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Let B be a finite dimensional, basic, connected algebra over an algebrai-
cally closed field k. Following [G], we write B=kA/7, where kA is the
path algebra of a finite quiver without oriented cycles, and ¢ is an
admissible ideal. The category of finite dimensional left B~modules will be
denoted by B-mod. A B-module X is called sinccre if X is indecomposable
and if Hom z(X, /) # 0 for all injective B-modules /.

If B is representation-finite with a sincere module, and if the Auslander—
Reiten quiver I'(B) of B does not contain an oriented cycle, then B is called
sincere directed. Equivalently, B is a representation-finite tilled algebra
with a sincere module [HRT]. Sincere modules play an important role for
calculating sincere directed algebras [R].

Let B be sincere directed with n pairwise nonisomorphic simple modules
S(a), 1<a<n, and let X be a B-module. By dim X € 7" we denote the
dimension vector of X, that is, the vector whose ath entry is the
k-dimension of Hom z(X, I(a)), where I{a) is the indecomposable injective
B-module, whose socle is the simple module S{a). We call X maximal
sincere if X 1is sincere, and dim X is maximal with respect to the
componentwise order on all dimension vectors of indecomposable
B-modules.

In a recent article [P], de la Pefia proved that if B-mod admits more
than one maximal sincere module (note that we consider modules only
up to isomorphism), then B is a tilted algebra of 4 =kA*, where the
underlying graph 4 of A is of type T,,,, that is, 4 is of the form
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Then all maximal sincere modules have three neighbours in the orbit graph
G(I(B)) of I'(B). By A* we denote the opposite quiver of A. In this article
we investigate these algebras and give optimal upper bounds for the
number of maximal sincere modules. Our main purpose is to prove:

THEOREM. Let B be a sincere directed algebra which is tilted from a wild
algebra. Then B-mod admits more than one maximal sincere module, if and
only if B=kA/#, where A is the quiver

and ¥ is generared by affy — &d, ¢ — o, and mp — vpu.

This result is known if B has at least 13 pairwise nonisomorphic simple
modaules. It foliows from Bongartz’ list of the large sincere directed algebras
[B1,R].

The first section will be introductory. We will fix some notation, recall
definitions and results connected to maximal sincere modules, and deduce
some general properties of 4 and the A tilting module 7, whose
endomorphismring End , T is the sincere directed algebra B.

In the second and third section we give optimal upper bounds for the
number of maximal sincere B-modules, if B is tilted from a representation-
finite or a tame algebra. The last chapter is devoted to the proof of the
above theorem.

1. PRELIMINARIES

1.1. We briefly want to summarize the definition and some properties of
maximal sincere B-modules. Basic definitions, more detailed information,
and proofs can be found in [R], and will be used here frequently.

If n is the number of pairwise nonisomorphic simple B-modules S(a),
with | <a<n, we consider the nonsymmetric bilinear form (z,z'>=
=C~T2'T for z, 2’ e Z", where C denotes the Cartan matrix of B, and we
denote the corresponding symmetric form by (-, —).

It has been shown [B2, HR] that the quadratic form ¢:Z" — Z with
q(z)= <z, z) is weakly positive, and that there is a bijection X'+ dim X
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between the indecomposable B-modules and the positive roots of g. A
sincere B-module M is called maximal if its dimension vector is a maximal
root of g.

A sincere root z is maximal if and only if (z, e(a)) = 0 for all e(a), where
e(a)=dim S(a). It satisfies the equation

2=(z,2)= ) (2)ulz e(a)),
a=1
where by (z), we denote the ath entry of z.

Since —1<(z, e(a))< 1, there are at most two g satisfying (z, e(a)) >0,
and these are called the exceptional vertices of z. If there is only one such
a, then (z},=2, and if there are two, say « and b, then (z),=(z),= 1.

Let M be a maximal sincere B-module with dim M =z. M is dominated
by the projective module P=@"_, P(a)>*“), where P(a) denotes the
indecomposable B-module whose top is S(a). Then we have for all
B-modules X that (z, dim X)= {dim P, dim X ). Recall that for dimension
vectors dim X and dim Y of B-modules we have

(dim X, dim Y) =Y (—1)dim, Ext, (X, ¥),
i=1

and since the global dimension of B is at most two [HR], Exti(X, ¥} =0
for i>2.

1.2. Being interested in the number of maximal sincere B-moduies, we
have according to the results of de la Pefia only to consider the cases where
B is tilted from 4 =kA, 4 of type T,,,, and B-mod has a maximal sincere
module with three neighbours in the orbit graph of 7(B).

Since (I (B))= 4, we will enumerate the vertices of O(I'(B)) according
to the vertices of 4. Since B is sincere, I'(B) contains each possibie orienta-
tion of 4 as a complete slice, implying that for each quiver A there is an
A =kA* tilting module T with End , T=B [R].

We will assume in the following that A is given by factorspace orienta-
tion, that is, that the branching point b of 4, the unique vertex with three
neighbours, is the only source of A.

The indecomposable injective (projective) 4-modules will be denoted by
L,(7) (P 4(i)), where 1 <i< n are the vertices of A, and the indecomposable
injective (projective) B-modules will be denoted by [Fgz(i) (Pz{7)), where
1 <i<n are the vertices of A.

If M and M’ are two distinct maximal sincere B-modules, then
M®= M'", where M* denotes the t-orbit of M in O(I(B}) [P]. This implies
that there is a unique last (in the order given by the paths in /(B)) maximal
sincere B-module, which will be denoted by M{(a).
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F(M(a)—), the slice in I'(B) having M(a) as the only source, is a com-
plete slice, and we may assume that it is the image of the indecomposable
injective 4-modules under the functor Hom ,(7, ). In particular, M(a)=
Hom ,(T, I,(b)).

If M(cy=t3M(a) for some r>0 is maximal sincere as well, then
M(c)=13Hom (T, I,(b))=Hom (T, ", 1,(5)) [R]. In fact all preinjec-
tive direct summands of T are predecessors of t/, I ,(b).

Since all maximal sincere modules have three neighbours in the orbit
graph, they have one exceptional vertex [R], in particular, they are
dominated by an indecomposable projective module.

Let Py(a) be the projective dominating M{a), and let T(a) be the
indecomposable summand of T with Pg(a)=Hom ,(T, T(a)). Then
dim T(a) = (dim, Hom z(P 5(a), #(M(a)—))).

Let X be an indecomposable module in & (M(a)—). Since M(a) is
dominated by Pz(a) we obtain

dim, Hom (P 5(a), X) = {(dim P 4(a), dim X
= (dim M(a), dim X)

= i (—1)"dim, Exty(M(a), X)
i=0

2
+ > (—1) dim, Ext}(X, M(a)).
i=0
Since the Ext’ terms vanish for > 1, we get that dim, Hom z(P4(a), X) =2
if X=M(a) and dim, Hom z(P4(a), X) =1 otherwise.
Hence the A-module T(a) has

Let M(c)=1,M(a) be another maximal sincere B-module, M(c)
dominated by P(c), and let T(c) be the corresponding tilting summand.
Obviously, (dim, Hom gz(P z(c), #( Ty M(a) — )))=dim T(a).

LemMa. If (dim, Homg(Pg(a), #( M(a)—))) = (dim, Hom z(P(c),
L( 15M(a)—))), then T(a)=1"T(c).

Proof. The proof involves some tilting theory for which we refer to
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[R]. Let G be the functor ,Ty® z— and F the functor Hom (7, -). Let
¥ >0, since otherwise the assertion of the lemma is trivial. If X(i) is a
module in F(M(a)—), say X(i)=F(I (i), then X{(i) and 15X{i) are in
FY(T), where (H(T), #(T)) is the torsion pair on B-mod induced by T.
Hence we have that G(X(i)) and G(1,X(i)) belong to F, where (¥, 7 ) is
the torsion pair on A-mod. Then F(t,G(X(i))) = 1{FG(X(i))) = 15(X(i)}
[R7], implying that 7, G(X (7)) = GF(t ,G(X(i))) = G(r 5(X(i})).
Assume that Hom z(Pz(a), X(i)) = Hom g(Py{c), 1, X(i}). Then

Hom ,(G(P s(a)), G(X(#))) = Hom (G(P(c)), G{z5X(i))),
hence
Hom (T(a), 1,(1)) =Hom (T(c), G(z3X(1}))

= Hom ,(T{c), T, (G(X()))},

applying the above consideration inductively. But then Hom ,(7{a), £ ,{:})
=Hom (T(c), v/, (i)} =Hom ,(z ;" T(c}), 1 ,{i)}, implying that dim T{a}=
dim t;"T{(c), hence T{a)=1;"T(c).

As an immediate consequence of this lemma we obtain:

PROPOSITION. Let B be a sincere directed algebra, and assume that
B-mod admits two distinct maximal sincere modules with the same excep-
tional vertex. Then B is a tilted algebra of type A, with A=TEgor A=, or
A=,

Another consequence of the above lemma, which also follows
immediately from [P], is that M is maximal sincere, then neither tM nor
T~ M is maximal sincere.

Summarizing our considerations, we will assume in the following,
without stating it explicitly, that B is tilted from 4 = kA*, where A4 is of the
type T,,. and A has factorspace orientation, that M(a) with M(a)* =5 is
the last maximal sincere B-module, that T{a) with (dim 7{a)),=2 and
(dim T(a)), =1 for x # b is an indecomposable direct summand of 7, that
if 1, M(a) is maximal sincere, then t’, T(a) is a direct summand of 7, and
that alll preinjective direct summands of 7 are predecessors of 77, 7,(b).

2. UprpPER BOUNDS FOR THE NUMBER OF MAXIMAL SINCERE B-MODULES
IF B Is TILTED FROM A REPRESENTATION-FINITE ALGEBRA

2.1. Let A be of type E¢. Then I'(4) is of the form



216 LUISE UNGER

Observe that we only draw edges instead of arrows between the vertices of
I'(A). As usual, the arrows go from the left to the right. The square in I(4)
corresponds to T{a).

The only module in the z-orbit of 7(a) which is the predecessor of T(a)
and has no extensions with 7(a) is the projective module. Hence there are
at most two maximal sincere B-modules. On the other hand, if A is the
quiver

and . is the ideal generated by «aff —yd, then B=kA/# is an Eg-tilted
algebra admitting two maximal sincere modules M(a) and M(c) with

. 7N\

dim M(a) = ]< >2 and dim M(c) = 2 I
an ) |
7 Vv

2.2, Let A be of type E,. Then I'(A) is of the form
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Again, the square corresponds to T(a).

There are two predecesors of T(a) in O( ( )), the t-orbit of T(a),
which do not extend with T(a), namely t%7(a) and t37(a). Since
Ext! (1% T(a), t5 T(a)) #0, only one of them can be a direct summand of 7,
implying that there are at most two maximal sincere B-modules.

On the other hand, if A is the quiver

Q\

q\q\aoa

B
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and £ =aff), then B=kA/4 is an F,-tilted algebra with two meaximal
sincere B-modules M(a) and M{c). where

I\ N

2\3 2\ \
EN 2 3\ p
dim M(a) = %4 and  dimM{c)= 47
— VAN — SN,
2 1 2 Z
2.3. Let A be of type kg, and consider 7{A4):
; 3 8 s 8 N d
NSNS NN N NN N NN NN NS
/O\O/ NN NN \O/O\O/ NN N \ﬁ/“\o/p\o/)
C/KO/ NN N NN NN NN AN N
SN IN IS IN IS IS AN
NN AN NN NN N N N '\3/“:5/ N
R < s N a
\O/ \0/ \O/ \0/ \O/ \o/ \O/ \D/ \Q/ \0/ \C/ \3/ N \O/ .

Again, the square corresponds to 7(a).

The modules 7%, T(a) with 2 <5< 5 are predecessors of T{a) in ¢/(T{o}}
and do not extend with T(a). But at most two of them do not extend with
cach other. Hence there are at most three maximal sincere B-modules. If &
is the guiver

and # = <{uf, 16>, then B=kA/ ¥ is an [Fg-tilted algebra admitting three
maximal sincere modules M(a), M(c), and M{d). with

N L
dim M(a) = \6/ ., dim M(c) = \6!" and
FAN - AN
3 lo\ 3 4
2 \2

N
/

dim M(d) = \3\6/2

VAN

3 4

N

2.4. Recall that a vertex v of 4 is calied a tip, if v has exactly cre
neighbour in 4. If x and » are vertices of 4, then the distance d{x, v}
between x and y is the number of edges between x and y. We say that the
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vertex x belongs to a branch of 4, if 4\ {x} is either connected or has a
component of type A,. The length of a branch 4’ of 4 is the distance
d(b, v) between the branching point 5 and the tip v in 4".

Let A be of type D, and let v be the tip of the longest branch of 4. Let
v’ be the neighbour of v. Then T(a)=1, P ,(v'), hence there is no prede-
cessor of T(a) in ¢'(T(a)) not extending with T(a). This implies that there
is exactly one maximal sincere B-module.

3. UpPPER BOUNDS FOR THE NUMBER OF MAXIMAL SINCERE B-MODULES
IF B Is TILTED FROM A TAME ALGEBRA

In the remaining sections we will use the following notation. If 4 is of the
form T,,,, then the tip of the shortest branch will be denoted by z, the tip

of the second longest branch by u, and the tip of the longest branch by v.

3.1. Let A be of type E4. Then T(a) is simple regular fo period two
[DR], implying that there is exactly one indecomposable summand of T
in O(T(a)). This implies that all maximal sincere B-modules have the same
exceptional vertex, and that only modules of the form t2"M(a) for m >0
can be maximal.

The replication number (for the definition see [BB]) for B is six [BB],
and it is achieved, if the maximal B-projective module P, in the order
given by M < N if there is a path from M to N in I'(B), is a tip of ¢'(1(B)).

This implies that there are at most four modules M in I'(B) with M =5
satisfying that /(M —) and &(— M), the slice having M as the only sink,
are complete slices. But this has to be satisfied by a sincere module. Hence,
there are at most two maximal sincere B-modules, and this number is
achieved for the Eq-tilted algebra

- , -
= ki/T with LA and I = <a3 -vé&, €7 -vyé>

The maximal sincere modules are M(a) and M'(a) with
1

N

/N,

. AN . /

dim M(a) = -2 and dim M(a)’ = 2=2—
— / - \2/
/

NS
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3.2. Let A be of type T,. Then T{a) is simple regular of period three
{DR], again implying that there is only one indecomposable summand of
7 in (T(a)), and if M(a) is maximal sincere, then only the modules
Ty'M(a) for some m >0 can be maximal as well. The replication number
for B is 12 [BB] and direct computation shows that the maximal number
of modules M with M*=5 and S (—M) and F{HM -} complete slices is
achieved if the maximal B-projective module P is the vertex » in ¢ (7B}
Then there are nine modules M with the above propertics, implying that
there are at most three maximal sincere B-modules.
On the other hand, if B=kA/#, where

0 a

Ve
8 K
K: 8 Lo and I = <a3-v&, y8~-ct>
AN
/O

then B is an [,-tilted algebra with three maximal sincere modules Mig*,
with 1 <i<3, given by the dimension vectors

dim m(z)t = i

3.3. Let A be of type Fg. Then T(a) is simple regular of period five
[DR], implying that there are at most two indecomposable summands of
T in €(T(a)), namely either T(a) and 7% T{a) or T{a) and 7> T{a). This
yields that if M(a) is maximal sincere, only the modules 3" M(a} and
" 2 M(a) or 13"M(a) and t3" "3 M(a) for m >0 can be maximal sincere.

The replication number for B is at most 29, and again direct computa-
tion shows that the maximal number of moduies A with M*=4 and
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F(M—) and F(—M) complete slices is 25, and it is achieved if the
maximal projective satisfies P5=v. This implies that there are at most 10
maximal sincere B-modules, and they are achieved for B=kA/# with

e
A
\ and I = <C!B’ 'YG -EE, EE "W>
[

7

The maximal sincere B-modules have either the exceptional vertex a, and
then they are given by the dimension vectors

K‘V

[#]

2

7

O

]

2 7/
N
/N

dim M(a)" = ii—3—(6-i1) for 1<i<S5

\,”

4

/

2

or they have the exceptional vertex ¢, and then they are given by

dim M(c)* = i—3—(6-i) for 1<ic<5
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4. UrrER BOUNDS FOR THE NUMBER OF MaxiMaL SINCERE B-MODULES
IF B Is TILTED FROM & WILD ALGEBRA

4.1. If B is a representation-finite tilted algebra, and 4 is representa-
tion-infinite, then 7 has A-preprojective and -preinjective summands.

The following two lemmas show that there are tips x and v of 4 such
that there is a direct summand of 7 in ¢(J,{x}} and a direct summand of
Tin O(P (1)

LemMa 1. Ler d be a vertex in a branch of a quiver Q and assume tiis
branch also contains the tip x. Let 4 =kQ*.

Ler T\d)=1°,1,(d) be a direct summand of an A-tilting module T. if there
is a sectional path w from T(d) to a moduie in O (x}), then T has an
indecomposable direct summand in C(I ,(x)) which is either ¢ sectional prede-
cessor or a sectional successor of T(d) or which is incomparable with T(d).

Proof. (Consider the sectional path w: 7{d}) - X(1}— --- — X{(n}, where
X{(nye (I (x)). By assumption, no X(i) lies in the r-orbit of / (b), whers
b denotes a branching point of Q. We will prove the lemma by induction
on the number of arrows in w.

If 7{d) = X(n), there is nothing to show. Hence, assume that 7{d} # X{a}.

A nonzero map f: T(d) — X(n) is an epimorphism, and the kernel of /'is
TX(1}.

Consider the exact sequence #: 0 — 1 X(1) - T(d}) — X{n) — 0. Applying
the functor Hom (7T, —) to it, we get that Ext’(7, X(n))=0. Hence, if X2}
is not a direct summand of T, there is an indecomposable direct summand
T(c) of T with Extl(X(n), T(c))#0, that is, Hom (T{c), v (X{(n))#0C.
Applying Hom ,(—, T(c)) to n yields that then also Hom ,(z,X(1}, T{c};
#0. But then T(c) is a module in the sectional path from 7,X{!} to
7 ,X{(n} and this path has fewer arrows than i, and the assertion follows by
induction hypothesis.

LEMMA 2. Ler d be a vertex in a branch of a quiver €, and assume that
this branch also contains the tip x. Let A =5Q%*, and ier T be an A-tilting
module, having T(dy =1 P ,d) as a direct summand.

If T has no direct summand in C(P (x}) which is either a sectional prede-
cessor or a sectional successor of T(d) or which is incomparable with T!d).
then Hom (T, 1,(b)) is for all branching points b of G a nonsincere
End , T-module.

Proof. Let Z be the set of indecomposabie preprojective direct sum-
mands of T satisfying the following conditiorn:



222 LUISE UNGER

If T(d)e Z and w: T(d) - X(1) > --- — X(n) with X(n)e O(P 4(x)) and x a
tip of Q is a sectional path and no X(i) is in the 7-orbit of P (b), then T
does not contain an indecomposable direct summand in ¢(P ,(x)) which is
the sectional predecessor, sectional successor, or incomparable with T(d).

Let 7(d) in # be chosen in such a way that the sectional path w is of
minimal length. We claim that X(1) is projective, and then obviously also
T(d) is projective.

Assume X(1) is not projective. Then the irreducible map f:7,X(1)—
T(d) is a monomorphism, and X(») is isomorphic to the cokernel of /. Since
X(n) is not a summand of 7, similar arguments as above force the existence
of an indecomposable direct summand 7(c) of T which is a successor of
7,X(i) and a predecessor of 7,X(n). But then 7T(c)e # and the corre-
sponding sectional path is of smaller length, a contradiction. By induction
we get that all X(i) for 1<i<n are projective. Hence T(d)= P ,(d) and
X(1)=P 4(c) are projective, and the irreducible map g: P ,(d)— P (c) is a
monomorphism, whose cokernel is isomorphic to %~ ' ,(x) and there is no
path from 7,7 '7 ,(x) to an injective 4-module I ,(b), where b is a branching
point of Q.

Since by assumption P ,(c) is not a direct summand of T, there is an
indecomposable direct summand T7(e) of T with Extl(T(e), P (c))+#0.
Applying Hom 4(T(e), ) to the sequence 0 — P (d) = P (c) > 17 "I (x)
—0 we get that Ext!(T(e), 1% '1,(x))#0+#Hom (" ' (x), tT(e)),
hence T(e) is a successor of t% %I ,(x), implying that for all branching
points b of Q we have Hom ,(T(e), I ,(b)) =0, the desired result.

Applying the above lemmas to the situation we are considering, we
obtain:

COROLLARY. If B-mod admits a maximal sincere module M with M™ = b,
then there exist tips x and y of A such that there is a direct summand in the
t-orbit of I ,(x) and a direct summand in the t-orbit of P ,(»).

4.2. The following result has been proven in [HU].

PROPOSITION.  Let Q be a wild quiver with more than two vertices, and let
a be a vertex in Q which has exactly one neighbour. Assume Q'=Q\{a} is
representation-finite.

Let € and €' denote the preinjective components of kQ and kQ’, respec-
tively, and let k% and k%' be the corresponding mesh categories.

Let #(a) be the ideal generated by the residue classes of paths in K%
Jactoring over a module in G(I,o(a)). Then k€’ is isomorphic to k¥%/.%(a).

As a consequence of the above proposition we obtain results concerning
homomorphisms between indecomposable preinjective modules over
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one-point extensions (for the definition and notations we refer 1o
[R]) C=C'[P(a’)] of a representation-infinite algebra C'=kQ’ by an
indecomposable C'-projective module P~{a’'). Then =4 is hereditary
and Q' is a subquiver of Q. We enumerate the vertices of Q' according o
the vertices of Q, and the extension vertex wiil be dencted by «
An easy consequence of the above propoposition is

CoroLLARY. Let z and ' be vertices of Q.
(i} If dim, Hom (1t I (2 - dc{2)) =1, then
dim, Hom (- Io(z), T3 102 = n
(i) IfHomeAtolc(2), 1o do(a'})#0, then
Hom (- 1-(z), t-i{a) #0.
{iii)  If Homedt {e @), v H(z)) # 0, then
Hom (1 H(a), T {0 #0.

(iv} IfHomel(tdcAa'), 1o doda)) #£0 for »>s. then

Remarks. (a) It follows from the description of the Auslander—Reiten
sequences in C-mod which are lifted from C'-mod [R7] that if 4 s an
indecompesable C'-module with dim, Hom (7~ M. f~{a"})=n, then the
ath entry of dimt-M is u, and all other entries coincide with those
of dimrt~M. In particular, if dim, Home(to M, Io{a"}}=0. tnen
TeM=1.M.

(b)Y Let A’ be a representation-infinite star, say 4'=7,,,, and 2’ be
the tip of A" in the branch of length r, and assume that 4" has factorspacs
orientation. Let 4"=kA'*. Then A'[P(a"}j=4A =kA* where 4=T,,
and A has factorspace orientation as well. 4 and 4’ obviously satisfy the

above proposition and its corollary.

4.3, The following results, which have been proven in [U7]. will
needed in the sequel

LemMa 1. Let 4 be a wild star containing T4, and jer C=kA* for some
orientation A of A. Let x and v be differen: tips of 4. If X is a mﬂdu!e in
O (x)) and Y is a sectional successor of X in (I {yvy), then
Hom {1t 2X, Y)#0 for all n>0.
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Recall that an epimorphism f: X — Y is called 7 *-stable if 7/ t"X - 'Y
is an epimorphism for all #>0.

LeMMA 2. Let 4 be a wild star containing Eq, and let C =kA* for some
orientation A of A. Let x be a tip of A. Assume that X is a module in
O(Ic(x)), and thar there is a sectional path w: X~»V-»Y, where V is a
module in O(I-(b)) and there are at least two arrows between V and Y. Then
a nonzero morphism from X to Y is a 1} -stable epimorphism.

PROPOSITION. Let B be a sincere directed algebra which is tilted from
A =kA*, and assume that A contains g as a proper subgraph. Then B-mod
admits exactly one maximal sincere B-module.

Proof. As a sincere directed algebra, B possesses at least one maximal
sincere module. Assume B-mod admits more than one maximal sincere
module.

According to 4.1 there are tips x and y of A such that T{(x)=15/1,(x)
and T'(y)=1%P,(y) are indecomposable direct summands of 7. By 1.2,
T(x) is a predecessor of t21,(b), hence s> r + 2. where r denotes the dis-
tance d(b, x) between b and x. We have that Ext’ (15,1 ,(x), T ;P (3))=0,
and this can be rephrased into the condition

Hom ,(z3"* "1 ,(x), 1,(y))=0. (*)

Lemma 1 states that (x) cannot be satisfied if x and y are different tips of
4, hence y=x.

Assume that there is a tip - different from x with d(b, z) >2. Then
it follows from Lemma?2 that there is a t}-stable epimorphism
fit T2 (x) > X, where X is the sectional successor of t"*2[(x) in the
7 .-orbit of 7 ,(a), where a lies in the branch containing z, and d(b, a) =2.
Since a is not a tip of 4, it can be shown easily that Hom (17 X, I(x)) #0
for all n >0, implying that Hom 4(z’,* **"I(x), I(x)) # 0 for all n > 0. Hence,
condition (*) cannot be satisfied.

The only case which remains to be considered is 4= T,,,, where r> 2,
and x with T(x)e (*(1 ((x)) and T'(x)e O(P ,(x)) is the tip of the branch of
length .

According to [U], t/,*I(x) is t}-stable faithful, hence condition (x)
can only be satisfied if T(x)=1""?I,(x) and T'(x)=P (x). If 4= Ty,
direct computation shows that Hom ,(t’," 7 (x), I(i)) # 0 for all i # x, and
if we apply Corollary 4.2 inductively, we obtain the same result for 4 = T,,,
and r> 3. This implies that 7,7 is an A'=kA’* tilting module, where
A’=A\{x}, and since A4’ is representation-infinite, t,7 must have an
A'-preprojective summand.

7,4 7T(x) is a direct summand of 7, and we claim that 7, 7(x) >~ T, I ,(b).



Proof of the Claim.

MAXIMAL SINCERE MODULES

The Cartan matrix of A4 is

{ 00 0000 --- 90
1 10 00 00 --- 0
1 110000 -0
1 00 1000 --- 0
106 1100 ---0
1 00 00 1
1 00 00 11 N
L1 00 00 11 --- 1 J
The Coxeter matrix @, =—C7'C,of 4 is
~—1 —1 —1 —1 —1 -1—17-—17
tr 0o o0 1 v t 1 1
o + 0 0 ¢ ¢ 0--- O
r 1t 1 0 0o 1 t 1
6 0 0 t 0O ¢ 0. G
1ttt t 6 ¢
O ¢ 0 O 0 1 O -
) 0]
. 0 0 0 0 ¢ g

dimt, [, (0)= (111 1|1, 11, ., DD =(212,112,1]2, ., 2, )
dim t7,* ¥ (x}=(0]0, 00,00, .. 0. 1} @73 = (212, 1], 1]. 2, .

I

fam)

\

Since 17,7%7,(x) is preinjective, then A T (x) and 1,1.{b} are
isomorphic. But there is no A'-preprojective module X satisfying that
Ext!.(t,1{b), X)=0, hence End,t7 and therefore End,T=28 are
representation-infinite, a contradiction. This finishes the proof of :he

proposition.
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4.4. In this section we want to determine upper bounds for the number
of maximal sincere B-modules if B is a tilted algebra of A =kA*, and
4=T,,, containing E, properly. Again we need some preliminary results.

LemMa 1. Let A=T,,, and assume that E, is a proper subgraph of A.
Let z be the tip of the branch of length 1. Then t°1,(z) is a t}-stable
Sfaithful module.

Proof. 1If 4= T, the result can be proven directly. The general asump-
tion follows by applying Corollary 4.2 inductively.

Similarly we prove:

Lemma 2. Let A=T,,, containing E, properly. Assume that p>3, and
let x be the tip of the branch of length q. Then t% 1 (x) is a t-stable
Sfaithful module.

Note that in the previous lemma we did not assume that p<gq.

PROPOSITION. Let B be sincere directed of type A, where A contains E,
properly. Then B-mod admits exactly one maximal sincere B-module.

The proof follows from Lemma 1 and Lemma 2 exactly as in 4.3.

4.5. The remaining part of the article is devoted to the case where B is
a sincere directed algebra of type A, where A =T,,, and r>6. Again we
denote the tip of the branch of length 1 by z, the tip of the branch of length
2 by u, and the tip of the branch of length r by .

The objective of this section is to prove that if T(x)=1’1,(x) and
T(y)=1,°P(y) are direct summands of 7, and B has more than one
maximal sincere module, then x and y are vertices in the branch
containing v.

Let us assume first that 4=T),,. Then Hom ,(t3*"I,(z). 1,(z))#0,
Hom ,(t*""1 ,(2),1,(4)) #0, Hom ,(t%*"I(u), I(z)) #0, and Hom ,(z>7"1 ,(u),
I,(u))#0 for all n=0. Then obviously Corollary 4.2 gives the same result
for A=kA and 4=T,,, with r > 6.

Now assume that B-mod admits more than one maximal sincere module.
Then the above considerations prove that it is not possible to have
T(x)e (I 4(z)) or T(x)e O(I ,(u)) and at the same time T(y)e O(P 4(z)) or
T{(y)e @(P (u)). Hence the following cases remain to be considered:

(a) T(x)e€@((z)) and T(y)e (P (v)) and
(b) T{x)e C(I4(u)) and T(y)e O(P (v)).

The cases where T(x)e (1 ,(r)) and T(y)e C(P (z)) and T(x)e O(1 ,(v))
and T(v)e C(P 4(u)) are dual to (a) and (b).
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{(a) Assume that T(x)e (1 ,(z)) and T(v)e ({P ,(¢}). Since t%1,{z} is
7 ¥ -stable faithful and since the immediate prf‘decesso* of 151,46} n
(O(I,(z)) is 151,(z), the only possibility for 7{x) is t3/,(z), and then
T(y)= P (v) is the only projective summand of " Then t,7Tis a compiptﬁ
A'=kA'=k(A {v}) tilting module, and %7 ,(c) is 2 summand of 7,

It can be proven by the same methods as in Proposition 4.3 Lk«;z
41 4{z) = 13,1 ,(J), where j is the neighbour of 5 in the branch containing
v and this is a 7 j-stable faithful module. Then there is no A'-projective
summand of t,7, a contradiction.

(b\ Assume that T(x )ecf‘(IA( )) and T(y)e (P {v)). Since 17,

+.stable faithful, and since t%7,(u) is the sectional predecessor of ri
the only possibilities for 7(x ) are T(x)=1%1 (1) or T{x)="1>1{u)

But since t37,(u) is faithful, we may again assume without loss of
generality that 7(x)= 151 ,(u), and then T(y)= P /v) is the only projective
summand of 7. But then t%7,(u)~1t% I{i} is a direct summand of the
A" =k(A\ {v}) tilting module 7,7, and i is the vertex in the branch of 4
containing v, and d(b, /)=2. But t%.1,.(i) is r [-stable faithful, a contra-
diction.

Iy

ney

‘7P

4.6. PROPOSITION. [If A=T,, with r>6, then B-mod admits exactly one
maximal sincere module.

Proof.  Assume that there is more than one maximal sincere B-module
By [R7. r<7, therefore 4=T,,,.

There is a direct summand T'(x) of T with T(x)e (I ,(v}} and a direc:
summand 7(y)e O(P 4{v)). Moreover T(x)=1’17 (v} is a predecessor of
12 1,(6) and therefore s>r+2=09. Since 7" 1,(v} is t-stable faithful
TUT, then 9<s<r+5=12. A direct calculation gives a contradiction.

4.7. PROPOSITION. Let A=T,, and assume 8-mod admits more than
one maximal sincere module. Then I'(B) does nor contain a module M with
M*=b and S(M—) and ¥ (— t'M) complete slices for 0<I<3.

Proof.  Since B-mod admits more than one maximal sincere module, we
know by 4.5 that T does not have a direct summand °J Ja) or T P {a}
where ¢ is a vertex in a branch containing z or «, and 7 has a summand
T(x}e CG{I o)) and T(y)e C(P 4v)).

If we assume that I'(B) has a module M with A" =5 and (M —} and
¥(— M} complete slices for 0</<3, we get furthermore that ali pre-
injective summands of T are prececessors of 737 ,(5).

Analogously to the arguments in 4.6, we obtain that the only cases ic
consider are:

(a) T(x)=r11,(v)and T(y)= P (c) and

481133 1-16
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(b) T(x)=t47(v) and T(y)=P (v) and
(c) T(x)=1%1,(v)and T(y)=P ,(v).

(a) If T(x)=1'}1,(v), then P (v) is the only projective summand of T,
and 7,7 is an A'=kA"™* = k(A*\ {v}) tilting module. Direct computation
shows that ! HAOESI (a) where a is the neighbour of 5 in 4 in the
branch containing v. But t%.7,.(a) is t }-stable faithful, a contradiction.

(b) If T(r)—r“h(v), then again 1,7 is an A" =kA™* =k(A*\ {v})
tilting module, and t}77,(v) > 1% 1,(c) with ¢ the vertex in the branch
containing v and d(b,c)=3 is a direct summand of t7. The only
A'-preprojective module X with Ext}(t%.1,(c), X)=0is X=1,2P .(v'),
where again v’ denotes the neighbour of v. But t1;2P (v')=1,2P ,(v),
hence t,°P(v) is a summand of T, and this implies that there are no
summands 7°/, A(i ) of T with i a vertex in the branch containing v which are
successors of 17 (v) and predecessors of t%17,(b). Hence 21, T is an
A'-tilting module, and 7t ;P (v) is a summand of t ;1*T. But for similar
reasons, 7, P (v)=1,"P (a), with a the neighbour of b in the branch
containing v, cannot be extended to a tilting module with a representation-
finite endomorphism-ring.

(c) Assume that t%7,(v)= T(x) and P ,(v)=T(y) are summands of T.
The only predecessors of t%1,(h) which are successors of %1 ,(v) not of
the form t%7,(i), i a vertex in a branch containing z or u, satisfying
Ext)y(t5,1,(i), P ,(v))=0 arc the immediate successor t51,,(v") of t%1,(v)
and rZIIA(v”) where v” is the vertex with d(v, v")=2.

If t7 1,(0") i 1s a direct summand of 7, then t7 is a kA*\ {v} = 4’ tilting
module and t%1,(v")=1%1,(b) is a summand of 7, which cannot be
extended to a tilting module with representation-finite endomorphism-ring,
a contradiction.

If %7,(v') is a summand of 7, then I'(B) contains the subtranslation
quiver

Y NN NN N \/"\o/\o/\m/"Z
\/\/\/\o/\o/\o/\o/\/
\/\/D\/\/ NSNS

\/\/\o/\/\o/\o/
\o/\/\/>o/\/
ol‘oiolo—olo-oﬁoﬁo

/’\'\/\0/ NN

/°\/\/\D/\/\o

and the module Y corresponds to a projective vertex in I'(B). Calculating
the indicator set for Y (for the definition see [BB]), we get that ¥ (Z—)
is a complete slice in 7(B) [BB] and 7, '°N is a module in ¥(Z—). But
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then dim, Homy(Y, 1 '°N)=7, implying that B is not representation-
finite.

Hence t;!°T is a complete A'-tilting module and 7, '°P (v} =1 * P (a)
is a direct summand of 77, and the only A'-preinjective modules X with
Ext) (X, 1 2P (u))=0 are

(i) X=IL,(") or (i) X=131,.")

If o0 . (v)=1%1,(v)is a direct summand of t; °7, then 1}/ ,(v) is a direct
summand of 7, and this was disproved in (a). Hence, I . (v'})=1,/,(v)isa
direct summand of ¢ ~'°T, hence 11! 7 ,(v) and %7 ,(v) are direct summands
of T. But this contradicts (b).

4.8. THEOREM. Let B be a sincere directed algebra which is tilted from
A=kA, and A is of wild representation type. B-mod admits more than one
maximal sincere module, if and only if B~kA/.#, where A is the quiver

S € M

and F = {afy —ed, e& — o, mp — v ).
There are exactly two maximal sincere B-modules M{a) and M(c) given
by the dimensionvectors

1—2—1—1 1—2—2-—-2
l | | i
dim M(a)=2 1 and dim M(c}=1 P2
| z i Co
2—2—2-—1 1—1—2—1

and they are dominated by Pg(a) and Pg(c), respectively.

Proof. Due to our previous considerations we know that if B has more
than one maximal sincere module, then B is tilted from 4 =kA*, where
A4 =T, 5. We already know four indecomposable summands of 7, namely
t81,(v), P 4(v), T(a), and 1% T(a). Recall that T(a) was given the dimen-
sionvector (dim T(a)), =2 and (dim T{a))}, =1 for all x# 5. We have also
proven that T has no direct summand 7(i) with T(i}e O(I (i)} or
T(i) e O(P 4(7)), where i is a vertex in a branch containing z or .

Direct computation shows that the only possibility for preinjective
module X which is predecessor of 137 ,(h) and successor of 157 ,(v} with
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Ext (X, P,(v))=0 is X=1/1,(v"), where v’ is the neighbour of v. But
Ext_{!(r;IA(v’), ri T(a)) 750, hence t7,1,(¢") is not a direct summand of T.

Also Extl(7), IA(v”) 1% T(a)) #0, where v” #v is the neighbour of v/,
implying that 17 1,(v") is also not a diremct summand of T. The assump-
tion that 517 4(v) is a direct summand of T was contradicted in 4.7(c).
Hence, rAgT is an A'=k(A*\{v}) tilting module, and 1°P,(v) ~
17" P(u) is a summand of 7,°T. The only A’ premjecttve modules X
satisfying Ext'.(X, 17" P () =0 are 1,1, (v')=131,(v) and t%.T.(v")=
TAIA(U)

If t31,(v) is a direct summand of t;°7, then t4/(v) is a direct sum-
mand of T, and this was contradicted in 4.7(a). Hence t''1,(v) is a direct
summand of 7.

It has been shown in 4.7(b) that the only possibility to extend t'/7,(v)
to a tilting module whose endomorphism-ring is representation- ﬁmte is if
t,°P,(v) is a direct summand of T.

Direct computation shows that 7 ;2P ,(v)=1;°P +(v'), and furthermore
that there is no A'-preinjective successor of '7,(v) which is different from
8 I(v) and a summand of T. Summarizing, we must have the following
direct summand of T: 1t ,(v) ® t%1,(v) ® T(a) ® t5T(a) ® P, (v) ®
1 ;3P 4(v). Since Hom 4(t21(v), I(i)) #0 for all i#v, we get that 7,T is a
complete A'-tilting module, and t'21 (v)® %[ (V) D1, T(a)® 13 T(a)®D
;2P ,(v)is a direct summand of ¢, T.

Since 7 (t121,(v)), T3(t1,(v)), and ti(tI,(v)) are A'-faithful
modules, we obtam that ©2.(t,T)=T is an A" =k(A\{v,v'}) tilting
module.

A" is of type [Eg, and the direct sum of 3.(t'21,(v))=U.
2 (0 L(v)) =V, *(1,T(a))=W, and t°(t> T(a))=R is a direct sum-
mand of T". The position of these modules in I'(4") is

1
/\/\/\/\ \/\f\/\ \/\ f\@éy)
N \/\/\ \ \/\D/\ \ N/
o \o/</ NN °<°/°< Ny >o/°< / \0 P \0/;&)(2)
oZoNoZo0Zo L0 ZooZo oL >04350 -0402'-040 %o 1(z)

NZANENZENZAN NZANZANZANZANAN NN, Lo
\< °\/°\°/\o/°\/°\/°\ /\o/\/\/O//O/\/\ o 1(4)

Since Hom (M, t%.1,.(b))#0+#Hom ,.(t%.1,.(b), N} for all prede-
cessors M of t2%.1.(b) and all successors N of t%.1,.(b), we get that all
direct summands of T lie in the encircled part of I'(A4"). All successors of
Uin I'(A") are not direct summands of 7, since otherwise there would be
a successor of 7.7 ,(v) or %I ,(v) which would be a summand of 7, and
this was excluded before. This implies that ©3.7,.(z), t%.1,.(1), and
3.1 ,4.(4) are direct summands of 7.
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Finally, if t%.7,.(v")=13,.1,(0v"), then 2] () would be a summand of
T, a contradiction. Hence t°.1,-(v") is a summand of 7", and all indecom-
posable summands of T, and therefore B, are uniquely determined.

Calculating End,; T we get the asserted quiver with relations, and
calculating 7 (B) gives the converse implication and the additional asser-

tions.
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