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The phosphate (Pi) retention in patients with chronic kidney

disease leads to secondary hyperparathyroidism (2HPT).

2HPT is the physiological response of the parathyroid not

only to Pi retention but also to decreased synthesis of

1,25(OH)2 vitamin D, and the attendant hypocalcemia. 2HPT

is characterized by increased PTH synthesis, secretion, and

parathyroid cell proliferation. Extracellular fluid (ECF) Ca2þ is

recognized by the parathyroid calcium receptor and a small

decrease in the ECF Ca2þ results in relaxation of the calcium

receptor and allows the unrestrained secretion and synthesis

of PTH and in the longer term, parathyroid cell proliferation.

Both 1,25(OH)2 vitamin D and fibroblast growth factor 23

inhibit PTH gene expression and secretion. Secondary

hyperparathyroidism can initially be controlled by a single

therapeutic intervention, such as a Pi-restricted diet, a

calcimimetic, or an active vitamin D analog. In this review we

discuss the mechanisms whereby Pi regulates the

parathyroid. Pi has a direct effect on the parathyroid which

requires intact parathyroid tissue architecture. The effect of

Pi, as of Ca2þ, on PTH gene expression is post-transcriptional

and involves the regulated interaction of parathyroid

cytosolic proteins to a defined cis acting sequence in the PTH

mRNA. Changes in serum Ca2þ or Pi regulate the activity of

trans acting interacting proteins in the parathyroid, which

alters their binding to a defined 26 nucleotide cis acting

instability sequence in the PTH mRNA 30-untranslated region.

The trans factors are either stabilizing or destabilizing factors

and their regulated binding to the PTH cis acting element

determines the PTH mRNA half-life. The responses of the

parathyroid to changes in serum Pi are now being revealed

but the sensing mechanisms remain a mystery.
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Pi HOMEOSTASIS

Extracellular fluid (ECF) phosphate (Pi) concentration is
regulated by a combination of local and humoral factors. The
major humoral factors are the phosphatonins, fibroblast
growth factor 23 (FGF23) and parathyroid hormone (PTH).1

Both FGF23 and PTH are phosphaturic hormones and act to
independently inhibit the activity of the renal sodium
phosphate cotransporter, Na/Pi-2a, with resultant phospha-
turia.2 The local factors act as sensing mechanisms
in different tissues, which determine the activity of the
Naþ/Pi cotransporters.3 The local tissue response to ECF Pi
has been best characterized in the kidney, although it occurs
also in both the duodenum and the parathyroid.4–6 The
kidney has the innate ability to detect changes in serum Pi
and regulate the active reabsorption of Pi, an effect that is
maintained in proximal tubule cell lines, and is independent
of any hormonal affect.7 The change in intracellular Pi then
activates signal transduction and has local tissue effects,
which may be physiological or pathological, depending on
the concentration and duration of the Pi stimulus. Recently,
it has been shown that the intestine detects the presence of
increased dietary phosphate and rapidly increases renal
phosphate excretion.4 An increase in ECF Pi leads to an
increase in FGF23 and PTH secretion. These effects are
independent of any changes in [Ca2þ]o or 1,25(OH)2

vitamin D, which themselves regulate both PTH and FGF23
secretion, although in opposite directions.8–10 A high
[Ca2þ]o or 1,25(OH)2 vitamin D suppresses PTH secretion
and stimulates FGF23 secretion.9,11 The response to changes
in Pi concentration implies a sensitive Pi-sensing system, the
nature of which is a mystery.12 Pi homeostatic mechanisms
are well developed not only in mammals but also in
unicellular organisms, both prokaryotes and eukaryotes.
Growth in a nutrient medium without Pi results in the
induction of genes that code for proteins responsible for
Pi transport and secreted enzymes that would increase the
supply of Pi in the medium and for those regulating the cell
cycle.13 The power of yeast genetics has provided an
unparalleled strength to dissect out the regulatory pathways
used by yeast in response to Pi depletion.14 However, even in
yeast, the Pi sensor remains to be identified.

Pi AND FGF23 EXPRESSION

Fibroblast growth factor 23 is predominantly secreted by
osteocytes and is a major factor in the regulation of Pi
homeostasis.10,15 Dietary Pi loading leads to an increase in
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bone FGF23 mRNA and serum FGF23. This effect is not a
rapid response like that of the parathyroid calcium receptor
(CaR) in response to changes in Ca2þ concentration or a
hormone ligand and its receptor, but is rather only evident
after longer time periods. It is not known how bone cells
sense the increase in serum Pi. 1,25(OH)2 vitamin D also
increases FGF23 synthesis and secretion by bone cells and
it was shown that the vitamin D receptor expression
in chondrocytes was necessary for this regulation.10,16 Both
in vivo, using mice with chondrocyte-specific inactivation of
vitamin D receptor, and in vitro analysis showed that normal
FGF23 production by osteoblasts or osteocytes is dependent
on vitamin D receptor genomic action in chondrocytes.16

Therefore, the vitamin D receptor signaling in chondrocytes
regulates FGF23 synthesis.

An increase in serum calcium is another factor that
increases FGF23 secretion.9 In turn, FGF23 acts on the kidney
to cause phosphaturia and a decreased synthesis of
1,25(OH)2 vitamin D and potentially corrects the high levels
of Pi and 1,25(OH)2 vitamin D. FGF23 also regulates PTH
gene expression and secretion. It acts on its receptor, Klotho-
FGF receptor1c in the parathyroid, to cause a decrease in
PTH mRNA levels and PTH secretion, an effect mediated
by the mitogen-activated protein kinase pathway.17 However,
in chronic kidney disease (CKD), there are increased levels
of serum FGF23 and PTH, indicating a resistance to the effect
of FGF23 in the parathyroid in CKD.18–21 The mechanism of
the resistance of parathyroid to FGF23 remains to be
explained.

Pi AND THE PARATHYROID

The parathyroid is geared to respond to a low serum Ca2þ by
secreting PTH, which then acts on its target tissues to correct
the serum Ca2þ.22 The parathyroid senses serum Ca2þ

through a membrane receptor, the G-protein-coupled
receptor (GPCR), the CaR.23 A high ECF Ca2þ activates
the CaR to initiate signal transduction that inhibits PTH
synthesis and secretion and parathyroid cell proliferation.24

When the serum Ca2þ is decreased, more PTH is secreted,
which then acts on its cognate G-protein-coupled receptor,
the PTH1R, at its target tissues, bone and the renal tubule,
and corrects the serum Ca2þ. PTH also causes phosphaturia
and hence decreases serum Pi. A major hormone regulating
Pi homeostasis is FGF23, which acts on the kidney to cause Pi
loss and inhibits 1,25(OH)2 vitamin D secretion. However,
FGF23 and PTH also share a direct interaction, in which
FGF23 acts on the parathyroid to decrease PTH gene
expression and secretion.17,25 The trio is maintained in
tempo by the action of 1,25(OH)2 vitamin D, which fine
tunes PTH and FGF23 by increasing FGF23 and decreasing
PTH. Pi in turn regulates parathyroid gland activity and PTH
secretion independently of secondary changes in ECF Ca2þ,
1,25(OH)2 vitamin D, or FGF23, thus completing a network
of endocrinological feedback loops (Figure 1).26 These
endocrinological feedback loops have been studied in animals
with a normal renal function.

Pi REGULATES THE PARATHYROID INDEPENDENTLY OF
CALCIUM AND 1,25(OH)2 VITAMIN D

The demonstration of a direct effect of high Pi on the
parathyroid in vivo has been difficult. One of the reasons is
that the various maneuvers used to increase or decrease
serum Pi invariably lead to a change in the ionized Ca2þ

concentration. In moderate renal failure, Pi clearance
decreases and serum Pi increases; this increase becomes an
important problem in severe renal failure. Hyperphosphate-
mia has always been considered central to the pathogenesis of
secondary hyperparathyroidism (2HPT), but it has been
difficult to separate the effects of hyperphosphatemia from
those of the attendant hypocalcemia and decrease in serum
1,25(OH)2 vitamin D levels. However, it was shown by
careful studies in dogs with experimental CKD that dietary
Pi restriction prevented 2HPT.27,28 Pi restriction corrected
the 2HPT of CKD independent of changes in serum calcium
and 1,25(OH)2 vitamin D levels.28 Dietary restriction of both
calcium and Pi led to lower levels of serum Pi and Ca2þ, with
no increase in the low levels of serum 1,25(OH)2 vitamin D.
Despite this, there was a 70% decrease in PTH levels. This
study suggested that, at least in CKD, Pi affected the
parathyroid cell by a mechanism independent of its effect
on serum 1,25(OH)2 vitamin D and Ca2þ levels.28 Therefore,
Pi plays a central role in the pathogenesis of 2HPT, both by
its effect on serum 1,25(OH)2 vitamin D and Ca2þ levels
and, possibly, independently. These results were later
substantiated in clinical studies that demonstrated that
Pi restriction in patients with CKD prevented the increase
in serum PTH levels.29–33 The mechanism of this effect was
not clear, although at least part of it was considered to be due
to changes in serum 1,25(OH)2 vitamin D concentrations. In
a study of patients with early CKD, Levin et al.34 showed that
low levels of 1,25(OH)2 vitamin D occur earlier in the course
of estimated glomerular filtration rate (GFR) decline than do
elevations in serum PTH levels. The increased serum PTH
preceded the changes in serum Ca2þ or Pi. The low
1,25(OH)2 vitamin D levels might then lead to a secondary
increase in PTH11,35 that would lead to increased phospha-
turia. As long as there are adequate renal reserves the
augmented phosphaturia would prevent hyperphosphatemia.
The time sequence of serum FGF23 levels during the
induction of CKD and the subsequent progression of CKD
remains to be studied. Serum FGF23 increases in patients
with CKD stage. FGF23 was elevated at CKD stage 4 and 5
compared with CKD 1–2 in parallel with hyperphosphate-
mia.21 It was suggested that high levels of FGF23 predict the
development of hyperparathyroidism in dialysis patients.36

The low levels of serum 1,25(OH)2 vitamin D may reflect a
response to a direct effect of Pi on the renal synthesis of
1,25(OH)2 vitamin D. Pi directly regulated the production
of 1,25(OH)2 vitamin D by kidney cells in culture37,38 and
in vivo.30,39

The effects of serum Pi on PTH gene expression and
serum PTH levels are also independent of any changes in
serum Ca2þ or 1,25(OH)2 vitamin D in rats with a normal
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renal function.26 This was shown using vitamin D-deficient
rats fed a diet with no vitamin D, low calcium, and low Pi.
After one night of this diet, serum Pi had decreased markedly
with no changes in serum Ca2þ or 1,25(OH)2 vitamin D.
These rats with isolated hypophosphatemia had marked
decreases in PTH mRNA levels and serum PTH. In vitro
studies have shown that the effect of serum Pi on the
parathyroid was direct. A high Pi concentration stimulated
PTH secretion. Interestingly, the direct effect required
maintenance of tissue architecture.5,40,41 The requirement
for intact tissue suggests either that the sensing mechanism
for Pi is damaged during the preparation of isolated cells
or that the intact gland structure is important for the
Pi response. In addition, Estepa et al.42 showed, in careful
short-term studies in dogs, that up to 120 min, increasing
serum Pi increased serum PTH at 4 mM Pi only and not
at 3 mM.

The parathyroid responds to changes in serum Pi at the
level of secretion, gene expression, and cell proliferation,
although the mechanism of these effects is unknown.43 The
effect of high Pi in increased PTH secretion may be mediated
by phospholipase A2-activated signal transduction. Arachi-
donic acid and its metabolites inhibit PTH secretion.44–46 It
was suggested that Pi decreases the production of arachidonic
acid in the parathyroid and that arachidonic acid decreases
PTH secretion, but it is less clear to what extent the effect of
Pi on PTH secretion is dependent upon this pathway. The
effect of Pi and Ca2þ on PTH gene expression is currently
being investigated in our laboratory.

FIBROBLAST GROWTH FACTOR 23 AND THE PARATHYROID

Fibroblast growth factor 23 signals through fibroblast growth
factor receptors (FGFRs) bound by the transmembrane
protein Klotho.47 As most tissues express FGFRs, the
expression of Klotho determines FGF23 target organs. Klotho
protein is expressed not only in the kidney but also in the
parathyroid, pituitary, and sino-atrial node.48 We have shown
that the administration of recombinant FGF23 suppresses

PTH gene expression and secretion in vivo in rats and in vitro
in organ cultures of rat parathyroids17 (Figure 2). These
studies were performed on rats with normal renal function.
FGF23 also decreases PTH expression in primary cultures of
bovine parathyroid cells.25 In addition, a patient with a
homozygous missense mutation in the klotho gene presented
with severe tumoral calcinosis and defects in mineral ion
homeostasis including marked hyperphosphatemia and
hypercalcemia as well as elevated serum levels of PTH and
FGF23.49 The increased FGF23 may reflect that in the absence
of a functional Klotho protein, neither FGF23 nor the
hypercalcemia is effective in decreasing PTH secretion.
Alternatively, the high PTH levels may represent an
appropriate response to hyperphosphatemia. However, the
in vivo and in vitro experimental data show conclusively that
FGF23 acts directly on the parathyroid to decrease serum
PTH.17 This novel bone–parathyroid endocrine axis adds a
new dimension to the understanding of mineral homeostasis
(Figure 2). The paradox of the high PTH and FGF23 levels in
CKD remains to be explained. FGF23 levels increase early in
CKD before the development of serum mineral abnormalities
and are independently associated with serum Pi, Pi excretion,
and 1,25(OH)2D deficiency.50 It was suggested that increased
FGF23 may contribute to maintaining normal serum Pi levels
in the face of advancing CKD but may worsen 1,25(OH)2D
deficiency and thus contribute to the development of
2HPT.50 FGF23 did not increase postprandially in patients
with CKD or in health.51

PROTEIN–PTH mRNA INTERACTIONS DETERMINE THE
REGULATION OF PTH GENE EXPRESSION BY SERUM CALCIUM
AND Pi

The clearest rat in vivo models for effects of Ca2þ and Pi on
PTH gene expression are diet-induced hypocalcemia with a
large increase in PTH mRNA levels and diet-induced
hypophosphatemia with a large decrease in PTH mRNA
levels. In both instances, the effect was post-transcriptional,
as shown by nuclear transcript run-on experiments.52,53

Ca2+
P

PTH

1,25(OH)2D FGF23

+

+

+

+

+

+

Figure 1 | Inter-relationships between Ca2þ and Pi and their hormones, PTH, FGF23, and 1,25(OH)2 vitamin D. There is a network of
endocrinological feedback loops that govern mineral homeostasis. The effect of calcium to increase serum FGF23 levels, a low Pi level to
increase serum 1,25(OH)2D, and a high Pi level to decrease serum 1,25(OH)2D is not shown. FGF23, fibroblast growth factor 23; PTH,
parathyroid hormone
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Parathyroid cytosolic proteins bound in vitro-transcribed
PTH mRNA. Interestingly, this binding was increased with
parathyroid extracts from hypocalcemic rats (with increased
PTH mRNA levels) and decreased with parathyroid extracts
from hypophosphatemic rats (with decreased PTH mRNA
levels). Proteins from other tissues bound to PTH mRNA,
but this binding is regulated by Ca2þ and Pi only with
parathyroid proteins. Intriguingly, binding requires the
presence of the terminal 60 nucleotides of the PTH
transcript.53

In the absence of a parathyroid cell line, we have utilized
an in vitro degradation assay to study the effects of
hypocalcemic and hypophosphatemic parathyroid proteins
on PTH mRNA stability.53 In this assay, parathyroid cytosolic
extracts from rats fed a control, low-calcium, or low-Pi diet
are incubated with a radiolabeled PTH transcript and the
decay of the PTH transcript by the parathyroid extracts is
measured. Hypocalcemic parathyroid extracts stabilized the
transcript, whereas hypophosphatemic parathyroid extracts
led to a rapid degradation of the transcript. Moreover, the
rapid degradation of PTH mRNA by hypophosphatemic
extracts was totally dependent on an intact 3-untranslated
region (UTR) and, in particular, on the terminal 60
nucleotides.

A CONSERVED SEQUENCE IN PTH mRNA 3-UTR BINDS
PARATHYROID CYTOSOLIC EXTRACTS AND DETERMINES
mRNA STABILITY IN RESPONSE TO CHANGES IN CALCIUM
AND Pi

We have identified the minimal sequence for protein binding
in the PTH mRNA 30-UTR and determined its functionality.54

A minimum sequence of 26 nucleotides was sufficient for
PTH RNA–protein binding and competition (Figure 3).
Significantly, this sequence was preserved among species.55

The PTH mRNA 30-UTR-binding element is an adenosine
uradine (AU)-rich element. Sequence analysis of the PTH
mRNA 30-UTR of different species revealed a preservation of
the 26-nucleotide protein-binding element among different
species.55,56 In contrast to protein-coding sequences that are
highly conserved, UTRs are less conserved.57 The conserva-
tion of the protein-binding element in the PTH mRNA
30-UTR suggests that this element represents a functional unit
that has been evolutionarily conserved. The cis-acting
element is at the 30-distal end in all the species in which it
is expressed.55

To study the functionality of the sequence in the context
of another RNA, a 63-bp cDNA PTH sequence consisting of
the 26 nucleotide and flanking regions was fused with growth
hormone cDNA. The conserved PTH RNA protein-binding
region was necessary and sufficient for responsiveness to
Ca2þ and Pi in in vitro degradation assay and therefore
determines PTH mRNA stability and levels52,54 (Figure 3).
Therefore, Ca2þ and Pi change the properties of parathyroid
cytosolic proteins, which bind specifically to the PTH mRNA
30-UTR element and determine its stability. What are these
proteins?

IDENTIFICATION OF THE PTH mRNA 30-UTR-BINDING
PROTEINS THAT DETERMINE PTH mRNA STABILITY
AU-rich binding factor 1 and upstream of N-Ras

Two of the PTH mRNA-binding proteins were identified as
AU-rich binding factor (AUF1)58 and Upstream of N-ras

Ca2+

CaR

Klotho
VDR

PTH
PTH

FGF23
FGFR

Phosphate

1,25(OH)2D

Parathyroids

Figure 2 | FGF23 acts on the parathyroid to decrease PTH synthesis and secretion—a novel bone–parathyroid endocrine axis. FGF23
is secreted by bone after the stimulus of a high Pi level. In addition to the action of FGF23 on the kidney to cause Pi excretion and decrease
the synthesis of 1,25(OH)2 vitamin D, it is now shown to act on the parathyroid to decrease PTH synthesis and secretion. This new endocrine
axis contributes to our understanding of how the metabolism of bone Pi and Ca2þ is so tightly regulated. PTH is the major regulator of
Ca2þ and FGF23 of Pi, and together with vitamin D they contribute to normal mineral and bone metabolism. This new endocrine axis may
be useful for the discovery of new drugs to regulate PTH secretion. FGF23, fibroblast growth factor 23; FGFR, fibroblast growth factor
receptor; CaR, calcium receptor; PTH, parathyroid hormone; VDR, vitamin D receptor. The red arrows indicate stimulatory pathways.
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(Unr).59 Recombinant AUF1 or Unr bound the full-length
PTH mRNA and the 30-UTR. Added recombinant AUF1
stabilized the PTH transcript in the in vitro degradation assay.
Unr and AUF1 PTH stabilized full-length PTH mRNA in
cotransfection experiments in HEK293 cells, but not a PTH
mRNA lacking the terminal 60-nucleotide cis-acting protein-
binding region. Depletion of AUF1 or Unr by siRNA
decreased CMV promoter-driven PTH gene expression in
HEK293 cells. Our results show that both AUF1 and Unr are
PTH mRNA 30-UTR-binding proteins that stabilize the PTH
mRNA.

Post-translational regulation of AUF1

The regulation of protein–PTH mRNA binding involves post-
translational modification of AUF1.60,61 AUF1 levels are not
regulated in parathyroid extracts from rats fed calcium- and
Pi-depleted diets. However, two-dimensional gels showed
post-translational modification of AUF1 that included
phosphorylation.60 Cyclosporine A, the calcineurin inhibitor,
regulated AUF1 post-translationally and increased transfected
growth hormone-PTH 63-nucleotide mRNA levels but not
control growth hormone mRNA in HEK293 cells. Mice with
a genetic deletion of the calcineurin-Ab gene had markedly
increased PTH mRNA levels that were still regulated by low-
calcium and low-Pi diets. Therefore, calcineurin regulates
AUF1 post-translationally in vitro and PTH gene expression
in vivo, but still allows its physiological regulation by calcium
and Pi.60

Post-translational modifications of AUF1 in experimental
CKD

Most patients with CKD develop 2HPT with disabling
systemic complications. Calcimimetic agents are effective
tools in the management of 2HPT, acting through allosteric
modification of the CaR on the parathyroid gland to decrease
PTH secretion and parathyroid cell proliferation. R-568
decreased both PTH mRNA and serum PTH levels in adenine
high-Pi-induced CKD.61 The effect of the calcimimetic on
PTH gene expression was post-transcriptional and correlated

with differences in protein–RNA binding and post-transla-
tional modifications of the trans-acting factor AUF1 in the
parathyroid. The AUF1 modifications as a result of CKD were
reversed to those of normal rats by treatment with R-568.
Therefore, CKD and activation of the CaR mediated by
calcimimetics modify AUF1 post-translationally. These mod-
ifications in AUF1 correlate with changes in protein–PTH
mRNA binding and PTH mRNA levels.61

THE mRNA DECAY-PROMOTING PROTEIN KH-SPLICING REG-
ULATORY PROTEIN IS A PTH mRNA-REGULATING PROTEIN

We have recently shown that the mRNA decay-promoting
protein KH-splicing regulatory protein (KSRP) binds to PTH
mRNA in intact parathyroid glands and in transfected cells.62

RNA immunoprecipitation analysis demonstrated that KSRP
specifically interacts with PTH mRNA. This binding is
decreased in glands from calcium-depleted or experimental
chronic kidney failure rats in which PTH mRNA is more
stable, compared with parathyroid glands from control and
Pi-depleted rats in which PTH mRNA is less stable. These
interactions were performed by cross-linking of parathyroid
glands and therefore represent the protein–RNA interactions
in vivo. KSRP recruits the RNA-degrading complex, the
exosome, to AU-rich element-containing mRNAs resulting in
their degradation. We showed that PTH mRNA decay
depends on the KSRP-recruited exosome in parathyroid
extracts. In transfected cells, KSRP overexpression and
knockdown experiments show that KSRP decreases PTH

KSRP

AUF1

UNR

ARE
An

Low phosphate
(   PTH mRNA) 

KSRP

An

Low calcium, CKD
(   PTH mRNA) 

Coding5’-UTR 3’-UTR

Figure 4 | Model for the regulation of PTH mRNA stability by
changes in calcium and Pi levels and experimental chronic
kidney disease, the role of PTH mRNA-interacting proteins.
Low serum Pi increases the association of PTH mRNA with KSRP
through the PTH mRNA 30-UTR ARE (green box). KSRP may then
recruit the exosome to PTH mRNA leading to decreased PTH
mRNA stability and levels. A calcium-restricted diet induces the
binding of a stabilizing complex consisting of AUF1 and Unr to
the PTH mRNA ARE. This complex competes for the binding of
KSRP to PTH mRNA and thereby inhibits PTH mRNA degradation
leading to increased PTH mRNA stability and levels. Similar to
calcium depletion, kidney failure increases PTH gene expression
and this is associated with decreased PTH mRNA–KSRP interaction
compared with control rats. ARE, AU-rich element; KSRP, KH-
splicing regulatory protein; PTH, parathyroid hormone.

Rat
Mouse

Man
Macaque

Dog
Cat

-3’5’- 

5’-UTR 
PTH mRNA 

3’-UTR Coding

CAAUAUAUUCUUCUUUUUAAAGUAUU
CAAUAUGCUCUUCUUUUUAAAGUACU
CUAUAGUUUAUUCUUUUUAAAGUAUG
CUAUUGUUUAUUCUUUUUAAAGUAUG
CUAUUGUUUAUUCUUUUUAAAGUAUG
CUAUUGUUUAUUCUUUUUAAAGUAUG

Figure 3 | Schematic representation of the PTH mRNA and the
preserved cis-acting element in the PTH mRNA 30-UTR. PTH
mRNA including the 50-UTR (red), coding region (yellow), and the
30-UTR (white) is shown with the 26-nucleotide cis-acting element
(green). The nucleotide sequence of the element in different
species is shown. Nucleotides that differ from the rat sequence are
in bold. PTH, parathyroid hormone; UTR, untranslated region.
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mRNA stability and steady-state levels through the PTH
mRNA AU-rich element. Overexpression of one of the four
AUF1 isoforms, p45, blocked KSRP–PTH mRNA binding and
partially prevented the KSRP-mediated decrease in PTH
mRNA levels. AUF1 also interacts with PTH mRNA in the
RNA immunoprecipitation assay. In contrast to KSRP,
AUF1–PTH mRNA interactions are increased in parathyroid
glands from calcium-depleted or experimental CKD rats and
decreased in parathyroid glands from control and Pi-depleted
rats (Figure 4). Therefore, calcium or Pi depletion, as well as
CKD, regulates the interaction of both KSRP and AUF1 with
PTH mRNA and its half-life. These data indicate a novel role
for KSRP in PTH gene expression.

Another PTH mRNA-binding protein is dynein light chain
(Mr 8000) (LC8).63 LC8 is part of the cytoplasmic dynein
complexes that function as molecular motors that translocate
along microtubules. PTH mRNA colocalized with polymerized
microtubules in the parathyroid gland, as well as with a
purified microtubule preparation from calf brain, and this was
mediated by LC8. The dynein complex may be the motor for
the transport and localization of mRNAs in the cytoplasm and
is not involved in the regulation of PTH mRNA stability.

Pi AND PARATHYROID CELL PROLIFERATION

Patients with CKD often develop large nodular glands that in
the past have necessitated subtotal or total parathyroidect-
omy. Pi accelerates the development of parathyroid hyper-
plasia and 2HPT in rats with renal failure, and Pi restriction
prevents these abnormalities independent of changes in
serum Ca2þ and 1,25(OH)2 vitamin D.64 In experimental
CKD, there is proliferation of parathyroid cells as measured
by immunostaining, and this can be controlled by Pi
restriction.64,65 Many patients with CKD have low serum
Ca2þ levels and hypocalcemia itself stimulates the prolifera-
tion of the parathyroid cells.65 How Pi regulates parathyroid
cell proliferation is not known. Interestingly, parathyroid
gland growth in CKD rats fed a high-Pi diet was apparent
within 2 days of uremia and increased nearly twofold by 2
weeks.64 So the combination of a high serum Pi, low serum
Ca2þ, and low serum 1,25(OH)2 vitamin D acts together to
cause the hyperparathyroidism of CKD. However, despite
this, control of just one of these factors is often adequate to
control the hyperparathyroidism, whether it be Pi restriction,
1,25(OH)2 vitamin D, or activation of the CaR. For instance,
the activation of the CaR by calcimimetics is able to potently
decrease parathyroid cell proliferation despite CKD and
hyperphosphatemia.66 Inhibition of signaling by endothe-
lin67,68 or EGFR antagonists69 was also able to inhibit
parathyroid cell proliferation. Therefore, there is a common
downstream signaling node that may be a shared target for
the effects of Pi depletion, high extracellular Ca2þ,
calcimimetics, or 1,25(OH)2 vitamin D to decrease PTH
gene expression, parathyroid cell proliferation, and PTH
secretion. EGFR and endothelin antagonists may also
converge on this common pathway. Much remains to be
discovered.

SUMMARY

Pi regulates PTH gene expression, serum PTH, and
parathyroid cell proliferation, and this effect appears to be
independent of the effect of Pi on serum Ca2þ and
1,25(OH)2 vitamin D and certainly of FGF23. The effects
of Pi and Ca2þ on PTH gene expression are post-
transcriptional. Trans-acting parathyroid cytosolic proteins
bind to a defined cis element in the PTH mRNA 30-UTR. This
binding determines the degradation of PTH mRNA and
thereby PTH mRNA half-life. The post-transcriptional effects
of Ca2þ and Pi are the result of changes in the balance of
stabilizing and degrading factors on PTH mRNA. These
interactions also regulate PTH mRNA levels in experimental
CKD (Figure 4). In diseases such as CKD, 2HPT involves
abnormalities in PTH secretion, synthesis, and parathyroid
cell proliferation. FGF23 acts on its receptor, Klotho-FGFR1c,
to decrease PTH mRNA levels and secretion (Figure 2). An
understanding of how the parathyroid is regulated at each
level will help devise rational therapy for the management of
conditions, such as CKD, in which 2HPT is associated with
so much morbidity and contributes to the high mortality.
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