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Abstract

A new class of bivariate distributions is presented in this paper. The procedure used in this paper is based
on a latent random variable with exponential distribution. The model introduced here is of Marshall–Olkin
type. A mixture of the proposed bivariate distributions is also discussed. The results obtained here generalize
those of the bivariate exponential distribution present in the literature.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

The generalized exponential distribution was introduced recently by Gupta and Kundu [1].
They observed that it can be used quite effectively in analyzing many lifetime data, especially
in place of gamma and Weibull distributions. The primary reason for this is that the family of
generalized exponential distributions does include models with increasing and decreasing failure
rates. Gupta and Kundu [2] studied the maximum likelihood estimation of the parameters of
generalized exponential distribution. These maximum likelihood estimates have been compared
with other estimators by Gupta and Kundu [3]. Raqab and Ahsanullah [10] used order statistics
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to estimate the location and scale parameters of generalized exponential distribution. Recently,
the ratio of the maximized likelihoods was used by Gupta et al. [5] to discriminate between
two overlapping families of distributions, viz. gamma versus generalized exponential or Weibull
versus generalized exponential; see also Gupta and Kundu [4].

In many practical problems, multivariate lifetime data arise frequently, and in these situations it
is important to consider different multivariate models that could be used to model such multivariate
lifetime data. For an encyclopedia treatment on various multivariate models and their properties
and applications, one may refer to the book by Kotz et al. [7]. In this paper, we propose a class of
bivariate distributions and also discuss their mixtures.

The construction of the new bivariate distribution is given in Section 2. The derivation of the
probability density function of this distribution is also given in this section. The marginal and
conditional probability density functions are obtained in Section 3. We also present in this section
the expectations of the marginal distributions, the conditional expectations and the joint moment
generating function. We show that the marginal and conditional expectations and the joint moment
generating function for the case of the bivariate exponential distribution can be derived as special
cases of the results presented in this section. Finally, the mixture of the new bivariate distributions
is discussed in Section 4.

2. The new bivariate distribution

In this section, we define a new version of bivariate distributions, shortly denoted by NBD. We
start with the joint survival function of the distribution and then derive the corresponding joint
probability density function.

2.1. The joint survival function

In what follows, we present the model that produces the NBD. Let U1, U2 and U3 be mutually
independent random variables with the following distributions:

Ui ∼ GED(1, �i ), i = 1, 2 and U3 ∼ E(�0),

where GED(1, �i ) denotes the generalized exponential distribution with parameters (1, �i), while
E(�0) denotes the exponential distribution with parameter �0. That is, the random variable Ui

(i = 1, 2) has a generalized exponential distribution with distribution function

Gi(t) = (
1 − e−t

)�i , t �0, �i > 0 (i = 1, 2)

and the variable U3 has an exponential distribution with a constant failure rate �0 > 0 with
distribution function

G3(t) = 1 − e−�0t , t �0, �0 > 0.

The survival functions of Ui (i = 1, 2, 3) are

Ḡi(t) = 1 − (
1 − e−t

)�i , t �0, �i > 0 (i = 1, 2), (2.1)

Ḡ3(t) = e−�0t , t �0, �0 > 0. (2.2)

Define the random variables X1 and X2 as

Xi = min(Ui, U3), i = 1, 2. (2.3)
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It is evident that the random variables X1 and X2 in (2.3) are dependent because of the common
random (latent) variable U3.

We now study the joint distribution of the random variables X1 and X2. The following lemma
gives the joint survival function of X1 and X2, which is the survival function of the NBD.

Lemma 2.1. The joint survival function of X1 and X2 is

F̄X1,X2(x1, x2) = e−�0z
{

1 − (
1 − e−x1

)�1
} {

1 − (
1 − e−x2

)�2
}

, (2.4)

where z = max(x1, x2).

Proof. Since

F̄X1,X2(x1, x2) = P
(
X1 > x1, X2 > x2

)
,

we have

F̄X1,X2(x1, x2) = P
(

min(U1, U3) > x1, min(U2, U3) > x2

)

= P
(
U1 > x1, U3 > x1, U2 > x2, U3 > x2

)

= P
(
U1 > x1, U2 > x2, U3 > max(x1, x2)

)
.

As Ui (i = 1, 2, 3) are mutually independent, we readily obtain

F̄X1,X2(x1, x2) = P(U1 > x1)P (U2 > x2)P (U3 > max(x1, x2))

= Ḡ1(x1)Ḡ2(x2)Ḡ3(z).

Substituting from (2.2) and (2.1) into the above equation, we obtain (2.4), which completes the
proof of the lemma. �

2.2. The joint probability density function

The following theorem gives the joint probability density function of the NBD.

Theorem 2.1. If the joint survival function of (X1, X2) is as in (2.4), the joint probability density
function of (X1, X2) is given by

fX1,X2(x1, x2) =

⎧⎪⎪⎨
⎪⎪⎩

f1(x1, x2) if x1 > x2 > 0,

f2(x1, x2) if x2 > x1 > 0,

f0(x1, x1) if x1 = x2 > 0,

(2.5)

where

f1(x1, x2) = �2e
−(�0x1+x2)

(
1 − e−x2

)�2−1

×
{
�0 − �0

(
1 − e−x1

)�1 + �1e
−x1

(
1 − e−x1

)�1−1
}

,
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f2(x1, x2) = �1e
−(�0x2+x1)

(
1 − e−x1

)�1−1

×
{
�0 − �0

(
1 − e−x2

)�2 + �2e
−x2

(
1 − e−x2

)�2−1
}

and

f0(x1, x1) = �0e
−�0x1

2∏
i=1

[
1 − (

1 − e−x1
)�i
]
.

Proof. Let us first assume that x1 > x2. In this case, F̄X1,X2(x1, x2) in (2.4) becomes

F̄X1,X2(x1, x2) = e−�0x1
{

1 − (
1 − e−x1

)�1
} {

1 − (
1 − e−x2

)�2
}

.

Then, upon differentiation, we obtain the expression of fX1,X2(x1, x2) = �2
F̄X1,X2 (x1,x2)

�x1�x2
to be

f1(x1, x2) given above. Similarly, we find the expression of fX1,X2(x1, x2) to be f2(x1, x2) when
x1 < x2. But, f0(x1, x1) cannot be derived in a similar way. For this reason, we use the identity∫ ∞

0
f0(x1, x1) dx1 +

∫ ∞

0

∫ x1

0
f1(x1, x2) dx2 dx1 +

∫ ∞

0

∫ x2

0
f2(x1, x2) dx1 dx2 = 1.

(2.6)

One can verify that

I1 =
∫ ∞

0

∫ x1

0
f1(x1, x2) dx2 dx1

=
∫ ∞

0

{
�0
(
1 − e−x1

)�2 e−�0x1 − �0
(
1 − e−x1

)�1+�2 e−�0x1

+�1
(
1 − e−x1

)�1+�2−1
e−(�0+1)x1

}
dx1 (2.7)

and

I2 =
∫ ∞

0

∫ x2

0
f2(x1, x2) dx1 dx2

=
∫ ∞

0

{
�0
(
1 − e−x2

)�2 e−�0x2 − �0
(
1 − e−x2

)�1+�2 e−�0x2

+�2
(
1 − e−x2

)�1+�2−1
e−(�0+1)x2

}
dx2. (2.8)

Using the transformation u = e−xi (i = 1, 2) in (2.7) and (2.8), respectively, we can see that

I1 + I2 = −�0 {B(�0, �1 + �2 + 1) − B(�0, �1 + 1) − B(�0, �2 + 1)} , (2.9)

where B(m, n) denotes the complete beta function defined by

B(m, n) =
∫ 1

0
um−1(1 − u)n−1 du, m, n > 0. (2.10)
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From (2.6) and (2.9), we then get

∫ ∞

0
f0(x1, x1) dx1 = 1 + �0 {B(�0, �1 + �2 + 1) − B(�0, �1 + 1) − B(�0, �2 + 1)} .

(2.11)

Since (using the transformation u = e−s) we can write (2.10) as

B(m, n) =
∫ ∞

0
e−ms

(
1 − e−s

)n−1
ds, m, n > 0, (2.12)

we obtain from (2.11) and (2.12) that

∫ ∞

0
f0(x1, x1) dx1 = �0

∫ ∞

0
e−�0x1

{
1 − (

1 − e−x1
)�1 − (

1 − e−x1
)�2

+ (
1 − e−x1

)�1+�2
}

dx1 (2.13)

which readily yields

f0(x1, x1) = �0e
−�0x1

{
1 − (

1 − e−x1
)�1
} {

1 − (
1 − e−x1

)�2
}

.

This completes the proof of the theorem. �

Lemma 2.2. The joint probability density function of the bivariate exponential distribution is

f (x1, x2) =

⎧⎪⎪⎨
⎪⎪⎩

(1 + �0)e
−(�0x1+x1+x2) if x1 > x2 > 0,

(1 + �0)e
−(�0x2+x1+x2) if x2 > x1 > 0,

�0e
−(�0+2)x1 if x1 = x2 > 0.

(2.14)

Proof. The result is obtained immediately from Theorem 2.1 upon setting �1 = �2
= 1. �

3. Marginal and conditional probability density functions

In this section, we derive the marginal density functions of Xi and the conditional density
functions of Xi |Xj , i �= j = 1, 2. We then present the marginal expectations of Xi and the
conditional expectations of Xi |Xj , i �= j = 1, 2. We also present the joint moment generating
function of X1 and X2.

3.1. Marginal probability density functions

Theorem 3.1. The marginal pdf of Xi (i = 1, 2) is given by

fXi
(xi) = e−�0xi

{
�0 − �0

(
1 − e−xi

)�i + �ie
−xi

(
1 − e−xi

)�i−1
}

,

xi > 0, i = 1, 2. (3.1)
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Proof. First, we shall derive fX1(x1). From the fact that

fX1(x1) =
∫ ∞

0
fX1,X2(x1, x2) dx2,

we can express

fX1(x1) = �(x1) + �(x1) + f0(x1, x1), (3.2)

where

�(x1) =
∫ x1

0
f1(x1, x2) dx2 and �(x1) =

∫ ∞

x1

f2(x1, x2) dx2.

Using the expressions of f1(x1, x2) and f1(x1, x2) given in Theorem 2.1, we can show that

�(x1) = e−�0x1
(
1 − e−x1

)�2
{
�0 − �0

(
1 − e−x1

)�1

+�1e
−x1

(
1 − e−x1

)�1−1
}

(3.3)

and

�(x1) = �1e
−x1

(
1 − e−x1

)�1−1

×
{
e−�0x1 − �0Be−x1 (�0, �2 + 1) + �2Be−x1 (�0 + 1, �2)

}
, (3.4)

where Bx(p, q) is the incomplete beta function defined by

Bx(p, q) =
∫ x

0
tp−1(1 − t)q−1 dt, (0�x�1).

Upon considering Be−x1 (�0 + 1, �2) and integrating by parts, we have

Be−x1 (�0 + 1, �2) = − 1

�2
e−�0x1

(
1 − e−x1

)�2 + �0

�2
Be−x1 (�0, �2 + 1). (3.5)

Now using the expression in (3.5) into (3.4) and simplifying, we get

�(x1) = �1e
−x1

(
1 − e−x1

)�1−1
{

1 − (
1 − e−x1

)�2
}

. (3.6)

Substituting for (3.3) and (3.6) into (3.2) and using the form of f0(x1, x1), we obtain fX1(x1)

given in (3.1). Proceeding similarly, we can derive fX2(x2) as given in (3.1), which completes the
proof of the theorem. �

Note that the marginal pdf of Xi can be derived in another way. For this, we first derive the
marginal survival function of Xi , say F̄Xi

(xi), as follows:

F̄Xi
(xi) = P

(
Xi > xi

)
= P

(
min(Ui, U3) > xi

)
= P

(
Ui > xi, U3 > xi

)
and since Ui is independent of U3, we simply have

F̄Xi
(xi) = e−�0xi

{
1 − (

1 − e−xi
)�i
}

from which we readily derive the pdf of Xi , fXi
(xi) = − �

�xi
F̄Xi

(xi), as in (3.1).
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Based on the above theorem, we can prove the following lemma.

Lemma 3.1. The marginal pdf of Xi in the case of the bivariate exponential distribution, with
joint pdf as in (2.14), is

fXi
(xi) = (�0 + 1)e−(�0+1)xi , xi > 0. (3.7)

3.2. Conditional probability density functions

Having obtained the marginal probability density functions of X1 and X2, we can now derive
the conditional probability density functions as presented in the following theorem.

Theorem 3.2. The conditional pdf of Xi , given Xj = xj , denoted by fi|j (xi |xj ) (i �= j = 1, 2),
is given by

fi|j (xi |xj ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

f
(1)
i|j (xi |xj ) if xi > xj ,

f
(2)
i|j (xi |xj ) if xi < xj ,

f
(0)
i|j (xi |xj ) if xi = xj ,

(3.8)

where

f
(1)
i|j (xi |xj )

=
�j e

−(�0xi+xj )
(
1−e−xj

)�j −1
{
�0−�0

(
1−e−xi

)�i + �ie
−xi

(
1−e−xi

)�i−1
}

e−�0xj

{
�0 − �0

(
1 − e−xj

)�j + �j e
−xj

(
1 − e−xj

)�j −1
} ,

f
(2)
i|j (xi |xj ) = �ie

−xi
(
1 − e−xi

)�i−1
,

and

f
(0)
i|j (xi |xj ) =

�0

{
1 − (

1 − e−xi
)�i
} {

1 − (
1 − e−xi

)�j
}

{
�0 − �0

(
1 − e−xi

)�j + �j e−xi
(
1 − e−xi

)�j −1
} .

Proof. The theorem follows readily upon substituting for the joint pdf of (X1, X2) in (2.5) and
the marginal pdf of Xi (i = 1, 2) in (3.1), in the relation

fi|j (xi |xj ) = fXi,Xj
(xi, xj )

fXj
(xj )

. �

Lemma 3.2. For the case of the bivariate exponential distribution, we obtain upon setting �1 =
�2 = 1 in (3.8)

fi|j (xi |xj ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

e−(�0+1)xi+�0xj if xi > xj ,

e−xi if xi < xj ,

�0

�0 + 1
e−xi if xi = xj .

(3.9)
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3.3. Mathematical expectations

Based on the results presented in the last two subsections, we can derive the mathematical
expectations of Xi , the second moments of Xi , and the conditional expectations of X1|X2 and of
X2|X1.

Theorem 3.3. The expectation of Xi (i = 1, 2) is given by

E[Xi] = 1

�0
+ �0�(�0, �i ) − (�0 + �i )�(�0 + 1, �i ), (3.10)

where

�(�, �) = B(�, �)
{
�(�) − �(� + �)

}
,

�(x) = d

dx
ln �(x) = �′(x)

�(x)

is the digamma function, and

�(x) =
∫ ∞

0
ux−1e−u du, x > 0

is the complete gamma function.

Proof. Starting with

E[Xi] =
∫ ∞

0
xifXi

(xi) dxi

and substituting for fXi
(xi) from (3.1), we get

E[Xi] = 1

�0
− �0

∫ ∞

0
xe−�0x

(
1 − e−x

)�i dx

+�i

∫ ∞

0
xe−(1+�0)x

(
1 − e−x

)�i−1
dx. (3.11)

Since ∫ ∞

0
xe−�0x

(
1 − e−x

)�i dx =
∫ ∞

0
xe−�0x

(
1 − e−x

)�i−1
dx

−
∫ ∞

0
xe−(�0+1)x

(
1 − e−x

)�i−1
dx,

we have

E[Xi] = 1

�0
− �0

∫ ∞

0
xe−�0x

(
1 − e−x

)�i−1
dx

+(�0 + �i )

∫ ∞

0
xe−(1+�0)x

(
1 − e−x

)�i−1
dx.
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Setting u = e−x in the above integrals, we get

E[Xi] = 1

�0
+ �0

∫ 1

0
u�0−1(1 − u)�i−1 ln u du

−(�0 + �i )

∫ 1

0
u�0(1 − u)�i−1 ln u du. (3.12)

Let

�(�, �) =
∫ 1

0
u�−1(1 − u)�1−1 ln u du.

Using the Euler’s psi function (see Gradshteyn and Ryzhik [6, p. 538; 4.253.1]), we have

�(�, �) = B(�, �)
[
�(�) − �(� + �)

]
, �, � > 0.

Upon using this expression for the integrals in (3.12), we derive the expression in (3.10), which
completes the proof of this theorem. �

Theorem 3.4. The second moment of Xi (i = 1, 2) is given by

E
[
X2

i

]
= 2

�2
0

− �0�(�0, �i ) + (�0 + �i )�(�0 + 1, �i ), (3.13)

where

�(�, �) = B(�, �)
{
�′(�) − �′(� + �) + [

�(�) − �(� + �)
]2}

. (3.14)

Proof. Starting with

E
[
X2

i

]
=
∫ ∞

0
x2
i fXi

(xi) dxi,

substituting for fXi
(xi) from (3.1) and setting u = e−xi , we get

E
[
X2

i

]
= 2

�2
0

− �0

∫ 1

0
u�0−1(1 − u)�i−1(ln u)2 du

+(�0 + �i )

∫ 1

0
u�0(1 − u)�i−1(ln u)2 du. (3.15)

Denoting

�(�, �) =
∫ 1

0
u�−1(1 − u)�1−1(ln u)2 du

and using the trigamma function (see Gradshteyn and Ryzhik [6, p. 541; 4.261.17]), we have

�(�, �) = B(�, �)
{[

�(�) − �(� + �)
]2 + �′(�) − �′(� + �)

}
.

Upon using this expression for the integrals in (3.15), we derive the expression in (3.13), which
completes the proof of this theorem. �
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Lemma 3.3. For the bivariate exponential distribution, we have

E[Xi] = 1

�0 + 1
. (3.16)

Proof. By setting �1 = �2 = 1 in (3.10), E[Xi] becomes

E[Xi] = 1

�0
+ �0�(�0, 1) − (�0 + 1)�(�0 + 1, 1). (3.17)

Now, using the recurrence relation �(z) = �(z − 1) + 1
z−1 , we get

�(�0, 1) = − 1

�2
0

, �(�0 + 1, 1) = − 1

(�0 + 1)2
. (3.18)

When the expressions in (3.18) are substituted into (3.17) and simplified, we obtain the expression
in (3.16). �

The conditional expectation of Xi , given Xj = xj (i �= j = 1, 2), are presented in the following
theorem.

Theorem 3.5. The conditional expectation of Xi , given Xj = xj (i �= j = 1, 2), is given by

E[Xi |Xj = xj ] = xjLj (xj )

�j (xj )
− Ij (xj )

+kj (xj )

{
e−�0xj

�0
− �0�xj

(�0, �j ) + (�0 + �j )�xj
(�0 + 1, �j )

}
,

(3.19)

where

�x(m, n) =
∫ ∞

x

ue−mu
(
1 − e−u

)n−1
du,

Ij (xj ) =
∫ xj

0

(
1 − e−x

)�j dx,

�j (xj ) = �0 − �0
(
1 − e−xj

)�j + �j e
−xj

(
1 − e−xj

)�j −1
,

Lj (xj ) = �j (xj ) + �j e
−xj

(
1 − e−xj

)�1+�2−1
,

kj (xj ) = �j e
−(1−�0)xj

(
1 − e−xj

)�j −1

�j (xj )
.

Proof. Starting with

E[Xi |Xj = xj ] =
∫ ∞

0
xifi|j (xi |xj ) dxi, (3.20)
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substituting for fi|j (xi |xj ) from (3.8) into (3.20) and simplifying the resulting expression, we
obtain (3.19). �

If we assume that �1 and �2 are positive integers, then using integration by parts and binomial
expansion, we can derive the expression

�x(	, �j ) =
�j −1∑
i=0

(
�j − 1

i

)
(−1)i

	 + i

[
x + 1

	 + i

]
e−(	+i)x, (3.21)

where 	 = �0 and �0 + 1 for �x(�0, �j ) and �x(�0 + 1, �j ), respectively, and Ij (xj ) in this case
becomes

Ij (xj ) = xj +
�j∑
l=1

(
�j

l

)
(−1)l

l

[
1 − e−lxj

]
. (3.22)

Lemma 3.4. For the bivariate exponential distribution, we have

E[Xi |Xj = xj ] = 1 − �0(�0 + 2)

(�0 + 1)2
e−xj . (3.23)

Proof. Setting �1 = �2 = 1, we readily have

�j (xj ) = (�0 + 1)e−xj , kj (xj ) = 1

(�0 + 1)e−�0xj
,

Lj (xj ) = e−xj
{
�0 + 2 − e−xj

}
.

From (3.21), we have

�xj
(�0, �j ) =

{
xj

�0
+ 1

�2
0

}
e−�0xj ,

�xj
(�0 + 1, �j ) =

{
xj

�0 + 1
+ 1

(�0 + 1)2

}
e−(�0+1)xj .

Also, from (3.22), we have Ij (xj ) = xj + e−xj − 1. Substituting for all these in (3.19), we get
E[Xi |Xj = xj ] as given in (3.23). �

3.4. Moment generating functions

In this subsection, we present the joint moment generating function of (X1, X2) and the marginal
moment generating function of Xi (i = 1, 2).

Lemma 3.5. The moment generating function of Xi (i = 1, 2) is given by

MXi
(ti) = �0

�0 + ti
− �0B(�0 + ti , �i ) + (�0 + �i )B(�0 + ti + 1, �i ). (3.24)
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Proof. Starting with

MXi
(ti) = E

[
e−tiXi

]
=
∫ ∞

0
e−tixi fXi

(xi) dxi

and substituting for fXi
(xi) from (3.1), we get

MXi
(ti) =

∫ ∞

0
e−(�0+ti )x

{
�0 − �0

(
1 − e−x

)�i + �ie
−x
(
1 − e−x

)�i−1
}

dx

from which we readily derive the expression of MXi
(ti) given in (3.24). �

Note that the moment generating function MXi
(ti) can be used, instead of the marginal pdf

fXi
(xi), to derive the marginal expectation of Xi as

E[Xi] = − d

dti
MXi

(ti)|ti=0.

From (3.24), we obtain

− d

dti
MXi

(ti) = �0

(�0 + ti )2
+ �0�(�0 + ti , �i )

−(�0 + �i )�(�0 + ti + 1, �i ) (3.25)

in which if we set ti = 0, we obtain E[Xi] as given in (3.10).
Similarly, the second moment of Xi , given in (3.13), can be derived from MXi

(ti) as its second
derivative at ti = 0.

For the special case when �1 and �2 are positive integers, the following lemma gives the marginal
moment generating functions.

Lemma 3.6. When �1 and �2 are positive integers, then for i = 1, 2

MXi
(ti) = �0

�0 + ti
+ (−1)�i−1

�i−1∑
k=0

(
�i − 1

k

)

×
{

(−1)k(�0 + �i )

�i + �0 + ti − k
− (−1)k�0

�i + �0 + ti − 1 − k

}
. (3.26)

Proof. The proof of this lemma follows from (3.24) with the use of the following relation (see
Gradshteyn and Ryzhik [6, p. 333; 3.432])

B(m, n) = (−1)n−1
n−1∑
k=0

(
n − 1

k

)
(−1)k

n + m − 1 − k
, n = 1, 2, . . . � (3.27)

The expression for the function MXi
(ti) in (3.26) can be used to derive the rth moment of Xi

as given below.
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Lemma 3.7. If �1 and �2 are positive integers, then for r = 1, 2, . . .

E
[
Xr

i

]= �0r!
�r

0
+ (−1)�i−1r!

�i−1∑
k=0

(
�i − 1

k

)
(−1)k

×
{

(�0 + �i )

(�i + �0 − k)r+1
− �0

(�i + �0 − 1 − k)r+1

}
. (3.28)

The following theorem gives the joint moment generating function of (X1, X2).

Theorem 3.6. The joint moment generating function of (X1, X2) is given by

M(t1, t2) = �0

{
1

a
− B(a, �1 + 1) − B(a, �2 + 1) + B(a, �1 + �2 + 1)

}

+�1B(t1 + 1, �1)

{
�0

�0 + t2
− �0B(�0 + t2, �2)

+(�0 + �2)B(�0 + t2 + 1, �2)

}

+ �2B(t2 + 1, �2)

{
�0

�0 + t1
− �0B(�0 + t1, �1)

+ (�0 + �1)B(�0 + t1 + 1, �1)

}

− �1

t1 + 1

{
�0

a + 1
3F2(a + 1, t1 + 1, 1 − �1; t1 + 2, a + 2; 1)

−�0B(a + 1, �2)3F2(a + 1, t1 + 1, 1 − �1; t1 + 2, a + �2 + 1; 1)

+(�0 + �2)B(a + 2, �2)3F2(a + 2, t1 + 1, 1 − �1;

t1 + 2, a + �2 + 2; 1)

}

− �2

t2 + 1

{
�0

a + 1
3F2(a + 1, t2 + 1, 1 − �2; t2 + 2, a + 2; 1)

−�0B(a + 1, �1)3F2(a + 1, t2 + 1, 1 − �2; t2 + 2, a + �1 + 1; 1)

+(�0 + �1)B(a + 2, �1)3F2(a + 2, t2 + 1, 1 − �2; t2

+2, a + �1 + 2; 1)

}
, (3.29)

where

a = �0 + t1 + t2, pFq(b1, . . . , bp; c1, . . . , cq; u) =
∞∑
i=0

(b1)i . . . (bp)i

(c1)i . . . (cq)i

ui

i!
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and (b)i = b(b + 1) . . . (b + i − 1) = 
(b+i)

(b)

(b �= 0, i = 1, 2, . . .), and p and q are nonnegative
integers.

Proof. The joint moment generating function of (X1, X2) is given by

M(t1, t2) = E
[
e−t1x1−t2x2

]=
∫ ∞

0

∫ ∞

0
e−t1x1−t2x2fX1,X2(x1, x2) dx1 dx2

=
∫ ∞

0

∫ x1

0
e−t1x1−t2x2f1(x1, x2) dx2 dx1

+
∫ ∞

0

∫ x2

0
e−t1x1−t2x2f2(x1, x2) dx1 dx2

+
∫ ∞

0
e−(t1+t2)x1f0(x1, x1) dx1. (3.30)

Upon substituting from (2.5), using the fact that

Bx(�, �) = x�

�
2F1(�, 1 − �; � + 1; x),

and the identity (see Mathai [8, p. 119])

∫ 1

0
u�−1(1 − u)�−1

2F1(c, d; �; u) du = B(�, �) 3F2(�, c, d; �, � + �; 1),

for �, � > 0 and d + � − � − c > 0,

we can derive the expression for M(t1, t2) given in (3.29). �

The following lemma gives the joint moment generating function for the case when �1 and �2
are positive integers.

Lemma 3.8. If �1 and �2 are positive integers, then

M(t1, t2) = �0

⎧⎨
⎩ 1

(�0 + t1 + t2)
−

∑
�∈{�1,�2}

l∑
i=0

(−1)i
(

�
i

)
(�0 + i + t1 + t2)

+
�1+�2∑
i=0

(−1)i
(

�1+�2
i

)
(�0 + i + t1 + t2)

+
2∑

�=1

��

�0 + t�

��−1∑
j=0

(−1)j
(

��−1
j

)
(�0 + t1 + t2 + j + 1)

⎫⎬
⎭

+
�2−1∑
j=0

�1−1∑
i=0

(−1)i+j

(
�1 − 1

i

)(
�2 − 1

j

)
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×
1∑

�=0

{
(−1)�

(�0 + i + j + 2 + t1 + t2 − �)

×
[

�2(�0 + (1 − �)�1)

(�0 + t1 + j + 1 − �)
+ �1(�0 + (1 − �)�2)

(�0 + t2 + i + 1 − �)

]}
. (3.31)

Proof. The proof follows from (3.29) upon using the relation in (3.27) and the known properties
of hypergeometric functions. �

Lemma 3.9. For the bivariate exponential distribution, we have

M(t1, t2) = 1

�0 + t1 + t2 + 2

{
�0 + �0 + 1

(�0 + 1 + t1)
+ �0 + 1

(�0 + 1 + t2)

}
. (3.32)

Proof. Setting �1 = �2 = 1 in (3.29), we get

M(t1, t2) = �0

a + 2
+ �0 + 1

(t1 + 1)(�0 + t2 + 1)
+ �0 + 1

(t1 + 1)(�0 + t2 + 1)

−�0 + 1

a + 2

{
1

t1 + 1
3F2(a + 2, t1 + 1, 0; t1 + 1, a + 3; 1)

+ 1

t2 + 1
3F2(a + 2, t2 + 1, 0; t2 + 1, a + 3; 1)

}
.

Since

3F2(a + 2, t + 1, 0; t + 1, a + 3; 1) = 1,

the above expression for M(t1, t2) reduces to the form in (3.32). �

Note that Lemma 3.9 can also be proved by setting �1 = �2 = 1 in (3.31).
It needs to be mentioned here that the joint moment generating function of the bivariate expo-

nential distribution in formula (2.8) of Patra and Dey [9] seems to be in error.

Lemma 3.10. If �1 and �2 are positive integers, then

E[X1X2] = 2

�2
0

− 2�0

∑
�∈{�1,�2}

l∑
i=0

(−1)i
(

�
i

)
(�0 + i)3

+ 2�0

�1+�2∑
i=0

(−1)i
(

�1+�2
i

)
(�0 + i)3

+
2∑

�=1

��−1∑
j=0

(−1)j
(

��−1
j

)
��(3�0 + j + 1)

(�0 + j + 1)3

+
�2−1∑
j=0

�1−1∑
i=0

1∑
�=0

1∑
k=0

⎧⎨
⎩

(−1)i+j+�
(

�1−1
i

) (
�2−1

j

)
(3 − k)

(�0 + i + j + 2 − �)3−k
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×
[

�2(�0 + (1 − �)�1)

(�0 + j + 1 − �)k+1
+ �1(�0 + (1 − �)�2)

(�0 + i + 1 − �)k+1

]⎫⎬
⎭ . (3.33)

Proof. Calculating the second partial derivative of M(t1, t2) from (3.31), with respect to t1 and
t2 and then setting t1 = t2 = 0, we readily obtain (3.33). �

4. Mixture of the new bivariate distributions

Let us now assume that Xij (i = 1, 2, and j = 1, 2) are independent random variables having
generalized exponential distributions with shape parameter �ij , viz. GED(1, �ij ). That is, the
probability density function of Xij is

fXij
(x) = �ij e

−x
(
1 − e−x

)�ij −1
, �ij > 0, x > 0.

Consider Yi as a mixture of two generalized exponential random variables Xi1 and Xi2 (i = 1, 2),
viz.

Yi ∼ ai GED(1, �i1) + (1 − ai) GED(1, �i2), 0�ai �1.

Let W be a random variable independent of Xij for all i and j. Then, Yi (i = 1, 2) are independent
of W . Let us also assume that the random variable W has an exponential distribution with pdf

fZ(z) = �0e
−�0z, �0 > 0, z�0.

Let us now define new random variables Wi as

Wi = min(Yi, Z), i = 1, 2.

Then, in the random vector W = (W1, W2), W1 and W2 are dependent because of the common
latent variable Z.

The following theorem gives the joint survival function of W1 and W2.

Theorem 4.1. The joint survival function of W1 and W2 is

F̄W1,W2(w1, w2) = p00

{
1 − (

1 − e−w1
)�11

} {
1 − (

1 − e−w2
)�21

}
e−�0w0

+p01

{
1 − (

1 − e−w1
)�11

} {
1 − (

1 − e−w2
)�22

}
e−�0w0

+p10

{
1 − (

1 − e−w1
)�12

} {
1 − (

1 − e−w2
)�21

}
e−�0w0

+p11

{
1 − (

1 − e−w1
)�12

} {
1 − (

1 − e−w2
)�22

}
e−�0w0 , (4.1)

where w0 = max(w1, w2) and pij = a1−i
i a

1−j
j (1 − ai)

i(1 − aj )
j , i, j ∈ {0, 1}.

Proof. Since

F̄W1,W2(w1, w2) = P(W1 > w1, W2 > w2),
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we have

F̄W1,W2(w1, w2) = P(min(Y1, Z) > w1, min(Y2, Z) > w2)

= P(Y1 > w1, Y2 > w2, Z > max(w1, w2)).

Since Y1, Y2 and Z are mutually independent, we readily have

F̄W1,W2(w1, w2) = P(Y1 > w1)P (Y2 > w2)P (Z > max(w1, w2))

= e−�0w0

2∏
i=1

[
ai1

{
1 − (

1 − e−wi
)�i1

}

+(1 − ai1)
{

1 − (
1 − e−wi

)�i2
}]

which can be expressed as in (4.1). �

Note that, since p00, p01, p10, p11 �0, p00 + p01 + p10 + p11 = 1 and each function in (4.1)
is a survival function of the new bivariate distribution, the function F̄W1,W2(w1, w2) is a survival
function of a mixture of the new bivariate distributions. Consequently, it can be rewritten as

F̄W1,W2(w1, w2) =
4∑

i=1

bi S̄i(�i , εi , �0), (4.2)

where S̄i is the survival function of a NBD(�i , 
i , �0), and b1 = p00, b2 = p01, b3 = p10, b4 =
p11, �1 = �2 = �11, �3 = �4 = �12, ε1 = ε3 = �21, and ε2 = ε4 = �22.

The following theorem presents the bivariate probability density function fW1,W2(w1, w2) of
(W1, W2).

Theorem 4.2. The joint density function of (W1, W2) is

fW1,W2(w1, w2) =

⎧⎪⎪⎨
⎪⎪⎩

f1(w1, w2) if w1 > w2,

f2(w1, w2) if w1 < w2,

f0(w1, w1) if w1 = w2,

(4.3)

where

f1(w1, w2) =
4∑

i=1

biεie
−(�0w1+w2)

(
1 − e−w2

)ε1
{
�0 − �0

(
1 − e−w1

)�i

+�ie
−w1

(
1 − e−w1

)�i−1
}
,

f2(w1, w2) =
4∑

i=1

bi�ie
−(�0w1+w2)

(
1 − e−w2

)�i
{
�0 − �0

(
1 − e−w1

)εi

+εie
−w1

(
1 − e−w1

)εi−1
}
,
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and

f0(w1, w1) =
4∑

i=1

bi�0e
−�0w1

{
1 − (

1 − e−w1
)�i
} {

1 − (
1 − e−w1

)εi
}
.

Proof. The proof follows along the same lines as of Theorem 2.1. �

The marginal probability density functions of W1 and W2 can be derived from
fW1,W2(w1, w2) in (4.3) as follows.

Lemma 4.1. The marginal density functions of W1 and W2 are, respectively,

fW1(w1) = a1e
−�0w1

{
�0 − �0

(
1 − e−w1

)�11 + �11e
−w1

(
1 − e−w1

)�11−1
}

+(1 − a1)e
−�0w1

{
�0 − �0

(
1 − e−w1

)�12 + �12e
−w1

(
1 − e−w1

)�12−1
}

,

w1 > 0, (4.4)

and

fW2(w2) = a2e
−�0w2

{
�0 − �0

(
1 − e−w2

)�21 + �21e
−w2

(
1 − e−w2

)�21−1
}

+(1−a2)e
−�0w2

{
�0 − �0

(
1−e−w2

)�22 + �22e
−w2

(
1 − e−w2

)�22−1
}

,

w2 > 0. (4.5)

From the marginal densities, we can derive the marginal moment generating functions of Wi

as follows.

Lemma 4.2. The moment generating functions of W1 and W2 are, respectively,

MW1(t1) = 1 + a1

{
(�0 + �11)B(�0 + t1 + 1, �11) − �0B(�0 + t1, �11)

}

+(1 − a1)
{
(�0 + �12)B(�0 + t1 + 1, �12) − �0B(�0 + t1, �12)

}
(4.6)

and

MW2(t2) = 1 + a2

{
(�0 + �21)B(�0 + t2 + 1, �21) − �0B(�0 + t2, �21)

}

+(1 − a2)
{
(�0 + �22)B(�0 + t2 + 1, �22) − �0B(�0 + t2, �22)

}
. (4.7)

Lemma 4.3. From (4.6) and (4.7), we readily have

E[W1] = 1 + a1

{
�0�(�0, �11) − (�0 + �11)�(�0 + 1, �11)

}

+(1 − a1)
{
�0�(�0, �12) − (�0 + �12)�(�0 + 1, �12)

}
(4.8)
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and

E[W2] = 1 + a2

{
�0�(�0, �21) − (�0 + �21)�(�0 + 1, �21)

}

+(1 − a2)
{
�0�(�0, �22) − (�0 + �22)�(�0 + 1, �22)

}
. (4.9)

Lemma 4.4. From (4.6) and (4.7), we also have

E
[
W 2

1

]
= 1 + a1

{
(�0 + �11)�(�0 + t1 + 1, �11) − �0�(�0 + t1, �11)

}

+(1 − a1)
{
(�0 + �12)�(�0 + t1 + 1, �12) − �0�(�0 + t1, �12)

}
(4.10)

and

E
[
W 2

2

]
= 1 + a2

{
(�0 + �21)�(�0 + t2 + 1, �21) − �0�(�0 + t2, �21)

}

+(1 − a2)
{
(�0 + �22)�(�0 + t2 + 1, �22) − �0�(�0 + t2, �22)

}
. (4.11)

The following lemma presents the joint moment generating function of W1 and W2, denoted
by MW1,W2(t1, t2).

Lemma 4.5. The joint moment generating function of (W1, W2) is given by

MW1,W2(t1, t2) =
4∑

i=1

biMi(t1, t2), (4.12)

where Mi(t1, t2) can be obtained from (3.29) by replacing �1, �2 by �i , εi , respectively.

Proof. One can establish this lemma from (4.2) and (3.29). �
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