MATHEMATICS

A CLASS OF INFINITE MATRICES

BY

G. MATTHEWS

(Communicated by Prof. J. F. Koksma at the meeting of May 31, 1958)

1. We introduce below the class of Σ-matrices, which can be used to represent polynomial forms and infinite series. As an application, a theorem is given, in § 3, on the "product" of two infinite series.

We define Σ-matrices as infinite lower semi-matrices of the type

\[
A = \begin{bmatrix}
 a_0, & 0, & 0, & 0, & \ldots \\
 a_1, & a_0, & 0, & 0, & \ldots \\
 a_2, & a_1, & a_0, & 0, & \ldots \\
 a_3, & a_2, & a_1, & a_0, & \ldots \\
 \vdots & \vdots & \vdots & \vdots & \ddots
\end{bmatrix}
\]

(1.1)

where the elements \(a_i\) are complex numbers.

Theorem 1, I. Σ-matrices form an integral domain.

If \(A, B\) are Σ-matrices, the first column of \(AB\) is

\[
\{a_0 b_0, a_1 b_0 + a_0 b_1, \ldots, a_n b_0 + a_{n-1} b_1 + \ldots + a_0 b_n, \ldots\}
\]

(1.2)

It is easily seen that \(AB\) is a Σ-matrix, and in fact that Σ-matrices form a commutative ring. It remains to prove that the "cancellation law" holds, i.e., \(AB=AC\) implies \(B=C\), if \(A \neq 0\). If \(AB=AC\), we have

\[
a_0 b_0 = a_0 c_0, a_1 b_0 + a_0 b_1 = a_1 c_0 + a_0 c_1, a_2 b_0 + a_1 b_1 + a_0 b_2 = a_2 c_0 + a_1 c_1 + a_0 c_2, \ldots,
\]

whence if some \(a_i \neq 0\), it follows that \(b_0 = c_0\) and thence that \(b_i = c_i\) \((i=1, 2, \ldots)\). Thus the result is established.

If \(a_0 \neq 0\), the Σ-matrix (1.1) has a unique two-sided Σ-reciprocal \([1, 22]\), which we shall call its inverse, and thus the sub-class of Σ-matrices for which \(a_0 \neq 0\) forms a field.

Theorem 1, II. There is an isomorphism between the class of column-finite Σ-matrices and the class of polynomial forms in an indeterminate \(x\), over the field of complex numbers.

Let \(B_{(m)}\) be the Σ-matrix whose leading column is

\[
\{b_0, b_1, b_2, \ldots, b_n, 0, 0, \ldots\}
\]

let \(C_{(m)}\) be similarly defined, and let \(b(x) = b_0 + b_1 x + b_2 x^2 + \ldots + b_n x^n, c(x) = c_0 + c_1 x + \ldots + c_m x^m\). We also define \(b_j = 0\) \((j > n)\), \(c_k = 0\) \((k > m)\). Then if \(B_{(m)} \leftrightarrow b(x), C_{(m)} \leftrightarrow c(x)\), we have at once \(B_{(m)} + C_{(m)} \leftrightarrow b(x) + c(x)\). Also the \((r+1)\)-th element in the leading column of \(B_{(m)} C_{(m)}\) is \(b_r c_0 + b_{r-1} c_1 + + \ldots + b_0 c_r\), i.e., the coefficient of \(x^r\) in \(b(x), c(x)\). Finally, \(k B_{(m)} \leftrightarrow k b(x)\), where \(k\) is any scalar, and the isomorphism is thus established.
2. If \(a_0 \neq 0 \), the \(\Sigma \)-matrix \(A \), defined by (1.1), has a \(\Sigma \)-inverse \(A^{-1} \) whose leading column is \(\{x_0, x_1, x_2, \ldots\} \), where

\[
a_0 x_0 = 1, \quad a_1 x_0 + a_0 x_1 = a_2 x_0 + a_1 x_1 + a_0 x_2 = \ldots = 0.
\]

Using (2.1), we have \((a_0 + a_1 x + a_2 x^2 + \ldots \cdot (x_0 + x_1 x + x_2 x^2 + \ldots) = 1\), if both series converge. Conversely, the inverse of \(A \) could be deduced from consideration of the two infinite series.

Example 1. Let \(A \) be the \(\Sigma \)-matrix defined by the leading column \(\{1, -2, 1, 0, 0, \ldots\} \). Comparing with \((1-x)\pm_2\), the leading column of \(A^{-1} \) is \(\{1, 2, 3, 4, \ldots\} \).

Example 2. From the expansions for \(e^x \), \(e^{-x} \), if

\[
B = \begin{bmatrix}
1 & 1 & 1 & 1 & 1 & \ldots \\
1 & 1 & 1 & 1 & 1 & \ldots \\
\frac{1}{2!} & 1 & 1 & 1 & 1 & \ldots \\
\frac{1}{3!} & \frac{1}{2!} & 1 & 1 & 1 & \ldots \\
\frac{1}{4!} & \frac{1}{3!} & \frac{1}{2!} & 1 & 1 & \ldots \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots
\end{bmatrix}
\]

then \(B^{-1} = \begin{bmatrix}
1 & 0 & 0 & 0 & 0 & \ldots \\
-1 & 1 & 0 & 0 & 0 & \ldots \\
\frac{1}{2!} & -1 & 1 & 0 & 0 & \ldots \\
\frac{1}{3!} & \frac{1}{2!} & -1 & 1 & 0 & \ldots \\
\frac{1}{4!} & \frac{1}{3!} & \frac{1}{2!} & -1 & 1 & \ldots \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots
\end{bmatrix} \)

Example 3. To find \(p_i \) such that \((1+x+x^2)^{-1}=p_0+p_1 x+p_2 x^2+\ldots \), when the right-hand side converges.

Let \(A \) be the \(\Sigma \)-matrix whose leading column is \(\{1, 1, 0, 1, 0, 0, \ldots\} \); the leading column of \(A^{-1} \) is computed term by term as

\[
\{1, -1, 1, -2, 3, -4, 6, -9, 13, \ldots\}
\]

Thus \(p_0 = 1, p_1 = -1, p_2 = 1, p_3 = -2, \ldots \), and in fact \(p_n = -(p_{n-1} + p_{n-3}) \), \(n \geq 3 \).

3. The following two theorems on the "product" of two convergent series are well-known (see, for example, [2], 31).

Theorem 3, I. (Cauchy-Mertens). If \(\Sigma u_n \) and \(\Sigma v_n \) converge to the values \(u, v \) respectively, and at least one of the series is absolutely convergent, then the series \(u_0 v_0 + (u_0 v_1 + u_1 v_0) + (u_0 v_2 + u_1 v_1 + u_2 v_0) + \ldots \) converges to the value \(uv \).

Theorem 3, II. (Abel). If \(\Sigma u_n \) converges to \(u \) and \(\Sigma v_n \) converges to \(v \), then if the series \(\Sigma (u_0 v_0 + u_1 v_1 + \ldots + u_n v_0) \) converges, its sum is \(uv \).

We shall prove below

Theorem 3, III. If \(\Sigma v_n \) is any conditionally convergent series, there exists a conditionally convergent series \(\Sigma u_n \) such that

\[
\Sigma (u_0 v_0 + u_1 v_1 + \ldots + u_n v_0)
\]

diverges.
We first need a lemma. \(B = (b_{i,j}) \) \((i, j = 1, 2, \ldots)\) is a \(\delta \)-matrix if the convergence of \(\Sigma u_k \) implies that of \(\Sigma_{n} \Sigma_{i} b_{n,k} u_k \). Necessary and sufficient conditions are (i) \(\Sigma_{n} b_{n,k} \) is convergent for all \(k \), (ii)
\[
\sum_{k=1}^{\infty} \left| \sum_{i=1}^{n} (b_{i,k} - b_{i,k+1}) \right| \leq M
\]
for all \(n \), [3]. Applied to \(\Sigma \)-matrices, these conditions give the following

Lemma. Let \(B \) be the \(\Sigma \)-matrix \((b_{n,k})\) whose leading column is \(\{b_0, b_1, b_2, \ldots\} \), so that \(b_{n,k} = b_{n-k} \) \((n > k)\), \(b_{n,k} = 0 \) \((n < k)\). Then a necessary and sufficient condition for \(B \) to be a \(\delta \)-matrix is the absolute convergence of \(\Sigma b_{n,k} \).

For
\[
\sum_{k=1}^{\infty} \left| \sum_{i=1}^{n} (b_{i,k} - b_{i,k+1}) \right| = \sum_{k=1}^{\infty} \left| (b_{1,k} - b_{1,k+1}) + (b_{2,k} - b_{2,k+1}) + \ldots + (b_{n,k} - b_{n,k+1}) \right|
\]
\[
= \sum_{k=1}^{\infty} |b_{n,k}|, \text{ since } b_{n,k} = b_{n+1,k+1} \text{ and } b_{1,k+1} = 0,
\]
\[
= |b_n| + |b_{n-1}| + \ldots + |b_0|.
\]
Thus the second condition for \(\delta \)-matrices is satisfied for all \(n \) if and only if \(\Sigma b_{n,k} \) is absolutely convergent, and condition (i) then also holds.

We can now prove Theorem 3, III. Let \(A \) be the \(\Sigma \)-matrix defined by \(a_{n,k} = v_{n-k} \) \((n > k)\), \(a_{n,k} = 0 \) \((n < k)\), where \(\Sigma v_i \) is conditionally convergent, and let \(\Sigma u_i \) be a convergent series. Then
\[
q_n = \Sigma_k a_{n,k} u_k = u_0 v_n + u_1 v_{n-1} + \ldots + u_n v_0.
\]
Now if \(\Sigma q_n \) were to converge for all convergent series \(\Sigma u_k \), \(A \) would be a \(\delta \)-matrix, which is impossible, by the lemma, since by hypothesis \(\Sigma v_i \) is conditionally convergent. It follows that there is at least one convergent series \(\Sigma u_k \) such that \(\Sigma(u_0 v_n + \ldots + u_n v_0) \) diverges. Such a series \(\Sigma u_k \) cannot be absolutely convergent, by Theorem 3, I., and thus the theorem is proved.

I express my thanks to Dr. R. G. Cooke for reading the manuscript and making some useful comments.

Postscript. Another proof of Theorem 3, III. is given by J. Schur, (Crelle, 151 (1921), 100, 101).

Birkbeck College,
University of London

REFERENCES