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Abstract 

     Graph coloring is an important problem with its wide variety of applications. The problem is NP-hard in nature 
and no polynomial time algorithm is known for it. In this paper, we propose a new method for graph coloring. The 
proposed scheme is efficient with respect to simplicity, robustness and computation time. 
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1. Introduction 

     Let G(V, E) be an undirected graph with the set of vertices (nodes) V and the set of edges E. A 
coloring of the graph G(V, E) is a mapping C: V  S, such that if  an edge (u, v) E, then C(u)  C(v). In 
other words, it is defined as coloring the vertices of a graph such that no two adjacent vertices have the 
same color. The minimum number of colors needed for coloring a graph is known as chromatic number. 
It is known that the graph coloring problem is NP-hard [1]. Despite its NP-hardness, the graph coloring 
problem has been studied extensively due to its wide variety of applications such as in scheduling [2], [3], 
register allocation [4], printed circuit testing [5], manufacturing [6], frequency assignment [7], 
timetabling [8] and satellite range scheduling [9]. Many heuristics have been proposed to handle large 
graph coloring problem. Greedy based heuristics were proposed in which the vertices of the graph are 
colored one by one guided by a predefined greedy function.  The largest saturation degree (DSATUR) 
[10] and the recursive largest first (RLF) [11] are the two best known heuristics in this class. Various 
local search algorithms based on Tabu search [12], [13], [15]  and simulated annealing [16], [17]. Other 
LSA can be found in [18], [19], [20], [21]. In the recent year, many other algorithms have been proposed 
which can be found in [22], [23]. However, many of these algorithms, particularly genetic algorithms and 
simulated annealing based, suffer from high running time, when dealing with large graph problems. Some 
of   the algorithms are not robust enough and produce unsatisfactory results for many applications. In this 
paper, we propose a method which is simple and robust in dealing large graph problems. Our method is 
capable of producing comparable results in lesser time than the best known algorithm DSATUR [10].  
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2. Proposed algorithm  

     The basic idea of the algorithm is as follows. We maintain a table having the four attributes namely, 
vertex, color, flag and color-assigned. The initial configuration of this table is shown in Fig. 1 for the 
augmented cube shown in Fig. 2. Here, we assume that the number of colors available is equal to the 
number of the nodes of the graph. At any iteration, we choose one vertex, say ‘x’ of the graph to color it. 
At the beginning of the iteration, we reset all the flag bits to 0. We now test every vertex adjacent to ‘x’ to 
examine whether it is colored. If it is so, we check its color and put the flag bit 1 corresponding to its 
color. We now scan the flag bit vector from the beginning to search for the first flag bit as 0. This 
indicates that the corresponding color has not yet been used. So we assign this color for the vertex ‘x’. We 
consider the next vertex and follow the same procedure to color it. The method is repeated until all the 
vertices of the graph are colored.  

 
 

 
 
 

Fig. 1. Initial table configuration                       Fig. 2. Augmented cube  
 

Let us first illustrate the method stepwise for coloring the augmented cube  shown in Fig. 2.  
 
Step 1: We randomly choose any one vertex from the graph. Without any loss of generality, we start 
coloring with the vertex 1. Initially all the flag bits are zero. This indicates that no color has been used so 
far. Therefore, we assign color 1 to the vertex 1 and set the corresponding flag bit 1. The situation is 
shown in Fig. 3.  
 

node 1 2 3 4 5 6 7 8 9 
color 1 2 3 4 5 6 7 8 9 
flag 1 0 0 0 0 0 0 0 0 
color-assigned 1                                                  

                                                            Fig. 3. Table configuration after 1st iteration 

 Step 2:  Now we move to the next vertex, i.e., the vertex 2. We first reset all the flag bits to 0 as shown 
in Fig. 4.  
 

node 1 2 3 4 5 6 7 8 9 
color 1 2 3 4 5 6 7 8 9 
flag 0 0 0 0 0 0 0 0 0 
color-assigned 1                                                    

                                             Fig. 4. Table configuration after resetting flag bits to 0 
 

The adjacent vertices of the vertex 2 are 1, 3 and 7 (see Fig. 1).We now consult the color-assigned vector 
in Fig. 4 and observe that out of these adjacent vertices the vertex 1 is colored with color 1. Therefore we 
put 1 in the flag bit corresponding to color 1 (see Fig. 5). As the vertices 3 and 7 are not colored so far, 
their flag bits remain same. Now to color vertex 2, we traverse flag vector from left to right to encounter 
the 1st zero flag bit, (which means that the corresponding color is not used). It is seen from Fig. 5 that flag 
bit corresponding to color 2 is 0. Therefore, we can assign color 2 to the vertex 2 and we update color-
assigned vector as shown in Fig. 5. 
 
 
 
 
 
 

vertex 1 2 3 4 5 6 7 8 9 
color 1 2 3 4 5 6 7 8 9 
flag 0 0 0 0 0 0 0 0 0 
color-assigned          

 8  7 

 5  6 

 1  2 

 4  3 

 9
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 node 1 2 3 4 5 6 7 8 9 
color 1 2 3 4 5 6 7 8 9 
flag 1 0 0 0 0 0 0 0 0 
color-assigned 1 2                                   

     Fig. 5. Table configuration after 2nd iteration 
 

  Step 3:  Move to next vertex 3 and reset all the flag bits to 0 as shown in Fig. 6. 
 

node 1 2 3 4 5 6 7 8 9 
colors 1 2 3 4 5 6 7 8 9 
flag 0 0 0 0 0 0 0 0 0 
color-assigned 1 2          

                                            Fig. 6. Table configuration after resetting flag bits to 0 
 

Vertex 2, 6, 4 are adjacent to the vertex 3. Out of these, the vertex 2 is colored with color 2, therefore we 
put 1 in the corresponding flag bit (see Fig. 7) and search for the 1st zero flag bit from the beginning in 
left to right fashion and find that the 1st flag bit is zero. Therefore, we can assign the color 1 to the vertex 
3 as shown in Fig. 7. 
 

node 1 2 3 4 5 6 7 8 9 
color 1 2 3 4 5 6 7 8 9 
flag 0 1 0 0 0 0 0 0 0 
color-assigned 1 2 1                                   

                                   Fig. 7. Table configuration after 3rd iteration 
 

The above method is continued and at the end of the final iteration we obtain the final solution in Fig. 8. 
 
 

node 1 2 3 4 5 6 7 8 9 
color 1 2 3 4 5 6 7 8 9 
flag 1 0 0 0 0 0 0 0 0 
color-assigned 1 2 1 2 1 2 1 2 3   

                                            Fig. 8. Table configuration after final iteration 
 

The algorithm is formally presented as follows.  
 
                                               Algorithm NGC(G) 
 

1.     //n is the number of vertices.   
2.     // ar[1: n,1: n] is an adjacency matrix represent the G.
3.   // a[1: n] is solution vector, initially a is assigned zero.
4.   //c[1:2, 1: n] is the color vector.
5.   // cn counts the number of colors used. 
6.    { 
7.       cn = 1; p = 0; a[1] =1; 
8.       for i:= 2 to n   do 
9.          { 
10.            for  j:= 1 to n do 
11.               { 
12.      if ((ar[i][j] = 1) && (a[j] > 0) && (i  j))   
13.                   {   
14.                      for k:= 1 to n do 
15.                          { 
16.                            if(c [1] [k] = a[j]) then 
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17.                                { c[2][k] = 1; break;} 
18.                          } 
19.                    } 
20.                } 
21.              for k = 1 to n 
22.                  { 
23.                    if((c[2][k]  1) && (p = 0)) then  //p is a temporary variable 
24.                     {  
25.                       a[i] = c[1][k];   
26.                       p =1; 
27.                       if(cn < c[1][k])  
28.                        cn = c[1][k]; 
29.                     } 
30.                  else 
31.                  c[1][k] = 0; 
32.                  }  
33.              p = 0; 
34.           } 
35.        Write (a[1:n]); Write (“Number of colors used:”,  cn); 
36.    } 

                                    
Explanation: Line 12 checks whether vj is adjacent to vi and also examines whether vj is colored,  i and 
j, 1 < i,  j <= n and i  j. If it is so line 16 checks the color of vj and set the flag bit of the corresponding 
color to 1 in the color vector. Line 23 examines the 1st zero bit flag bit and if it is found, line 25 assigns 
the color to vi. This ensures that no two adjacent vertices will have the same color. Line 28 counts the 
total number of colors used and Line 31 resets the flag bit to zero. 
 
Time Complexity: For each iteration of the ‘for’ loop from line 10 to 22 takes O(n2) time, ‘for’ loop 
comprising lines 14 to 17 is executed a maximum of n iterations. Lines 21 to 31 is implemented in O(n), 
therefore lines 10 to 31 requires O(n2) time. As the ‘for’ loop in line 8 is executed in n  1 iterations, 
therefore the overall complexity of the algorithm NGC is O(n3).  

3. Experimental Results 

     We have tested our algorithm on several randomly generated graphs by varying the number of nodes 
as well as edges and calculated the run time and the minimum number of colors required by the proposed 
algorithm NGC. The results are compared by running the DSATUR algorithm [10] and shown in Fig. 9. It 
is observed that although minimum number of colors for both the algorithms are same except for the 
problem instances 3, 7 and 8, the running time of the proposed algorithm is significantly less than the 
DSATUR. The comparisons of the running times are also shown by the bar charts in Fig 10.   
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4. Conclusion 

     In this paper, we have presented a novel method for graph coloring problem. The algorithm has been 
shown to run in O(n3) time. We have tested the proposed algorithm on various kinds of graph. The 
experimental results have been compared and shown in tabular form as well as bar charts. The proposed 
algorithm has been shown to produce comparable results in far better running time. 
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