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Abstract

We provide a demonstration of the integrability of a classical model of an infectious disease
neither kills nor induces autoimmunity by means of the Painlevé analysis and use the Lie th
transformation groups to present an explicit solution.
 2003 Elsevier Inc. All rights reserved.
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1. Introduction

A standard model for the evolution in time of a system results in a set of first-order
linear ordinary differential equations. The first of such models dates back to the eigh
century’s proposal by the Englishman, Thomas Malthus, that shortly we would all be s
ing upon each other’s toes, the motivation for such a prediction possibly engendered
dramatic increase in European populations in that century which had not generally
rienced the serious encounters with the bubonic plague that had caused major red
in population—decimation is not the adequate word—over vast swathes of the Eur
previous centuries. Some fifty years later (1837) the Hollander, P.F. Verhulst, sug
that a little natural restraint would be more appropriate and devised the logistic equa
a model of such restraint.
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An attraction of both first-order differential equations used in the models of Malthu
Verhulst was that they were singular and integrable in closed form by a variety of ele
tary procedures. Unfortunately the diversity of their applicability was somewhat lim
Some 70–80 years ago there was the beginning of serious studies of models of
processes in biology, chemistry and, of course, epidemiology. Lotka [1] and Volter
are commemorated in the names of the systems they proposed which added to th
of Malthus [3] and Verhulst [4] terms describing interaction between various ‘obje
whether they be chemicals in a reactor, beasts on the savannah or the victims of d
in a population. Lotka–Volterra systems have been supplemented by quadratic [
higher-order systems, not to mention more irregularly nonlinear systems. In epide
ogy a class of Lotka–Volterra equations was proposed by Kermack and McKendrick
provide a mathematical description of such gross events as the Great Plague of Lo
1665–1666. When it comes to such events, the statisticians’ law of large numbers p
the application of deterministic differential equations to describe situations which a
their fine detail, of a more statistical nature. It really is the same thing as fluid mod
the Universe.

One of the sad features of these more accurate mathematical models of natural p
ena is that the sets of first-order ordinary differential equations arising in the mod
process have a tendency to be quite nonintegrable even in the almost simplest of m
This is in curious contrast situation in physics wherein the paradigms—say the K
problem and the simple harmonic oscillator—are so integrable that there seems
no end to the interpretations of their mathematical properties. This characteristi
recognised, almost before the field was initiated, by Henri Poincaré who inaugurat
discipline of dynamical systems to be able to say something useful about these app
otherwise intractable systems.

Curiously in the same epoch, in which Poincaré was establishing dynamical sy
as a useful tool for the analysis of these difficult systems, two different approaches
establishment of criteria for integrability were developed. In approximately the last
ter of the nineteenth century the Norwegian, Sophus Lie, devised his theory of cont
groups, the full practical effects of which have only begun to be appreciated almost
tury later following the pioneering works of Laurentiev Ovsiannikov in serious applica
to the solution of differential equations arising in mathematical physics. About the
time Paul Painlevé and his School elucidated the singularity properties of ordinary
ential equations and their relationship with integrability which had been used so effec
by Sophie Kowalevski to find the third integrable case of the Euler equations desc
the motion of a top.

For some strange reason the symmetry methods of Lie and the singularity anal
Painlevé have not found the same degree of application to the systems of ordinary d
tial equations arising in the mathematical modelling of biological, ecological and che
systems, let alone the precise area of epidemiology of interest in this note, as the
of dynamical systems of Poincaré and his successors. This is unfortunate as the re
of equations arising in the modelling process is the critical part of the analysis, n
adjective used to describe the particular brand of analysis being used.

In this note we examine a simple epidemiological model from the viewpoint of
Lie and Painlevé. The model is a particular case of the classical SIS model introdu



508 M.C. Nucci, P.G.L. Leach / J. Math. Anal. Appl. 290 (2004) 506–518

sease

a-
eceased

te as a
rential
para-
uation
ty of
lack of
ctually
of the
sence

l. [8]
miliar

bor [9]

n the

we set
Kermack and McKendrick [6]. We assume that recovery from the nonfatal infective di
does not confer immunity. The two first-order ordinary differential equations are [7]

Ṡ = −βSI −µS + γ I +µK,
İ = βSI − (µ+ γ )I, (1)

in which the overdot denotes differentiation with respect to time,S(t) is the susceptible
component of the population,I (t) is the infected component of the population,µK repre-
sents a constant birth rate,µ is the proportionate death rate,β is the infectivity coefficient
of the typical Lotka–Volterra interaction term andγ the recovery coefficient. We emph
sise that the disease is assumed to be nonfatal so that the standard term removing d
infectives (−αI in [7]) is omitted.

In Section 2 we subject the system (1) to the Painlevé analysis in its present sta
raw dynamical system, as it were, and also as a single second-order ordinary diffe
equation which has been ‘sanitised’ by the removal of mathematically distracting
meters. In Section 3 we examine the derived second-order ordinary differential eq
for Lie symmetries and find them somewhat obviously lacking given the integrabili
the system already established by the Painlevé analysis. However, this apparent
symmetry is shown to be a problem of representation dependence and system is a
trivially integrable. We conclude with some observations of the delicate dependence
integrability of a nonlinear system on its precise form, its balance as it were, in the pre
of nontrivial parameters.

2. Painlevé analysis

The application of the Painlevé test is fairly routine—although see Géronimi et a
for an examination of concepts underlying the Painlevé test—and the reader unfa
with the details of the method is referred to a standard exposition such as that of Ta
or Ramani et al. [10]. We seek the parameters in the leading-order behaviour ofS(t) and
I (t) in (1) by writing

S = aτp, I = bτq, (2)

wherea, b, p andq are constants to be determined andτ = t− t0 with t0 being the location
of the presumed movable pole, and substituting this into (1) to obtain

apτp−1 = −βabτp+q −µaτp + γ bτq −µK,
bqτq−1 = βabτp+q − (µ+ γ )τq, (3)

from which it is evident that the dominant terms are those on the left and the first o
right. We see thatp = q = −1 and−a = b= 1/β so that the leading-order behaviour is

S = − 1

β
τ−1, I = 1

β
τ−1. (4)

To determine the resonance at which the required second arbitrary constant occurs

S = − 1
τ−1 +mτr−1, I = 1

τ−1 + nτ r−1 (5)

β β
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)
= 0 (6)

for which a nontrivial solution exists ifr = ±1. Thus the second arbitrary constant enter
the second term in the Laurent expansion for the solution of (1). To check for consis
with the nondominant terms all we need do is to substitute (5) into (1). Atτ−1 we need

0 = −β(an+ bm)−µa + γ b,
0 = β(an+ bm)− (µ+ γ )b. (7)

Given the values ofa andb the two equations in (7) are identical and so we have con
tency. We can takem as the arbitrary constant and set

n=m− µ+ γ
β

. (8)

The system (1) passes the Painlevé test and is integrable in the sense of Poinc
in terms of functions analytic away from the movable singularity the location of whic
fixed by the initial conditions. The formal Laurent series may be obtained by substitu

S =
∞∑
i=0

aiτ
i−1, I =

∞∑
i=0

biτ
i−1 (9)

into (1).

3. Lie analysis

In January 2001 the first Whiteman prize for notable exposition on the history of m
ematics was awarded to Thomas Hawkins by the American Mathematical Society.
citation, published in the Notices of Amer. Math. Soc. 48 (2001) 416–417, one read
Thomas Hawkins “. . . has written extensively on the history of Lie groups. In particu
he has traced their origins to Lie’s work in the 1870s on differential equations. . . the idée
fixe guiding Lie’s work was the development of a Galois theory of differential equatio. . .
Hawkins’ book [11] highlights the fascinating interaction of geometry, analysis, ma
matical physics, algebra and topology. . . .”

In the Introduction of his book [12] Olver wrote that “it is impossible to overestim
the importance of Lie’s contribution to modern science and mathematics. Nevert
anyone who is already familiar with (it). . . is perhaps surprised to know that its origin
inspirational source was the field of differential equations.”

Lie’s monumental work on transformation groups [13–15] and in particular co
transformations [16], led him to achieve his goal [17].

Many books have been dedicated to this subject and its generalisations [12,18–2
Lie group analysis is indeed the most powerful tool to find the general solutio

ordinary differential equations. Any known integration technique can be shown to
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group of symmetries admitted by the differential equation, i.e., the Lie symmetry alg

In particular Bianchi’s theorem [12,27] states that, if an admittedn-dimensional solv-
able Lie symmetry algebra is found, then the general solution of the correspondinnth-
order system of ordinary differential equations can be obtained by quadratures. T
mitted Lie symmetry algebra can be easily derived by a straightforward although le
procedure. As computer algebra software becomes widely used, the integration of s
of ordinary differential equations by means of Lie group analysis is becoming eas
perform.

A major drawback of Lie’s method is that systems of first-order ordinary differe
equations do not lend themselves kindly to analysis for the possession of symmetr
there exists an infinite number of Lie symmetries. For a practical resolution of the pro
there are two approaches possible. In one of them an Ansatz is made of the struc
the coefficient functions. Although this approach is open to the fundamental obje
that the Ansatz is more likely to be based upon the imagination of the person maki
analysis than of the inherent features of the system under consideration, there ha
occasions when this is a very fruitful approach [28]. In the second approach the m
of reduction of order [29] effectively replaces a first-order system by one containi
least one second-order equation which reduces the number of symmetries from infi
a finite number, which one hopes is not zero. This idea has been successfully app
several instances [29–35]. Consequently we replace the system (1) by a single secon
ordinary differential equation.

From (1b),

S = İ

βI
+ µ+ γ

β
(10)

and (1a) is then

I Ï − İ2 + βI2İ +µI İ + βµI3 +µ(µ+ γ − βK)I2 = 0, (11)

an equation of which it could fairly be remarked that therein is a plethora of cons
Since (11) does not possess a rescaling symmetry, we may achieve a cosmetic sim
tion by means of the rescalings

I = µ

β
y, t = x

µ
(12)

and the relabelling

1+ γ − βK
µ

= k, (13)

videlicet the somewhat grotesque albeit autonomous nonlinear second-order ordin
ferential equation

yy ′′ − y ′2 + y2y ′ + yy ′ + y3 + ky2 = 0, (14)

an equation quite unknown to Kamke [36].
The integrability of (14) is a consequence of the integrability of the system (1) a

vealed by the Painlevé analysis. A minor disadvantage of the Painlevé analysis is
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successful application leads to a Laurent series and series representations of solut
not always immediately recognisable in terms of known functions, if indeed they are
representations of known functions. The attraction of the Lie approach is that the p
sion of a suitable number of symmetries of the right type leads naturally to reduct
quadratures and even solution in closed form.

Equation (14) is obviously autonomous. The zeroth-order and first-order differ
invariants are given by the two independent solutions of the associated Lagrange’s
of the symmetry∂x , videlicet

dx

1
= dy

0
= dy ′

0
, (15)

i.e.,u= y andv = y ′. The reduced form of (14) is

uv
dv

du
− v2 + (u2 + u)v+ u3 + ku2 = 0 (16)

which is an Abel’s of the second kind and hence not to be expected to give the jo
solution in closed form.

The symmetryG1 = ∂x is the only Lie point symmetry of (14) for general values
the parameterk. We note that an analysis of (11) for Lie point symmetries via the w
known interactive code developed by Nucci [37,38] reveals a certain branching stru
i.e., either there is a constraint on a parameter or parameters in the equation. Thus
the choiceβ = 0 or β 
= 0. The former cannot realistically be accepted since it rem
an essential term from the model system (1). A second choice proffered isγ = βK or
γ 
= βK. This choice has no effect upon the formal integrability of (11)/(14), but the fo
does introduce a second Lie point symmetry, videlicet

G2 = eµt (∂t −µI∂I )∼ ex(∂x − y∂y), (17)

in which we give the representations for both (11) and (14). (The structure of the s
symmetry (17) and the way it arises when there is a constraint on the paramete
observed in another context by Torrisi et al. [30].) We note that[G1,G2] = (µ)G2 so
that reduction of (14) should be byG2 rather than the more usualG1 and the equation
is a member of Lie’s Type III second-order ordinary differential equations with two p
symmetries. The standard form of the equation [17] is not one which is linearisab
means of a point transformation except for some very particular forms [39].

The associated Lagrange’s system for the zeroth and first-order invariants ofG2 in
the (14) representation is

dx

1
= dy

−y = dy ′

−2y ′ − y (18)

so that

u= yex, v = y ′
2

+ 1
. (19)
y y
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To render the reduced first-order ordinary differential equation more amenable to
quadrature we consider the form of the second symmetry∂x in these variables. This isu∂u
and so a good set of new variables is

X = logy + x, Y = y ′

y2 + 1

y
(20)

since then the first-order differential equation is autonomous. We find that

dY

dX
+ Y + 1 = 0 (21)

which is readily integrated to

(Y + 1)eX = B ⇔ y ′

y
+ 1+ y = Be−x (22)

which is a standard Riccati equation. We integrate (22) to obtain

y = BCe−x

AexpBe−x +C (23)

which is just the solution to be obtained for generalk, (35), withk = 1.
Although, as a scalar second-order ordinary differential equation (14) possesse

grangian, its determination is not obvious and the possibility that∂x would also be a
Noetherian symmetry leading to a first integral and so formal integrability, if not exp
integration, is just that. Essentially one is no further advanced than the level of know
provided by the Painlevé analysis. One could contemplate a more general search
symmetries by not imposing any condition on the functional dependence of the coef
functions in

G= ξ∂x + η∂y. (24)

Fortunately one can, in analogy to Boyer’s theorem regarding unconstrained Noe
symmetries [40], set one or other ofξ andη at zero to reduce the complexity of calcu
tion. The latter choice is an attractive one for (14) since, as the equation is autonomo
equation forξ is necessarily linear of the first order inξ ′ and consequently amenable to fo
mal solution. (The former choiceξ = 0 presents a linear second-order ordinary differen
equation forη which is impenetrable.)

With η= 0 the action of the second extension of (24), videlicetG[2] = ξ∂x − y ′ξ ′∂y ′ −
(2y ′′ξ ′ + y ′ξ ′′)∂y ′′ , on (14) gives

y2ξ ′′ + ξ ′[2yy ′′ − 2y ′2 + y ′(y2 + y)] = 0 (25)

which is formally integrated to give

ξ =A+B
∫

exp

[
−y − 2y ′

y

]
dx

y
. (26)

The coefficient of the constantA gives the obvious symmetry∂x that ofB a symmetry
which is powerfully nonlocal.

The Lie point symmetry structure of (14) is at odds with its established integrabil
terms of analytic functions. This incompatibility has at times [41–43] been demons



M.C. Nucci, P.G.L. Leach / J. Math. Anal. Appl. 290 (2004) 506–518 513

ires a
stems
g An-
viate
es not
cedure
o gen-
r of the
rder of

uation
indeed
makes
homo-
lution

general
s with
ly our
hat the
f Type I
of the

rma-

ion is
cati
some

n

. The
hoice
to be due to an ‘inappropriate’ choice of variables. A suitable choice of variables requ
knowledge of the symmetries of the system and, if these be not point (contact for sy
of higher order), their determination in general is not easy and even under restrictin
sätze limited in the extent of the applicability of the results [44]. One technique to ob
this problem is to change the order of the equation. The reduction given above do
present attractive potential. Consequently we resort to an increase in order. This pro
is really the very opposite to reduction of order. For the latter one uses a symmetry t
erate a transformation based on the invariants of the symmetry to reduce the orde
equation. In the case of the former one adopts a transformation which increases the o
the equation and the very choice of transformation implies that the higher-order eq
has the requisite symmetry for its generation. The choice of a suitable symmetry is
quite daunting. However, there does exist one, the homogeneity symmetry, which
no assumptions about the solution of the higher-order equation, but simply imposes
geneity. The actual increase in order is not generally going to aid the process of so
since both order and number of symmetries have increased by one. However, in the
procedure of reduction of order symmetries without the requisite Lie bracket relation
the reducing symmetry become exponential nonlocal symmetries [12]. (Interesting
search for nonlocal symmetries of (14) did not reveal any of these.) One can hope t
higher-order equation has one, dare one hope several, point hidden symmetries o
[45], i.e., point symmetries which appear from nowhere, as it seems, on increase
order of a differential equation.

It is in this spirit that we increase the order of (14) by means of the Riccati transfo
tion

y = ρw
′

w
, (27)

whereρ is to be just a constant since the second-order ordinary differential equat
already autonomous instead ofρ(x) as one would normally use in the generalised Ric
transformation. When the transformation (27) is applied to (24), we obtain after
rearrangement of terms

ρ2
(
w′w′′′ −w′′2

w2

)
+ (ρ3 − ρ2)

w′2w′′

w3 + (ρ2 − ρ3)
w′4

w4

+ ρ2w
′w′′

w2 + (ρ2 − ρ3)
w′3

w3 + kρ2w
′2

w2 = 0 (28)

from which it is quite obvious that the choiceρ = 1 provides a considerable simplificatio
to

w′w′′′ −w′′2 +w′w′′ + kw′2 = 0. (29)

Equation (29) has the obvious point symmetries

G1 = ∂x, G2 = ∂w, G3 =w∂w, (30)

the first being inherited from (14) and the third being due to the transformation (27)
middle symmetry, which has no point counterpart in (14), is consequent upon the c
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ρ = 1. It is this symmetry which we choose for the reduction of (29) to a second-
ordinary differential equation. The obvious variables for the reduction usingG2 are

X = x, W = logw′ (31)

so that we obtain the linear second-order ordinary differential equation

W ′′ +W ′ + k = 0 (32)

which is essentially a first-order ordinary differential equation inW ′. The solution fory
follows from that of (32). Thus we have

W(X)= −kX+ logA+Be−X, (33)

w(x)=A
∫

exp[−kx +Be−x ]dx +C, (34)

y(x)= Aexp[−kx +Be−x ]
A

∫
exp[−kx +Be−x]dx +C , (35)

whereA, B andC are constants of integration, whence the solution of the original
tem (1) is

I (t)= 1

β

Aexp[−(µ+ γ − βK)t +Be−µt ]
Aµ

∫
exp[−(µ+ γ − βK)t +Be−µt ]dt +C , (36)

S(t)= µ+ γ
β

+ 1

β

Aexp[−(µ+ γ − βK)t +Be−µt ]
Aµ

∫
exp[−(µ+ γ − βK)t +Be−µt ]dt +C

×
{
µ+ γ − βK −µBe−µt

+ 1

β

Aexp[−(µ+ γ − βK)t +Be−µt ]
Aµ

∫
exp[−(µ+ γ − βK)t +Be−µt ]dt +C

}
(37)

which does seem to be inordinately complicated for what has the appearance of a so
simple system.

Since (32) is a linear second-order ordinary differential equation, it has eight Lie
symmetries [17] with the algebra sl(3,R). These symmetries are

Γ1 = ∂X, Γ5 = −e−X[
∂X + (W − 3kX)∂W

]
,

Γ2 = eX[∂X − k∂W ], Γ6 = (W + kX)∂W ,
Γ3 = ∂W , Γ7 = (W + kX)∂X + [4k2X− 2kXW −W2]∂W ,
Γ4 = e−X∂W , Γ8 = eX(W + kX)[∂X − k∂W ]. (38)

Naturally these symmetries have expressions in terms of the original coordinates
give symmetries for (14) and hence (11) and the system (1). The transformation co
ing (14) and (32) is

X = x, W = logy +
∫
y dx. (39)
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Table 1
The destinations of the point symmetries of the linear second-order equation (32) in the third-order equat
and the original second-order equation (14)

Γ1 ∂x ∂x

Γ2 ex∂x + [(k− 1)
∫
w′ex dx]∂w ex∂x +{(k− 1)[e−

∫
y dx

∫
ye(x+

∫
y dx) dx]′ − yex }∂y

Γ3 w∂w lost in the reduction

− ∂w −ye−
∫
y dx∂y

Γ4 − ∫
w′e−x dx∂w −[e−

∫
y dx

∫
y′e(−x+

∫
y dx) dx]′∂y

Γ5 e−x∂x + [∫ w′e−x(logw′ − 3kx − 1) dx]∂w e−x∂x + {ye−x + [e−
∫
y dx

∫
ye(−x+

∫
y dx)

× (logye
∫
y dy − 3kx − 1) dx]′}∂y

Γ6 [∫ w′(logw′ + kx)dx]∂w [e−
∫
y dx

∫
ye−

∫
y dx (logy + ∫

y dx + kx)dx]′∂y
Γ7 (logw′ + kx)∂x + [w′ + kw+ ∫

(4k2xw′
− 2kxw′ logw′ −w′ log2w′) dx]∂w

(kx + logy + ∫
y dx)∂x + {−(k+ y)y + [e−

∫
y dx

× ∫
(4k2xye

∫
y dx(logy + ∫

y dx)− ye−
∫
y dx

× (logy + ∫
y dx)2) dx]′}∂y

Γ8 (logw′ + kx)ex∂x + {(w′ + kw)ex
+ ∫ [−(w′ + kw)ex −w′(logw′
+ kx)ex(k− 1)]dx}∂w

(logy + ∫
y dx + kx)ex∂x − {[e−

∫
y dx

∫ [(y + k)
× e(

∫
y dx+x)

+ ye(x+
∫
y dx)(logy + ∫

y dx + kx)(k− 1)]dx]′
+ y(logy + ∫

y dx + kx)ex − (y + k)(1− y)ex }∂y

To express the symmetries in (38) we relate the coefficient functions through the int
diate equation inw andx. The symmetries descend from(x,w)-space to(X,W)-space
according to

ξ∂x + η∂w + ζw′ → ξ∂X + ζ

w′ ∂W (40)

and from(x,w)-space to(x, y)-space according to

ξ∂x + η∂w + ζw′ → ξ∂x +
(
ζ

w
− ηw′

w2

)
∂y. (41)

We list the various forms of the symmetries in Table 1.
The symmetriesΓ1 andΓ3 become the point symmetries∂x andw∂w of (29). In the

reduction from (29) to (32)∂w is lost. Likewisew∂w is lost in the reduction from (29
to (14), since it is the generator of the Riccati transformation (27), but∂x persists. Of
the other symmetries we note thatΓ2 is quite nonlocal for general values ofk. However,
for the special valuek = 1, corresponding toγ = βK, the second point symmetry of (1
noted above is recovered. This is the only symmetry for which settingk to one removes
the nonlocality.

4. Conclusion

We have shown that a simple SIS model for a nonfatal infectious disease is inte
firstly from the viewpoint of singularity analysis and, encouraged by this indication,
ondly by integration of the second-order ordinary differential equation (14), derived
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the system (1). The route for integration, the raising and lowering of order by mea
nonpoint transformations of the dependent variable is based on Lie symmetries.

In the case of a fatal disease one must add a term,−αI , to (1b). Performance of th
Painlevé analysis immediately demands thatα be zero for the system to be integrable
terms of analytic functions. The second-order ordinary differential equation of the
tem (1) equivalent to (14) is

yy ′′ − y ′2 + y2y ′ + ay3 + yy ′ + ky2 = 0, (42)

where now

a = 1+ α

µ
, k = 1+ α + γ − βK

µ
. (43)

Not only does (42) fail the Painlevé test but the nice route for reduction to a linear se
order differential equation is, not surprisingly, lost. It would seem that a fatal disease
this models is also not good for mathematics!

In the system, whenα 
= 0, there are two essential constants. Our analysis shows
the value of one,α, is critical for successful analysis of the system by both the Pain
and Lie approaches. The value of the other, the collection labelledk, has no effect upon th
integrability of the system, but, when it takes the value one corresponding to the con
γ = βK , the process of explicit integration is somewhat less circuitous than for ge
values ofk.

The main feature of the work discussed here is that the Lie and Painlevé analyse
up critical values of parameters, and yield to solution in closed form. This type of r
has already been observed in the Lie analysis of a mathematical model which de
HIV transmission in male homosexual/bisexual communities [30], a core group mod
sexually transmitted diseases [34], and a SIRI disease transmission model [35].

Here we have sought to promote the use of Lie and Painlevé analyses for mathe
models in epidemiology and more generally in the biosciences as a standard routine
analyses complement the results obtained through the methods of dynamical syste
consequently offer the prospect of providing greater information about the evoluti
time of the system under consideration.
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