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Abstract

We provide a demonstration of the integrability of a classical model of an infectious disease which
neither kills nor induces autoimmunity by means of the Painlevé analysis and use the Lie theory of
transformation groups to present an explicit solution.
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1. Introduction

A standard model for the evolution in time of a system results in a set of first-order non-
linear ordinary differential equations. The first of such models dates back to the eighteenth
century’s proposal by the Englishman, Thomas Malthus, that shortly we would all be stand-
ing upon each other’s toes, the motivation for such a prediction possibly engendered by the
dramatic increase in European populations in that century which had not generally expe-
rienced the serious encounters with the bubonic plague that had caused major reductions
in population—decimation is not the adequate word—over vast swathes of the Europe of
previous centuries. Some fifty years later (1837) the Hollander, P.F. Verhulst, suggested
that a little natural restraint would be more appropriate and devised the logistic equation as
a model of such restraint.
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An attraction of both first-order differential equations used in the models of Malthus and
Verhulst was that they were singular and integrable in closed form by a variety of elemen-
tary procedures. Unfortunately the diversity of their applicability was somewhat limited.
Some 70-80 years ago there was the beginning of serious studies of models of divers
processes in biology, chemistry and, of course, epidemiology. Lotka [1] and Volterra [2]
are commemorated in the names of the systems they proposed which added to the ideas
of Malthus [3] and Verhulst [4] terms describing interaction between various ‘objects,’
whether they be chemicals in a reactor, beasts on the savannah or the victims of diseases
in a population. Lotka—\olterra systems have been supplemented by quadratic [5] and
higher-order systems, not to mention more irregularly nonlinear systems. In epidemiol-
ogy a class of Lotka—Volterra equations was proposed by Kermack and McKendrick [6] to
provide a mathematical description of such gross events as the Great Plague of London in
1665-1666. When it comes to such events, the statisticians’ law of large numbers permits
the application of deterministic differential equations to describe situations which are, in
their fine detail, of a more statistical nature. It really is the same thing as fluid models of
the Universe.

One of the sad features of these more accurate mathematical models of natural phenom-
ena is that the sets of first-order ordinary differential equations arising in the modelling
process have a tendency to be quite nonintegrable even in the almost simplest of models.
This is in curious contrast situation in physics wherein the paradigms—say the Kepler
problem and the simple harmonic oscillator—are so integrable that there seems to be
no end to the interpretations of their mathematical properties. This characteristic was
recognised, almost before the field was initiated, by Henri Poincaré who inaugurated the
discipline of dynamical systems to be able to say something useful about these apparently
otherwise intractable systems.

Curiously in the same epoch, in which Poincaré was establishing dynamical systems
as a useful tool for the analysis of these difficult systems, two different approaches to the
establishment of criteria for integrability were developed. In approximately the last quar-
ter of the nineteenth century the Norwegian, Sophus Lie, devised his theory of continuous
groups, the full practical effects of which have only begun to be appreciated almost a cen-
tury later following the pioneering works of Laurentiev Ovsiannikov in serious application
to the solution of differential equations arising in mathematical physics. About the same
time Paul Painlevé and his School elucidated the singularity properties of ordinary differ-
ential equations and their relationship with integrability which had been used so effectively
by Sophie Kowalevski to find the third integrable case of the Euler equations describing
the motion of a top.

For some strange reason the symmetry methods of Lie and the singularity analysis of
Painlevé have not found the same degree of application to the systems of ordinary differen-
tial equations arising in the mathematical modelling of biological, ecological and chemical
systems, let alone the precise area of epidemiology of interest in this note, as the theory
of dynamical systems of Poincaré and his successors. This is unfortunate as the resolution
of equations arising in the modelling process is the critical part of the analysis, not the
adjective used to describe the particular brand of analysis being used.

In this note we examine a simple epidemiological model from the viewpoint of both
Lie and Painlevé. The model is a particular case of the classical SIS model introduced by
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Kermack and McKendrick [6]. We assume that recovery from the nonfatal infective disease
does not confer immunity. The two first-order ordinary differential equations are [7]

§=—BSI —uS+yl+uk,
I=BSI—(u+y)l, (1)

in which the overdot denotes differentiation with respect to tise) is the susceptible
component of the populatiofi(z) is the infected component of the populatiprk repre-

sents a constant birth rate,is the proportionate death raie s the infectivity coefficient

of the typical Lotka—\olterra interaction term amdthe recovery coefficient. We empha-

sise that the disease is assumed to be nonfatal so that the standard term removing deceased
infectives (-« 7 in [7]) is omitted.

In Section 2 we subject the system (1) to the Painlevé analysis in its present state as a
raw dynamical system, as it were, and also as a single second-order ordinary differential
equation which has been ‘sanitised’ by the removal of mathematically distracting para-
meters. In Section 3 we examine the derived second-order ordinary differential equation
for Lie symmetries and find them somewhat obviously lacking given the integrability of
the system already established by the Painlevé analysis. However, this apparent lack of
symmetry is shown to be a problem of representation dependence and system is actually
trivially integrable. We conclude with some observations of the delicate dependence of the
integrability of a nonlinear system on its precise form, its balance as it were, in the presence
of nontrivial parameters.

2. Painlevé analysis

The application of the Painlevé test is fairly routine—although see Géronimi et al. [8]
for an examination of concepts underlying the Painlevé test—and the reader unfamiliar
with the details of the method is referred to a standard exposition such as that of Tabor [9]
or Ramani et al. [10]. We seek the parameters in the leading-order behavisay @fnd
I(2) in (1) by writing

S=art?, I =b11, (2

wherea, b, p andq are constants to be determined and ¢ — 1o with 79 being the location
of the presumed movable pole, and substituting this into (1) to obtain

apt?~t = —BabtP*9 — pat? +ybr? — uk,
bqr"_l = BabtPl — (u+ )4, (3)
from which it is evident that the dominant terms are those on the left and the first on the
right. We see thap = ¢ = —1 and—a = b = 1/ so that the leading-order behaviour is
1 1
! (4)

S:——rfl, I=—1"".
To determine the resonance at which the required second arbitrary constant occurs we set

B B

1 1
S=—Zttyme L I==ttynet (5)

B B
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in the dominant terms already determined by the analysis of leading-order behaviour. Col-
lecting the terms linear im andn we find that

()20

for which a nontrivial solution exists if = 1. Thus the second arbitrary constant enters at
the second term in the Laurent expansion for the solution of (1). To check for consistency
with the nondominant terms all we need do is to substitute (5) into (1) Atwe need

O0=—B(an+bm) — pa+ yb,
O0=pg@an+bm)— (u+y)b. @)

Given the values of andb the two equations in (7) are identical and so we have consis-
tency. We can take: as the arbitrary constant and set

m+y
n=m 5 (8)
The system (1) passes the Painlevé test and is integrable in the sense of Poincaré, i.e.,
in terms of functions analytic away from the movable singularity the location of which is
fixed by the initial conditions. The formal Laurent series may be obtained by substituting

0 . 0 .
S:Zaitlil, I:Zb,"[lil 9)
i=0 i=0

into (1).

3. Lieanalysis

In January 2001 the first Whiteman prize for notable exposition on the history of math-
ematics was awarded to Thomas Hawkins by the American Mathematical Society. In the
citation, published in the Notices of Amer. Math. Soc. 48 (2001) 416-417, one reads that
Thomas Hawkins .. has written extensively on the history of Lie groups. In particular
he has traced their origins to Lie’s work in the 1870s on differential equatiotie idée
fixe guiding Lie’s work was the development of a Galois theory of differential equations
Hawkins’ book [11] highlights the fascinating interaction of geometry, analysis, mathe-
matical physics, algebra and topology.”

In the Introduction of his book [12] Olver wrote that “it is impossible to overestimate
the importance of Lie's contribution to modern science and mathematics. Nevertheless
anyone who is already familiar with (it). is perhaps surprised to know that its original
inspirational source was the field of differential equations.”

Lie's monumental work on transformation groups [13-15] and in particular contact
transformations [16], led him to achieve his goal [17].

Many books have been dedicated to this subject and its generalisations [12,18-26].

Lie group analysis is indeed the most powerful tool to find the general solution of
ordinary differential equations. Any known integration technique can be shown to be a
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particular case of a general integration method based on the derivation of the continuous
group of symmetries admitted by the differential equation, i.e., the Lie symmetry algebra.

In particular Bianchi’s theorem [12,27] states that, if an admiitetimensional solv-
able Lie symmetry algebra is found, then the general solution of the corresporttiing
order system of ordinary differential equations can be obtained by quadratures. The ad-
mitted Lie symmetry algebra can be easily derived by a straightforward although lengthy
procedure. As computer algebra software becomes widely used, the integration of systems
of ordinary differential equations by means of Lie group analysis is becoming easier to
perform.

A major drawback of Lie’'s method is that systems of first-order ordinary differential
equations do not lend themselves kindly to analysis for the possession of symmetry since
there exists an infinite number of Lie symmetries. For a practical resolution of the problem
there are two approaches possible. In one of them an Ansatz is made of the structure of
the coefficient functions. Although this approach is open to the fundamental objection
that the Ansatz is more likely to be based upon the imagination of the person making the
analysis than of the inherent features of the system under consideration, there have been
occasions when this is a very fruitful approach [28]. In the second approach the method
of reduction of order [29] effectively replaces a first-order system by one containing at
least one second-order equation which reduces the number of symmetries from infinity to
a finite number, which one hopes is not zero. This idea has been successfully applied in
several instances [29-35]. Consequently we replace the system (1) by a single second-order
ordinary differential equation.

From (1b),
I p+y
S=—+— (10)
BI B
and (1a) is then
II = 1?4 BI%] + pll +Bul®+ u(u+y — BK)I> =0, (11)

an equation of which it could fairly be remarked that therein is a plethora of constants.
Since (11) does not possess a rescaling symmetry, we may achieve a cosmetic simplifica-
tion by means of the rescalings

=ty 2t (12)
p 2
and the relabelling
—BK
14V =PK (13)
n

videlicet the somewhat grotesque albeit autonomous nonlinear second-order ordinary dif-
ferential equation
' =y2+ 3% 4y + ¥+ ky? =0, (14)

an equation quite unknown to Kamke [36].
The integrability of (14) is a consequence of the integrability of the system (1) as re-
vealed by the Painlevé analysis. A minor disadvantage of the Painlevé analysis is that a
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successful application leads to a Laurent series and series representations of solutions are
not always immediately recognisable in terms of known functions, if indeed they are series
representations of known functions. The attraction of the Lie approach is that the posses-
sion of a suitable number of symmetries of the right type leads naturally to reduction to
guadratures and even solution in closed form.

Equation (14) is obviously autonomous. The zeroth-order and first-order differential
invariants are given by the two independent solutions of the associated Lagrange’s system
of the symmetny,, videlicet

dx dy dy
ax_4y_4r 15
1 0 0 (15)
i.e.,u =y andv =y’. The reduced form of (14) is
dv 2 2 3 2
uv— — v+ W+ u)v+u’+ku =0 (16)

du

which is an Abel’s of the second kind and hence not to be expected to give the joy of a
solution in closed form.

The symmetryG, = d, is the only Lie point symmetry of (14) for general values of
the parametek. We note that an analysis of (11) for Lie point symmetries via the well-
known interactive code developed by Nucci [37,38] reveals a certain branching structure,
i.e., either there is a constraint on a parameter or parameters in the equation. Thus one has
the choiceg =0 or g # 0. The former cannot realistically be accepted since it removes
an essential term from the model system (1). A second choice proffenee=i8 K or
y # BK. This choice has no effect upon the formal integrability of (11)/(14), but the former
does introduce a second Lie point symmetry, videlicet

Go=eM (0, — nldy) ~e*(3x — ydy), a7)

in which we give the representations for both (11) and (14). (The structure of the second
symmetry (17) and the way it arises when there is a constraint on the parameters was
observed in another context by Torrisi et al. [30].) We note fliat, G2] = (u)G2 SO
that reduction of (14) should be by, rather than the more usuél; and the equation
is a member of Lie’s Type Ill second-order ordinary differential equations with two point
symmetries. The standard form of the equation [17] is not one which is linearisable by
means of a point transformation except for some very particular forms [39].

The associated Lagrange’s system for the zeroth and first-order invariants iof
the (14) representation is

dx dy dy’

= =—— 18
1 -y =2y-y (18)

so that

u=ye", v=" 4

Ety (19)

< |
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To render the reduced first-order ordinary differential equation more amenable to direct
guadrature we consider the form of the second symnégtiiy these variables. This is,
and so a good set of new variables is

y 1
X =logy + x, Y=+ = (20)
y y
since then the first-order differential equation is autonomous. We find that
dY
—+Y+1=0 21
ox T (21)
which is readily integrated to
/
Y+DeX=B o L 414y=Be™ (22)
y
which is a standard Riccati equation. We integrate (22) to obtain
BCe™*
Y= (23)
AexpPe™ +C

which is just the solution to be obtained for geneéra35), withk = 1.

Although, as a scalar second-order ordinary differential equation (14) possesses a La-
grangian, its determination is not obvious and the possibility thatvould also be a
Noetherian symmetry leading to a first integral and so formal integrability, if not explicit
integration, is just that. Essentially one is no further advanced than the level of knowledge
provided by the Painlevé analysis. One could contemplate a more general search for Lie
symmetries by not imposing any condition on the functional dependence of the coefficient
functions in

G = £, +ndy. (24)

Fortunately one can, in analogy to Boyer’'s theorem regarding unconstrained Noether’s
symmetries [40], set one or other ®fandn at zero to reduce the complexity of calcula-
tion. The latter choice is an attractive one for (14) since, as the equation is autonomous, the
equation fok is necessarily linear of the first order§hand consequently amenable to for-
mal solution. (The former choice= 0 presents a linear second-order ordinary differential
equation fom which is impenetrable.)

With 5 = 0 the action of the second extension of (24), videliG& = £9, — y'Edy —
(2y"¢' 4 y'€")d,r, on (14) gives

Y&+ [2yy" =27+ Y (v*+y)]=0 (25)
which is formally integrated to give
2y'1d
§=A+B/exp|:—y—lj|—x. (26)
y 1y

The coefficient of the constamt gives the obvious symmetrd, that of B a symmetry
which is powerfully nonlocal.

The Lie point symmetry structure of (14) is at odds with its established integrability in
terms of analytic functions. This incompatibility has at times [41-43] been demonstrated
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to be due to an ‘inappropriate’ choice of variables. A suitable choice of variables requires a
knowledge of the symmetries of the system and, if these be not point (contact for systems
of higher order), their determination in general is not easy and even under restricting An-
satze limited in the extent of the applicability of the results [44]. One technique to obviate
this problem is to change the order of the equation. The reduction given above does not
present attractive potential. Consequently we resort to an increase in order. This procedure
is really the very opposite to reduction of order. For the latter one uses a symmetry to gen-
erate a transformation based on the invariants of the symmetry to reduce the order of the
equation. In the case of the former one adopts a transformation which increases the order of
the equation and the very choice of transformation implies that the higher-order equation
has the requisite symmetry for its generation. The choice of a suitable symmetry is indeed
quite daunting. However, there does exist one, the homogeneity symmetry, which makes
no assumptions about the solution of the higher-order equation, but simply imposes homo-
geneity. The actual increase in order is not generally going to aid the process of solution
since both order and number of symmetries have increased by one. However, in the general
procedure of reduction of order symmetries without the requisite Lie bracket relations with
the reducing symmetry become exponential nonlocal symmetries [12]. (Interestingly our
search for nonlocal symmetries of (14) did not reveal any of these.) One can hope that the
higher-order equation has one, dare one hope several, point hidden symmetries of Type |
[45], i.e., point symmetries which appear from nowhere, as it seems, on increase of the
order of a differential equation.

It is in this spirit that we increase the order of (14) by means of the Riccati transforma-
tion

w/

w

wherep is to be just a constant since the second-order ordinary differential equation is
already autonomous instead @fx) as one would normally use in the generalised Riccati
transformation. When the transformation (27) is applied to (24), we obtain after some
rearrangement of terms

ww" — w//2 w/Zw// w/4
p2<T) + (IO3 - pZ)? + (102 - pg)F
ww” w/3 w/2
+,02?+(,02—,03)ﬁ +k,02F =0 (28)

from which it is quite obvious that the choige= 1 provides a considerable simplification
to

ww" — w//2 +uw'w’ + kw/z —=0. (29)
Equation (29) has the obvious point symmetries
Gl=aX7 G2:8uh G3=w81,U7 (30)

the first being inherited from (14) and the third being due to the transformation (27). The
middle symmetry, which has no point counterpart in (14), is consequent upon the choice
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p =1. It is this symmetry which we choose for the reduction of (29) to a second-order
ordinary differential equation. The obvious variables for the reduction uSinare

X =x, W = logw’ (31)
so that we obtain the linear second-order ordinary differential equation
W +W +k=0 (32)

which is essentially a first-order ordinary differential equatiortih The solution fory
follows from that of (32). Thus we have

W(X)=—kX +logA + Be ¥, (33)
wkx)=A / expl—kx + Be *ldx + C, (34)
) = Aexgd—kx + Be™*] (35)

A [expd—kx + Be *]dx + C’
where A, B andC are constants of integration, whence the solution of the original sys-
tem (1) is

— _ —ut
I(t):l Aexg—(u+y — BK)t + Be ] ’ (36)
BAw [expd—(u+y — BK)t + Be #]dt+ C
p+y 1 Aexg—(u+y — BK)t + Be "]

B B Au [expd—(u+y — BK)i + Be=H]di + C

S(t) =

X {;L+)/—,3K—;LBe_’”

1 Aexg—(u+y — BK)t + Be H] }

B Aw [exd—(u+y — BK)t + Be #]dt+ C
which does seem to be inordinately complicated for what has the appearance of a somewhat
simple system.

Since (32) is a linear second-order ordinary differential equation, it has eight Lie point
symmetries [17] with the algebra(8l R). These symmetries are

(37)

I = dy, Is=—e *[x + (W — 3kX)dw].

M=e*ox —kdwl,  Te= W +kX)dw,

3= 0y, 7= (W 4 kX)dx + [4k’X — 2kXW — W21y,

Tn=e %oy, Tg=eX (W +kX)[dx — kdw]. (38)

Naturally these symmetries have expressions in terms of the original coordinates and so
give symmetries for (14) and hence (11) and the system (1). The transformation connect-
ing (14) and (32) is

X =ux, W:logy—i—/ydx. (39)
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Table 1
The destinations of the point symmetries of the linear second-order equation (32) in the third-order equation (29)
and the original second-order equation (14)

o o i

o e%ox + [k — 1) [ w'e* dx]dy iy +{(k— e~ ydx [yt [ydn) gy —yexya,
I3 wiy lost in the reduction

- O —ye~ [ydx dy

Iy —[we ™ dxdy —[e_f ydx fy’e<_x+f ydx) dx)'dy

Is e o +[[we ™ (logw —3kx —1)dx]dy e ¥ dx +{ye ™ + [e_fy dx S ye(_x"'f ydx)
x (logye/ Y4y — 3kx — 1) dx]'}dy

Is [fw/(logw' + kx)dx]dy [e=/Ydx [ ye=[Ydx (logy 4 [ ydx + kx)dx]'dy
Iy (logw’ 4 kx)ay + [w' + kw + [ (4k%xw’ (kx 4109y + [ ydx)dy +{—(k + y)y + e~/ ¥
— 2kxw'logw’ — w’log? w') dx]d X f(4k2xyefydx(logy + [ydx) — ye*fyd"
x (logy + [ ydx)?) dx1}ay
Iy (logw’ +kx)e*dx + {(w' +kw)e* (logy + [ ydx + kx)e* oy — {[e=/vdx Sl +k)
+ [ + kw)eX —w'(logw’ x el ydx+x)

+kx)e* (k — 1)]1dx}ay, 4 ye@ [ ydo) (jogy + [ydx +kx)(k — D)]dx]

+y(logy + [ ydx +kx)e® — (y + k) (1 — y)e*}dy

To express the symmetries in (38) we relate the coefficient functions through the interme-
diate equation inv andx. The symmetries descend frofa, w)-space to(X, W)-space
according to

Etndu+ G > Edx+ (40)
and from(x, w)-space tqx, y)-space according to
/
gax + 773w + §w/ - Eax + <£ - %)8)" (41)
w w

We list the various forms of the symmetries in Table 1.

The symmetried™ and I'3 become the point symmetrids and wa,, of (29). In the
reduction from (29) to (32),, is lost. Likewisewd,, is lost in the reduction from (29)
to (14), since it is the generator of the Riccati transformation (27),0bytersists. Of
the other symmetries we note thigt is quite nonlocal for general values bf However,
for the special valué = 1, corresponding t¢g = SK, the second point symmetry of (14)
noted above is recovered. This is the only symmetry for which settitlgone removes
the nonlocality.

4, Conclusion

We have shown that a simple SIS model for a nonfatal infectious disease is integrable
firstly from the viewpoint of singularity analysis and, encouraged by this indication, sec-
ondly by integration of the second-order ordinary differential equation (14), derived from
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the system (1). The route for integration, the raising and lowering of order by means of
nonpoint transformations of the dependent variable is based on Lie symmetries.

In the case of a fatal disease one must add a terad,, to (1b). Performance of the
Painlevé analysis immediately demands thdde zero for the system to be integrable in
terms of analytic functions. The second-order ordinary differential equation of the sys-
tem (1) equivalent to (14) is

¥y = ¥2+y% +ay +yy +ky? =0, (42)
where now
- BK
a=14% k=14 ¥tr-FK (43)
w w

Not only does (42) fail the Painlevé test but the nice route for reduction to a linear second-
order differential equation is, not surprisingly, lost. It would seem that a fatal disease which
this models is also not good for mathematics!

In the system, when # 0, there are two essential constants. Our analysis shows that
the value of oneg, is critical for successful analysis of the system by both the Painlevé
and Lie approaches. The value of the other, the collection labkllleas no effect upon the
integrability of the system, but, when it takes the value one corresponding to the constraint
y = BK, the process of explicit integration is somewhat less circuitous than for general
values ofk.

The main feature of the work discussed here is that the Lie and Painlevé analyses throw
up critical values of parameters, and yield to solution in closed form. This type of result
has already been observed in the Lie analysis of a mathematical model which describes
HIV transmission in male homosexual/bisexual communities [30], a core group model for
sexually transmitted diseases [34], and a SIRI disease transmission model [35].

Here we have sought to promote the use of Lie and Painlevé analyses for mathematical
models in epidemiology and more generally in the biosciences as a standard routine. These
analyses complement the results obtained through the methods of dynamical systems and
consequently offer the prospect of providing greater information about the evolution in
time of the system under consideration.
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