99 87 99.1 99 88.7 86.8

56 9.5 0.5 3 3.5 0.8 6 2 97 98 97.3 97.1 98.8 97.8

57 9.5 0.3 2 3.5 0.8 4 2 99 94 97.2 97.2 92.5 92.4

58 9.5 0.3 2 3.5 0.8 4 2 95 89 97.2 97.2 92.5 92.4

59 9.5 0.3 2 3.5 0.8 4 2 98 97 97.2 97.2 92.5 92.4

60 9.5 0.3 2 3.5 0.8 4 2 96 95 97.2 97.2 92.5 92.4

61 9.5 0.3 2 3.5 0.8 4 2 97 88 97.2 97.2 92.5 92.4

62 9.5 0.3 2 3.5 0.8 4 2 98 92 97.2 97.2 92.5 92.4

RMSE 0.106 0.10 0.063 0.051

SEP% 0.11 0.10 0.074 0.059

Bf 1.0 1.0 1.0 0.999

Af 1.01 1.01 1.02 1.0

MPE% 1.5 1.3 2.2 0.89
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Figure 1 Optimal ANN structure (a) manganese and (b) cobalt.
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where C0 is the initial manganese and cobalt concentration, Ce

is equilibrium concentration of manganese and cobalt in the
solution, m is the mass of the adsorbent (g) and V is the vol-
ume of the solution in L.

2.5. Response surface methodology

The relationships between the screened parameters are repre-
sented mathematically in the form of quadratic equation under

RSM (Khajeh and Sanchooli, 2010; Khajeh, 2011; Khajeh
et al., 2010). In this research, the experiments were conducted
in the Box–Behnken experimental design and fitted with an

empirical, full second order polynomial model expressing in
the form of response surface over a relatively wide range of
parameters. Eq. (2) is used to fit the experimental data (Table

1) of manganese and cobalt recovery to construct the RSM
model.

Y ¼ bo þ
X

bivi þ
X

biiv
2
ii þ

XX
bijvivj þ e ð2Þ

where Y is the output (dependent parameter), b0 is the con-
stant, x1, x2, . . ., xk are the coded independent parameters, bi
is the linear effect, bii is the quadratic effect, bij is the interac-
tion effect, and e is the random error or allows for description

or uncertainties between predicted and measured values.

2.6. Definition of the ANN model

In this work, Neural Network Toolbox V7.12 of MATLAB
mathematical software was used to predict the extraction per-
cent of manganese and cobalt from water samples.

An artificial neural network (ANN) generally consists of
three layers including input, hidden and output layers. The in-
puts are used in the input layer and output is achieved at the
output layer and the learning acquired when the associations

among a specific set of input–output pairs formed. In this
study, ANN was used to model the influence of seven input
parameters including pH, amount of tea waste, concentration

and volume of eluent, concentration of PAN and sample and
eluent flow rates on extraction percent of manganese and co-
balt as output. A feed-forward artificial neural network

(FFANN) topology (architecture) also famous as multilayer
perceptron (MLP), has been used with back propagation
(BP) algorithm to build the predictive models. The neuron out-

put signal O is known by the following Eq.

O ¼ fðnetÞ ¼ f
Xn
j¼1

wjxj

 !
ð3Þ

where wj is the weight vector and f (net) is the transfer function.
The most used transfer functions to solve non-linear and

linear regression problems are log-sigmoid transfer function
(logsig), hyperbolic tangent sigmoid transfer function (tansig)
and linear transfer function (purelin) Khayet and Cojocaru,

2012. In this work, tansig was used as transfer function be-
tween input and hidden layers, while purelin was used as trans-
fer function between hidden and output layers, shown by the

following equations:

PurelinðOÞ ¼ O ð4Þ

tansigðOÞ ¼ 1� expð�OÞ
1þ expð�OÞ ð5Þ
Please cite this article in press as: Khajeh, M. et al., Modeling of solid-pha
water samples by using PSO-artificial neural network and response surface
10.1016/j.arabjc.2013.06.011
There are many variations of BP algorithm for training neural

networks (NNs). During training step the weight (w) and
biases (b) are iterative updated by Levenberg–Marquardt
(LM) method until the convergence to the certain value is

achieved. In order to assess the fitting and prediction accuracy
of models made, the root mean-squared-error (RMSE), model
predictive error (MPE) and standard error of prediction (SEP)
are used along with the bias (Bf) and accuracy (Af) Zafar et al.,

2012.
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RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
i¼1

ðYi;e � Yi;pÞ2

N

vuut ð6Þ

SEPð%Þ ¼ RMSE

Ye

� 100: ð7Þ

MPEð%Þ ¼ 100

N

XN
i¼1

Yi;e � Yi;p

Yi;p

����
���� ð8Þ

Bf ¼ 10
XN
i¼1

logðYi;p

Yi;e

 !
=NÞ ð9Þ

Af ¼ 10
XN
i¼1

log
Yi;p

Yi;e

� �����
����=N

 !
ð10Þ
Table 2 Analysis of variance (ANOVA) for the experimental resul

Source Coefficients Sum of squares Degree of

Mn Co Mn Co

Intercept or model 4.35 �2.8 828.876 5572.647 35

A 17.91 29.78 288.798 798.2490 1

B 12.76 73.57 1.340 44.5755 1

C 3.17 �8.16 1.954 12.9217 1

D �1.52 3.03 0.957 3.8320 1

E 13.09 1.88 17.882 0.3682 1

F 5.35 �12.31 22.160 117.5650 1

G �13.33 �16.81 34.436 54.8040 1

AB �1.75 0 6.125 0.0000 1

AC �0.50 0.15 12.500 1.1250 1

AD 0.30 0.2 10.125 4.5000 1

AE �1.57 0.5 60.500 6.1250 1

AF �0.18 �0.075 6.125 1.1250 1

AG 1.35 0.55 91.125 15.1250 1

BC �2.50 �3.75 2.000 4.5000 1

BD 0.42 �5.83 0.125 24.5000 1

BE �0.89 �4.46 0.125 3.1250 1

BF �0.63 3.12 0.500 12.5000 1

BG 0.63 4.37 0.125 6.1250 1

CD �0.17 0.083 0.500 0.1250 1

CE 2.14 �0.54 18.000 1.1250 1

CF 0.13 �0.13 0.500 0.5000 1

CG 0.50 1.87 2.000 28.1250 1

DE �0.36 �0.36 1.125 1.1250 1

DF �0.29 0.63 6.125 28.1250 1

DG 0.50 �0.75 4.500 10.1250 1

EF �0.09 1.7 0.125 45.1250 1

EG �0.89 2.32 3.125 21.1250 1

FG �0.44 2.94 6.125 276.1250 1

A2 �0.93 �1.88 455.010 1870.4590 1

B2 14.24 �67.71 4.378 99.0234 1

C2 0.19 1.6 0.510 34.7402 1

D2 �0.14 �0.68 1.260 31.2246 1

E2 0.91 �8.59 2.667 239.0859 1

F2 �0.23 0.34 11.690 24.7559 1

G2 �0.06 �0.96 0.042 12.3984 1

Residual 51.333 330.7083 26

Lack of Fit 40.500 269.2083 21

Pure Error 10.833 61.5000 5

R2 0.942 0.944

Adj-R2 0.863 0.869

(A) pH; (B) mass of adsorbent; (C) concentration of PAN; (D) volume of

and (G) eluent flow rate
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where Yi;e is the target output, Yi;p is the predicted output, N is

the number of points and Ye is the average value of experimen-
tally determined extraction percent of manganese and cobalt in
N number of experiments.

Different variables may have various magnitudes, and some
of them could have unmerited, but favorable, and effective on
the monitored quantity. In this research, all inputs and outputs
are normalized within a uniform range of [0–1] according to

the below equation:

xnorm ¼
ðx� xminÞ
ðxmax � xminÞ

ð11Þ

where x is variable, xmax is maximum value and xmin is mini-
mum value.

The corresponding experimental values are plotted versus

to the values predicted by the ANN and RSM models visualize
the modeling abilities of the ANN and RSM models.
ts of the Box–Behnken design.

freedom Mean of square F-value p-Value

Mn Co Mn Co Mn Co

23.682 159.2185 11.99 12.52 <0.0001 <0.0001

288.798 798.2490 146.27 62.76 <0.0001 <0.0001

1.340 44.5755 0.68 3.50 0.4175 0.0725

1.954 12.9217 0.99 1.02 0.3290 0.3228

0.957 3.8320 0.48 0.30 0.4924 0.5878

17.882 0.3682 9.06 0.03 0.0058 0.8662

22.160 117.5650 11.22 9.24 0.0025 0.0053

34.436 54.8040 17.44 4.31 0.0003 0.0479

6.125 0.0000 3.10 0.00 0.0899 1.0000

12.500 1.1250 6.33 0.09 0.0184 0.7685

10.125 4.5000 5.13 0.35 0.0321 0.5571

60.500 6.1250 30.64 0.48 <0.0001 0.4939

6.125 1.1250 3.10 0.09 0.0899 0.7685

91.125 15.1250 46.15 1.19 <0.0001 0.2855

2.000 4.5000 1.01 0.35 0.3235 0.5571

0.125 24.5000 0.06 1.93 0.8033 0.1770

0.125 3.1250 0.06 0.25 0.8033 0.6243

0.500 12.5000 0.25 0.98 0.6190 0.3307

0.125 6.1250 0.06 0.48 0.8033 0.4939

0.500 0.1250 0.25 0.01 0.6190 0.9218

18.000 1.1250 9.12 0.09 0.0056 0.7685

0.500 0.5000 0.25 0.04 0.6190 0.8444

2.000 28.1250 1.01 2.21 0.3235 0.1490

1.125 1.1250 0.57 0.09 0.4571 0.7685

6.125 28.1250 3.10 2.21 0.0899 0.1490

4.500 10.1250 2.28 0.80 0.1432 0.3805

0.125 45.1250 0.06 3.55 0.8033 0.0709

3.125 21.1250 1.58 1.66 0.2195 0.2088

6.125 276.1250 3.10 21.71 0.0899 <0.0001

455.010 1870.4590 230.46 147.05 <0.0001 <0.0001

4.378 99.0234 2.22 7.79 0.1485 0.0097

0.510 34.7402 0.26 2.73 0.6154 0.1104

1.260 31.2246 0.64 2.45 0.4315 0.1293

2.667 239.0859 1.35 18.80 0.2557 0.0002

11.690 24.7559 5.92 1.95 0.0221 0.1748

0.042 12.3984 0.02 0.97 0.8856 0.3326

1.974 12.7196

1.929 12.8194 0.89 1.04 0.6216 0.5355

2.167 12.3000

eluent; (E) concentration of eluent (nitric acid); (F) sample flow rate
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2.7. The concept of particle swarm optimization (PSO)

When the generalized ANN model is developed, its input space
can be optimized by PSO method. The input vector containing
input parameters of model converts the decision parameter for

the PSO. Kennedy and Eberhart in 1995 (Kennedy et al., 2001;
Che, 2010) proposed the PSO method. It is an evolutionary
computational algorithm. PSO has been developed based on
the simulation of the behavior of foraging birds and searches

for optimization by updating generations (Che, 2010). Namely,
the position (xj

i) and velocity mji of each particle will be changed
by the particle best value (xj�

i ) and global best value (xj#
i ). Ken-

nedy and Spears (Kennedy and Spears, 1998) offered the iner-
tia weighing technique, and presented inertia weight, w, into
the basic update rule to decrease the particle speed when par-

ticle swarms are searching a large area using the inertia weight
[163]. Then, the particles are forced into a better search area to
find better practical solution by a more effective technique.

The particles’ new position and velocity are updated by the be-
low Eq.:

vjþ1i ¼ wvji þ ;1r1ðxj�
i � xj

iÞ þ ;2r2ðxj# � xj
iÞ ð12Þ

xjþ1
i ¼ xj

i þ vjþ1i ð13Þ

vji;v
jþ1
i , velocities of particle i at iterations j and j + 1; xj

i, x
jþ1
i ,

positions of particle i at iterations j and j + 1; £1, £2, cogni-
tion and social learning factors; xj�

i , the best solution that par-
R² = 0.9807

R² = 0.9417

P
re

di
ct

ed

Actual

Mn

ANN

RSM
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Figure 2 RSM and ANN predicted vs. experimental data for

manganese and cobalt.
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ticle i has obtained until iteration j, called the particle best

value. xj#
i , the best solution obtained from xj�

i in the popula-
tion at iteration j, called the global best value. w, inertia
weight; r1, r2, random numbers uniformly distributed in [0,1].

2.8. Adsorption isotherms

In this study, the equilibrium data were analyzed by the Lang-
muir and Freundlich isotherm expression given by the follow-

ing Eq.:

Langmuir : qe ¼
qeKLCe

1þ KLCe

ð14Þ

Freundlich : qe ¼ KfC
1=n
e ð15Þ

where qe is the adsorption capacity at equilibrium of manga-
nese and cobalt, Ce is the equilibrium concentration of the
manganese and cobalt in solution, q0 is the monolayer adsorp-

tion capacity and KL is the Langmuir constant associated to
the free energy of adsorption. KF and n are Freundlich con-
stants associated to sorption capacity and sorption intensity

of adsorbents, respectively. The value of n falling in the range
of 1–10 shows good sorption (Uddin et al., 2009). The linear-
ized forms of Langmuir and Freundlich equations can be writ-

ten as follows:

1

qe
¼ 1

q0
þ 1

q0KL

1

Ce

ð16Þ

ln qe ¼ lnKF þ
1

n
lnCe ð17Þ
3. Results and discussion

3.1. Hybrid ANN-PSO optimization

3.1.1. Predictive modeling with ANN

Table 1 shows the main factors and extraction percent of man-

ganese and cobalt. The ANN contains three processes that
were training, validation and testing. The aim of training
was to decide the w and b of the network; testing verifies

whether the network was over-trained and validation deter-
mined whether the output values estimated using the ANN
was accurate (Che, 2010). In this study, ANN with tansig
transfer function at hidden layer and a purelin transfer func-

tion at output layer was used. The experimental data were ran-
domly divided into three subsets: 76% for the training set,
12% for the validation set and 12% for the test set. The split

of data into training, test and validation subsets was per-
formed to estimate the performance of the NN for prediction
of ‘‘unseen’’ data, which were not used for training. Network

architecture has important influences on the predicted values.
The number of input and output nodes is equal to the number
of input and output data, respectively (7 and 1 in this work).

However, the number of neurons in the hidden layer was rec-
ognized by training several FFANNs of different architectures
and selecting the optimal one based on the minimization of
MSE and improving generalization ability of the topology.

In this study, the optimal topology of the ANN model devel-
oped involves seven inputs, one hidden layer with 13 neurons
for manganese and 15 neurons for cobalt and one output layer

(7:13:1 for manganese and 7:15:1 for cobalt). Fig. 1 shows the
se tea waste extraction for the removal of manganese and cobalt from
methodology. Arabian Journal of Chemistry (2013), http://dx.doi.org/

http://dx.doi.org/10.1016/j.arabjc.2013.06.011
http://dx.doi.org/10.1016/j.arabjc.2013.06.011


Table 3 RSM and ANN predictions for totally unseen data.

No pH Mass of adsorbent [PAN] Eluent volume Eluent concentration Sample flow rate Eluent flow rate R (%)

Experimental Predicted

Mn Co Mn Co

RSM ANN RSM ANN

1 8 0.2 2.5 3 1 5 1.5 98.9 89.2 97.7 100.5 89.7 89.6

2 8 0.2 2.5 4 1 3 1.5 85.6 91.6 86 85 92.8 89.6

3 8 0.4 2.5 3 0.5 3 1.5 92.5 95 94.9 91.3 98.3 97.6

4 10.5 0.2 1.5 3 0.5 5 2.5 97.9 82.5 97.3 98.2 81.5 83

5 10.5 0.2 1.5 3 1 5 1.5 96.5 82.4 96 96.3 80.8 83.4

6 10.5 0.2 2.5 3 0.5 3 1.5 94 85.1 96.5 93.4 86.3 86.2

7 10.5 0.2 2.5 4 0.5 5 1.5 97 79.2 96.6 97.1 81.6 78.1

8 10.5 0.4 1.5 3 0.5 3 1.5 90.2 88.4 90.5 90.8 89.5 87.6

9 10.5 0.4 1.5 4 0.5 5 1.5 95.2 86.7 96.2 92.7 85.1 86.1

10 10.5 0.4 1.5 4 1 5 2.5 96.1 91.1 95.6 96.6 89.9 92.3

Table 4 Optimized medium composition for manganese and cobalt extraction by tea waste using different methods.

Approach Variables R (%)

pH Mass of adsorbent [PAN] Eluent volume Eluent concentration Sample flow rate Eluent flow rate Predicted Experimentala

Mn Before optimization 7 0.1 1 2 0.1 2 1 91.0

At center point of experimental design 9.5 0.3 2 3.5 0.8 4 2 98.2

RSM 9.5 0.1 1 3.5 0.8 6 2 95.5 98.9

Hybrid ANN-PSO 9.8 0.5 3 3.8 0.1 3.1 1 100.2 99.5

Co Before optimization 7 0.1 1 2 0.1 2 1 88.3

At center point of experimental design 9.5 0.3 2 3.5 0.8 4 2 94.5

RSM 9.5 0.5 3 3.5 0.8 6 2 98.8 99.4

Hybrid ANN-PSO 9.1 0.35 3 2 1 6 3 100.1 99.5

a Average of three analyses.
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Figure 3 Comparison of generalization ability of RSM and

ANN models for unseen data.
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optimal topology of the developed ANN model. The RMSE,
SEP (%), MPE (%), Bf and Af are shown in Table 1.

3.1.2. PSO-based optimization of input variables in ANN

The PSO technique was utilized to optimize the input space of
the ANN model with an objective of maximizing extraction
percent of manganese and cobalt. The values of PSO-specific

parameters used in the optimization simulation for manganese
and cobalt, respectively, were number of particle in
swarm = 15 and 10; cognitive component = 2; social compo-

nent = 2; maximum velocity = 7; minimum inertia
weight = 0.6 and 0.05; and maximum inertia weight = 0.8
and 0.1. Optimum conditions have been selected after the eval-

uation of PSO for 10 iterations for manganese and cobalt to
achieved good extraction percent of them. The optimized pro-
cess conditions are as follows: for manganese; the pH of solu-

tion is 9.8, amount of tea waste is 0.5 g, concentration of PAN
is 3.0 mol L�1, eluent volume is 3.8 mL, eluent concentration is
0.1 mol L�1, sample flow rate is 3.1 ml min�1 and eluent flow
rate is 1.0 mL min�1 and for cobalt; the pH of solution is

9.1, amount of tea waste is 0.35 g, concentration of PAN is
3.0 mol L�1, eluent volume is 2.0 mL, eluent concentration is
1.0 mol L�1, sample flow rate is 6.0 ml min�1 and eluent flow

rate is 3.0 mL min�1. The ANN prediction of the extraction
percent under the optimized process conditions is 100.2%
and 100.1% for manganese and cobalt, respectively.

3.2. Response surface methodology

The below equation explains the relationship of the seven vari-

ables, that is, pH (A), amount of tea waste (B), concentration
of PAN (C), eluent volume (D), eluent concentration (E), sam-
ple flow rate (F) and eluent flow rate (G) and response (Y).

For manganese

Y ¼ 4þ 5:35F� 13:33G� 0:5AC� 1:57AEþ 1:35AG

þ 2:14CE� 0:93A2 � 0:23F2 ð18Þ

For cobalt

Y ¼ �2:8þ 29:78A� 16:81Gþ 2:94FG� 1:88A2

� 67:71B2 � 8:59E2 ð19Þ

In Eqs. (18) and (19) only the significant terms are given. The
coefficients of EQ. 18 and 19 for each data set are determined

by using software Design-Expert 8. The optimal points deter-
mined with this software are as follows: for manganese; the
pH of solution is 9.5, amount of tea waste is 0.1 g, concentra-

tion of PAN is 1.0 mol L�1, eluent volume is 3.5 mL, eluent
concentration is 0.8 mol L�1, sample flow rate is 6.0 ml min�1

and eluent flow rate is 2.0 mL min�1 and for cobalt; the pH

of solution is 9.5, amount of tea waste is 0.5 g, concentration
of PAN is 3.0 mol L�1, eluent volume is 3.5 mL, eluent concen-
tration is 0.8 mol L�1, sample flow rate is 6.0 ml min�1 and elu-
ent flow rate is 2.0 mL min�1. The maximum extraction percent

of manganese and cobalt obtained experimentally by the opti-
mized medium were 98.9 and 99.4, respectively, while the pre-
dicted values were 95.5 and 98.8 for manganese and cobalt,

respectively. The results were analyzed by using analysis of var-
iance (ANOVA), which are shown in Table 2. The model F-val-
ues of 11.99 and 12.52 for manganese and cobalt, respectively

suggest that the models are significant. Model p-values are very
Please cite this article in press as: Khajeh, M. et al., Modeling of solid-pha
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low (<0.0001) for both analytes. These re-signify the signifi-

cance of the models. The p-values are used as a tool to verify
the significance of each of the model coefficients. When the
magnitude of the p-value is smaller, the corresponding coeffi-

cient is more significant. P-values less than 0.05 show model
terms are significant. The fit of the model was expressed by
the determination coefficients (R2), which were found to be
0.942 and 0.944 for manganese and cobalt, respectively.

3.3. Comparison of RSM and hybrid ANN-PSO

The ANN and RSM models were compared for the design of

experiments. The comparison was made on the basis of differ-
ent parameters including RMSE, SEP%, Bf, Af and MPE,
which are shown in Table 1. For cobalt extraction, as shown

in Table 1, the RMSE (0.063) and SEP (0.074%) for the
RSM model are almost bigger than those 0.051% and
0.059%, respectively for the ANN model, showing that the
ANN model has better modeling ability than the RSM model

for the extraction of cobalt. For manganese extraction, as
shown in Table 1, the RMSE and SEP are 0.106% and
0.11%, respectively for the RSM model as compared to

0.1% and 0.1%, respectively for the ANN model. These values
show a good fit of the experimental data by ANN in compar-
ison to the RSM model. Moreover, as shown in Table 1, the Bf

and Af are closed to unity for both ANN and RSM models for
manganese and cobalt, showing a good concordance between
the predicted and experimental values. Better accuracy of pre-

dictions (MPE%) is observed by the ANN model with 0.89%
and 1.3% prediction error for cobalt and manganese, respec-
tively as compared to 2.2% and 1.5% prediction error for co-
balt and manganese, respectively by RSM. Fig. 2 indicates the

comparative parity plot for RSM and ANN prediction for de-
sign experiments of manganese and cobalt. The generalization
se tea waste extraction for the removal of manganese and cobalt from
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Table 5 Determination of cobalt and manganese in water samples (N= 3).

Analytes Samples Manganese and cobalt content (lg g�1 ±RSD%) R (%)

Added Found

Mn Tap water 0 41.25 ± 1.2 –

50 90.9 ± 1.3 99.3

Well water 0 18.43 ± 1.3 –

50 68.83 ± 1.0 100.8

Mineral water 0 5.1 ± 1.2 –

50 53.35 ± 1.4 96.5

Co Tap water 0 12.65 ± 1.1 –

50 62.5 ± 0.7 99.7

Well water 0 10.06 ± 1.1 –

50 60.16 ± 0.9 100.2

Mineral water 0 – –

50 48.95 ± 1.8 97.9

10 M. Khajeh et al.
capability only with completely unseen dataset can be best
judged. Therefore, both the models were tested using unseen
data. The experimental and predicted extraction percent are

summarized in Table 3. Fig. 3 indicates the comparative parity
plot for RSM and ANN prediction for unseen data. The cor-
relation coefficients for unseen data by ANN and RSM are

0.944 and 0.902 for manganese and 0.942 and 0.912 for cobalt,
respectively. Therefore, ANN has shown a higher generaliza-
tion ability compared to RSM. ANN model’s upper predictive

accuracy can be attributed to its universal capability of it for
approximate non-linearity of the system, while the RSMmodel
is only limited to second-order polynomial.

3.4. Adsorption isotherms

The results of adsorption isotherms of Langmuir and Freund-
lich for manganese and cobalt exhibited that the equilibrium

data represented by the Langmuir isotherm equation were
superior from the Freundlich equation. The calculated Fre-
undlich constants, for cobalt KF and n are 29.7 and 1.75,

respectively and for manganese KF and n are 8.0 and 1.4,
respectively. The best fit of equilibrium data in the Langmuir
isotherm equation predicts the monolayer coverage of manga-

nese and cobalt onto tea waste. From the slope of the straight
line and intercept, the qo of adsorbent and the KL for cobalt
and manganese were determined to be 135.1 and 128.2 mg g
�1 and 0.25 and 0.05, respectively. The correlation coefficients

for Langmuir and Freundlich were 0.999 and 0.995 for cobalt
and 0.982 and 0.978 for manganese, respectively.

3.5. Optimization

The comparison of the extraction of manganese and cobalt for
optimized media using various methods is given in Table 4.

This table clearly demonstrates that the extraction percent of
manganese and cobalt predicted by hybrid ANN-PSO are
much more close to the experimentally validated results than

those predicted by the RSM.

3.6. Study of coexisting ions

In order to evaluate the analytical application of the present

study, some foreign ions’ effects, which often accompany
manganese and cobalt ions in different real samples and may
Please cite this article in press as: Khajeh, M. et al., Modeling of solid-pha
water samples by using PSO-artificial neural network and response surface
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interferewith the abovemethod, under the optimized conditions
were tested. For this purpose, a solution of 10 lg of cobalt and
manganese in 25 mL water containing the corresponding inter-

fere ions was prepared. The tolerance limit was defined as the
foreign ions’ concentration needed to cause a ±5% error. The
tolerable ratio of each foreign ions’ concentration was as below:

500-fold for Li+, Na+, K+, Cl�, NO3
�, Mg2+, Ca2+, Ba2+,

andCO3
2�, 50-fold forCu2+, Fe3+, Pb2+ andNi2+. The results

show that the tested ions do not interference on the pre-concen-

tration and determination of manganese and cobalt.

3.7. Evaluation of method performance

In this study, under the optimum condition, the linear range
was obtained between 0.05 and 0.90 mg L�1 for manganese
and cobalt with a correlation coefficient of 0.995 and 0.997,
respectively. The limit of detection (LOD) for the determina-

tion of manganese and cobalt was studied under the optimum
condition. The LOD is evaluated using 3(Sd)blank/m and was
0.5 and 0.67 lgL�1 for manganese and cobalt, respectively

where Sd is the standard deviation of the blank signals and
m is the slope of the calibration curve. The relative standard
deviation (RSD%) of the ten replicate determination was

<1.9% for both analytes.
In order to obtain a high pre-concentration factor, the sam-

ple volume effect on the extraction of manganese and cobalt
on tea waste was investigated in the range of 25–500 mL.

The results showed that the extraction percent of manganese
and cobalt was quantitative (>97%) in the sample volume
range of 25–250 mL. After that, the extraction percent of man-

ganese and cobalt were decreased. In this work, the pre-con-
centration factor was 71 for 250 mL sample volume due to
the elution volume of 3.5 mL.

3.8. Analysis of real samples

The procedure was used for separation and determines the

concentration of manganese and cobalt in water samples.
The results are shown in Table 5.

4. Conclusions

In this study, hybrid ANN-PSO and RSM have been success-
fully used to study the modeling of the variables for maximum
se tea waste extraction for the removal of manganese and cobalt from
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extraction of manganese and cobalt based experimental data
using the Box–Behnken design. The modeling capability of
ANN has shown its superiority over RSM with comparative

less values of RMSE and SEP%. Hybrid ANN-PSO approach
has predicted maximum extraction for manganese and cobalt
of 100.2% and 100.1%, respectively, while, maximum extrac-

tion of 95.5% and 98.8% is reported by RSM for manganese
and cobalt, respectively. The predictive and generalization
capabilities of both RSM and ANN were compared using sep-

arate dataset. The correlation coefficients for ANN and RSM
were 0.944 and 0.902 for manganese and 0.942 and 0.912 for
cobalt, respectively, representing the superiority of ANN in
capturing the non-linear behavior of the system.
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