Cubic s-arc transitive Cayley graphs

Jing Jian Li, Zai Ping Lu*
Center for Combinatorics, LPMC, Nankai University, Tianjin 300071, PR China

A R TICLE INFO

Article history:

Received 21 November 2008
Received in revised form 22 April 2009
Accepted 1 May 2009
Available online 21 May 2009

Keywords:

Cayley graph
s-arc-transitive
Core-free
Normal quotient

Abstract

This paper gives a characterization of connected cubic s-transitive Cayley graphs. It is shown that, for $s \geq 3$, every connected cubic s-transitive Cayley graph is a normal cover of one of 13 graphs: three 3-transitive graphs, four 4-transitive graphs and six 5-transitive graphs. Moreover, the argument in this paper also gives another proof for a well-known result which says that all connected cubic arc-transitive Cayley graphs of finite non-abelian simple groups are normal except two 5-transitive Cayley graphs of the alternating group A_{47}.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

All graphs in this paper are assumed to be finite, simple and undirected.
Let Γ be a graph with vertex set $V(\Gamma)$, edge set $E(\Gamma)$ and full automorphism group Aut (Γ). Let X be a subgroup of Aut (Γ) (written as $X \leq \operatorname{Aut}(\Gamma)$). Then Γ is said to be X-vertex-transitive or X-edge-transitive if X acts transitively on $V(\Gamma)$ or on $E(\Gamma)$, respectively. Let s be a positive integer. An $(s+1)$-sequence ($\alpha_{0}, \alpha_{1}, \ldots, \alpha_{s}$) of vertices of Γ is called an s-arc if $\left\{\alpha_{i-1}, \alpha_{i}\right\} \in E(\Gamma)$ for $1 \leq i \leq s$ and $\alpha_{i-1} \neq \alpha_{i+1}$ for $1 \leq i \leq s-1$. The graph Γ is called (X, s)-arc-transitive if Γ has at least one s-arc and X is transitive on the vertices and on the s-arcs of Γ; and Γ is said to be (X, s)-transitive if it is (X, s)-arctransitive but not $(X, s+1)$-arc-transitive. In particular, a 1 -arc is simply called an arc, and an $(X, 1)$-arc-transitive graph is said to be X-arc-transitive or X-symmetric. An arc-transitive graph Γ is said to be (X, s)-regular if it is (X, s)-arc-transitive and, for any two s-arcs of Γ, there is a unique automorphism of Γ mapping one arc to the other one. In the case where $X=\operatorname{Aut}(\Gamma)$, an (X, s)-arc-transitive $((X, s)$-transitive, (X, s)-regular and X-symmetric, respectively) graph is simply called an s-arc-transitive (s-transitive, s-regular and symmetric, respectively) graph.

Tutte $[23,24]$ proved that every finite connected cubic symmetric graph is s-regular for some $s \leq 5$. Since Tutte's seminal work, the study of s-arc-transitive graphs, aiming at constructing and characterizing such graphs, has received considerable attention in the literature, see $[11-13,9,25,2-4,22,5,10,16,17,19,18,27,28]$ for example, and now there is an extensive body of knowledge on such graphs. In this paper, we investigate the cubic symmetric Cayley graphs.

Let G be a group and S a subset of G such that $S=S^{-1}:=\left\{g^{-1} \mid g \in S\right\}$ and S does not contain the identity element 1 of G. The Cayley graph $\operatorname{Cay}(G, S)$ of G with respect to S is the graph with vertex set G and edge set $\{\{g, s g\} \mid g \in G, s \in S\}$. Then a Cayley graph $\operatorname{Cay}(G, S)$ has valency $|S|$, and it is connected if and only if $\langle S\rangle=G$. Further, each $g \in G$ gives an automorphism $g: G \rightarrow G, x \mapsto x g$ of $\operatorname{Cay}(G, S)$. Thus G can be viewed as a regular subgroup of $\operatorname{Aut}(\operatorname{Cay}(G, S))$. A Cayley graph $\operatorname{Cay}(G, S)$ is said to be normal (with respect to G) if G is normal in $\operatorname{Aut}(\operatorname{Cay}(G, S)$); and $\operatorname{Cay}(G, S)$ is said to be core-free (with respect to $G)$ if G is core-free in some $X \leq \operatorname{Aut}(\operatorname{Cay}(G, S))$, that is, $\operatorname{Core}_{X}(G):=\cap_{x \in X} G^{x}=1$.

[^0]Table 1
Core-free cubic s-transitive Cayley graphs.

s	Aut (Γ)	G	Remark
2	$\mathrm{S}_{4} \times \mathbb{Z}_{2}$	D_{8}	Cube
2	S_{4}	\mathbb{Z}_{4}	K_{4}
3	$\mathrm{S}_{3} 2 \mathbb{Z}_{2}$	\mathbb{Z}_{6} or D_{6}	$\mathrm{K}_{3,3}$
3	$\mathbb{Z}_{2}^{4} \rtimes\left(\mathrm{~S}_{3} \backslash \mathbb{Z}_{2}\right)$	$\mathbb{Z}_{4} \times \mathrm{S}_{4}$ or $\mathbb{Z}_{2}^{4} \rtimes \mathrm{~S}_{3}$	
3	PGL_{2} (11)	$\mathbb{Z}_{11} \rtimes \mathbb{Z}_{10}$	
4	PGL_{2} (7)	D_{14}	Heawood's graph
4	PGL_{2} (23)	$\mathbb{Z}_{23} \rtimes \mathbb{Z}_{22}$	
4	$\mathbb{Z}_{3}^{7} \rtimes \mathrm{PGL}_{2}$ (7)	$\mathbb{Z}_{3}^{6} \rtimes\left(\mathbb{Z}_{7} \rtimes \mathbb{Z}_{6}\right)$	
4	S_{24}	S_{23}	
5	$N^{2} \rtimes \mathbb{Z}_{2}^{2}$	$\left(\mathbb{Z}_{7} \times N\right) \rtimes \mathbb{Z}_{2}$	$N=\operatorname{PSL}(2,7)$
5	$N^{2} \rtimes \mathbb{Z}_{2}^{2}$	$\left(\mathrm{A}_{23} \times N\right) \rtimes \mathbb{Z}_{2}$	$N=\mathrm{A}_{24}$
5	$N^{2} \rtimes \mathbb{Z}_{2}^{2}$	$\left(\mathbb{Z}_{23} \rtimes \mathbb{Z}_{11} \times N\right) \rtimes \mathbb{Z}_{2}$	$N=\operatorname{PSL}(2,23)$
5	$N^{2} \rtimes \mathbb{Z}_{2}^{2}$	$\left(\mathbb{Z}_{3}^{6} \rtimes\left(\mathbb{Z}_{7} \rtimes \mathbb{Z}_{3}\right) \times N\right) \rtimes \mathbb{Z}_{2}$	$N=\mathbb{Z}_{3}^{7} \rtimes \operatorname{PSL}(2,7)$
5	A_{48}	A_{47}	Two graphs

The main motivation for this paper arises from one result of $\operatorname{Li}[18]$ which says that for $s \in\{2,3,4,5,7\}$ and $k \geq 3$ there are only finite number of core-free s-transitive Cayley graphs of valency k, and that, with the exceptions $s=2$ and $(s, k)=(3,7)$, every s-transitive Cayley graph is a normal cover (see Section 3 for the definition) of a core-free one. In this paper, we shall give a characterization of cubic s-transitive Cayley graphs; in particular, determine all connected core-free cubic s-transitive Cayley graphs up to isomorphism, and then prove the following results.

Theorem 1.1. Let $\Gamma=\operatorname{Cay}(G, S)$ be a connected core-free (with respect to G) cubic s-transitive Cayley graph. Then $\Gamma \cong$ $\operatorname{Cay}\left(G_{s, l}, S_{s, l}\right)$ for $2 \leq s \leq 5$ and $1 \leq 1 \leq \ell_{s}$, where $\ell_{2}=2, \ell_{3}=3, \ell_{4}=4, \ell_{5}=6, G_{s, l}=\left\langle S_{s, l}\right\rangle$ and $S_{s, l}$ is given as in Sections 4.1-4.4 while $s=2,3,4$ and 5, respectively. Further, s, Aut (Γ) and G are listed in Table 1.

Theorem 1.2. Let Γ be a connected cubic s-transitive Cayley graph. Then

(1) $s \leq 2$ and Aut (Γ) contains a semi-regular normal subgroup which has at most two orbits on $V(\Gamma)$; or
(2) Aut(Γ) contains a regular subgroup which has a quotient group isomorphic to one of the groups listed in the third column of Table 1.

2. A reduction to the core-free case

Let Γ be a connected X-vertex-transitive and X-edge-transitive graph with $X \leq \operatorname{Aut}(\Gamma)$. Denote by val (Γ) the valency of Γ. Let N be an intransitive normal subgroup of X and \mathscr{B} be the set of N-orbits on $V(\Gamma)$. The normal quotient Γ_{N} of Γ induced by N is the graph with vertex set \mathscr{B} such that $B_{1}, B_{2} \in \mathscr{B}$ are adjacent in Γ_{N} if and only if some vertex $u \in B_{1}$ is adjacent in Γ to some vertex $v \in B_{2}$. Since Γ is connected and X-edge-transitive, we conclude that Γ_{N} is X / N-edgetransitive, each $B \in \mathscr{B}$ is an independent subset of Γ and, for an edge $\left\{B_{1}, B_{2}\right\} \in E\left(\Gamma_{N}\right)$, the subgraph $\Gamma\left[B_{1}, B_{2}\right]$ of Γ induced by $B_{1} \cup B_{2}$ is a regular bipartite graph which is independent of the choice of $\left\{B_{1}, B_{2}\right\}$ up to isomorphism. In particular, $\operatorname{val}(\Gamma)=\operatorname{val}\left(\Gamma_{N}\right) \operatorname{val}\left(\Gamma\left[B_{1}, B_{2}\right]\right)$. If $\operatorname{val}(\Gamma)=\operatorname{val}\left(\Gamma_{N}\right)$, then Γ is called a normal cover of Γ_{N}. It was proved by Praeger [22] that Γ_{N} is $(X / N, s)$-arc-transitive if Γ is (X, s)-arc-transitive, and that Γ is a normal cover of Γ_{N} if $s \geq 2$ and $|\mathscr{B}| \geq 3$. In general, if Γ is a normal cover of Γ_{N} then N acts regularly on each N-orbit, X / N is isomorphic to a subgroup of Aut $\left(\Gamma_{N}\right)$ and Γ_{N} is $(X / N, s)$-arc-transitive if and only if Γ is (X, s)-arc-transitive.

In the following, we assume that $\Gamma=\operatorname{Cay}(G, S)$ is a connected X-edge-transitive Cayley graph with $G \leq X \leq \operatorname{Aut}(\Gamma)$. Set $\operatorname{Aut}(G, S)=\left\{\sigma \in \operatorname{Aut}(G) \mid S^{\sigma}=S\right\}$. Let N be the maximal one among normal subgroups of X contained in G, that is, $N=\operatorname{Core}_{X}(G)$ is the core of G in X. Then either $|G: N| \leq 2$ or N has at least three orbits on $V(\Gamma)$. If $N=G$, then $X \leq G \rtimes \operatorname{Aut}(G, S)$ by [26]; if N is intransitive on $V(\Gamma)$, then every N-orbit is an independent set of Γ since Γ is connected and X-edge-transitive.

Assume that $|G: N|=2$. Then N has exactly two orbits on $V(\Gamma)$ and Γ is a bipartite graph; in this case Γ is called a bi-normal Cayley graph [18]. Further, Γ is in fact a bi-Cayley graph [20] of N, say $\Gamma=\mathrm{BCay}(N, D)$, where $D \subseteq N$ and contains the identity of N with $\langle D\rangle=N$. Moreover, by [20], the arc-stabilizer $X_{u v}$ is contained in $\operatorname{Aut}(N, D)$ for some arc (u, v) of Γ.

Now assume that N has at least three orbits on $V(\Gamma)$, and it is easily shown that G / N acts regularly on $V\left(\Gamma_{N}\right)$. Then Γ_{N} is a Cayley graph of the quotient G / N, and X / N acts transitively on the edges of Γ_{N}. Further either $\operatorname{val}(\Gamma)>\operatorname{val}\left(\Gamma_{N}\right)$ and Γ is not $(X, 2)$-arc-transitive, or $\operatorname{val}(\Gamma)=\operatorname{val}\left(\Gamma_{N}\right), X / N \lesssim \operatorname{Aut}\left(\Gamma_{N}\right)$ and Γ is a normal cover of Γ_{N}. In addition, if Γ is a normal cover of Γ_{N} then Γ_{N} is core-free with respect to G / N.

In summary we get a reduction for edge-transitive Cayley graphs.
Proposition 2.1. Let $\Gamma=\operatorname{Cay}(G, S)$ be a connected X-edge-transitive Cayley graph with $G \leq X \leq \operatorname{Aut}(\Gamma)$ and let $N=\operatorname{Core}_{X}(G)$.
(1) If $G=N$ then $X \leq G \rtimes \operatorname{Aut}(G, S)$ and $X_{1} \leq \operatorname{Aut}(G, S)$.
(2) If $|G: N|=2$, then there exists $D \subseteq N$ with $1 \in D,\langle D\rangle=N$ and $X_{u v} \leq \operatorname{Aut}(N, D)$ for an arc (u, v) of Γ.
(3) If N has at least three orbits on $V(\Gamma)$, then Γ_{N} is an X / N-edge-transitive Cayley graph of G / N and either
(a) $\operatorname{val}\left(\Gamma_{N}\right)<\operatorname{val}(\Gamma)$ and Γ is not $(X, 2)$-arc-transitive; or
(b) Γ is a normal cover of $\Gamma_{N}, G / N \leq X / N \lesssim \operatorname{Aut}\left(\Gamma_{N}\right)$ and Γ_{N} is core-free with respect to G / N.

Remark 2.1. (i) If we assume Γ with some further limits, then several cases in Proposition 2.1 are not necessary to happen. For example, (2) cannot happen when $|V(\Gamma)|$ is odd, and (3.a) cannot occur when Γ is either 2-arc-transitive or of prime valency.
(ii) In case (3.b), if $N=1$ then, by considering the right multiplication action of X on the right cosets of G in X, we may view X as a subgroup of the symmetric group S_{n} for some n, which contains a regular subgroup (of S_{n}) isomorphic to a stabilizer of X acting on $V(\Gamma)$; and in this way, G is a stabilizer of X acting on $\{1,2, \ldots, n\}$. Replacing by a conjugation of G in X, we may assume G fixes 1 .

Corollary 2.2. Let $\Gamma=\operatorname{Cay}(G, S)$ be a connected cubic (X, s)-transitive Cayley graph with $G \leq X \leq \operatorname{Aut}(\Gamma)$ and let $N=\operatorname{Core}_{X}(G)$. Then either
(1) $|G: N| \leq 2$, and $s \leq 2$ in this case; or
(2) $|G: N|>2, s \geq 2, \Gamma_{N}$ is a core-free ($X / N, s$)-transitive Cayley graph of G / N, and Γ is a normal cover of Γ_{N}.

Proof. Assume $|G: N| \leq 2$. Then, by Proposition 2.1, either $X_{1} \leq \operatorname{Aut}(G, S) \lesssim S_{3}$ or $X_{u v} \leq \operatorname{Aut}(N, D) \cong \mathbb{Z}_{2}$ for an arc (u, v) of Γ. Each of these two cases implies that Γ is not ($X, 3$)-arc-transitive, and so $s \leq 2$. Thus, by Proposition 2.1, it suffices to show that $|G: N|>2$ yields $s \geq 2$. Suppose to the contrary that $|G: N|>2$ and $s=1$. Then Γ is X-arc-regular and $X_{1} \cong \mathbb{Z}_{3}$. By Remark 2.1 and Proposition $2.1(3), \bar{G}:=G / N$ is a core-free subgroup of $\bar{X}:=X / N=\bar{G} \bar{X}_{1}$, where $\bar{X}_{1}=X_{1} N / N$. Further, $\left|\bar{X}_{1}\right|=\left|X_{1}\right|=3$ and $|\bar{X}|=|\bar{G}|\left|\bar{X}_{1}\right|$. Consider the right multiplication action of \bar{X} on the right cosets of \bar{G} in \bar{X}. Then \bar{X} has a faithful permutation representation of degree $\left|\bar{X}_{1}\right|=3$, and so $X / N=\bar{X} \lesssim S_{3}$. Thus $G / N \lesssim \mathbb{Z}_{2}$, a contradiction. Hence $s \geq 2$.

3. Construction of core-free Cayley graphs

Let X be an arbitrary finite group with a core-free subgroup H and let $D \subseteq X \backslash H$ with $D^{-1}=D$. The coset graph $\operatorname{Cos}(X, H, D)$, and denoted by $\operatorname{Cos}(X, H, z)$ for a singleton $D=\{z\}$ or a binary set $D=\left\{z, z^{-1}\right\}$, is the graph with vertex set $[X: H]:=\{H x \mid x \in X\}$ such that $H x$ and $H y$ are adjacent if and only if $y x^{-1} \in H D H$. Consider the action of X on $[X: H]$ by right multiplication on right cosets. Then this action is faithful and preserves the adjacency of the coset graph. Thus we identify X with a subgroup of $\operatorname{Aut}(\operatorname{Cos}(X, H, D))$. Further, we have the following basic facts.

Proposition 3.1. Let $\operatorname{Cos}(X, H, D)$ be defined as above.
(1) $\operatorname{Cos}(X, H, D)$ is connected if and only if $X=\langle H, D\rangle$;
(2) $\operatorname{Cos}(X, H, D)$ is X-edge-transitive if and only if $H D H=H\left\{z, z^{-1}\right\} H$ for some $z \in X$;
(3) The valency of $\operatorname{Cos}(X, H, z)$ is either $|H| /\left|H \cap H^{z}\right|$ if $H z H=H z^{-1} H$, or $2|H| /\left|H \cap H^{z}\right|$ otherwise;
(4) $\operatorname{Cos}(X, H, z)$ is X-arc-transitive if and only if $\mathrm{HzH}=\mathrm{Hz}^{-1} \mathrm{H}$.
(5) If X has a subgroup G acting regularly on the vertices of $\operatorname{Cos}(X, H, D)$, then $\operatorname{Cos}(X, H, D) \cong \operatorname{Cay}(G, S)$, where $S=G \cap H D H$.

Proof. (1), (2), (3) and (4) are well-known, see [19] for example. Assume that X contains a regular subgroup G acting on $[X: H]$. Then $X=G H$ and $G \cap H=1$, hence every right coset of H in X can be uniquely written as $H g$ for $g \in G$. Set $S=G \cap H D H$. Then for any $g_{1}, g_{2} \in G$, the pair $\left(H g_{1}, H g_{2}\right)$ is an arc of $\operatorname{Cos}(X, H, D)$ if and only if $g_{2} g_{1}^{-1} \in G \cap H D H=S$. Thus $\operatorname{Cos}(X, H, D) \cong \operatorname{Cay}(G, S)$, and (5) holds.

Let $\Gamma=\operatorname{Cay}(G, S)$ be a Cayley graph and $G \leq X \leq \operatorname{Aut}(\Gamma)$. Let $H=X_{1}$ be the stabilizer of $1 \in V(\Gamma)$ in X. Define $\rho: V(\Gamma) \rightarrow[X: H] ; g \mapsto H g$. It follows from $X=G H$ and $G \cap H=1$ that ρ is a bijection. Further, it is easily shown that ρ is an isomorphism from Γ to $\operatorname{Cos}(X, H, S)$. Assume further that $\Gamma=\operatorname{Cay}(G, S)$ is X-arc-transitive. Then $\operatorname{Cos}(X, H, S)$ is X-arc-transitive. It follows that $H S H=H z H$ and $H z H=H z^{-1} H$ for any $z \in S$. Then $\Gamma \cong \operatorname{Cos}(X, H, z)$ for any $z \in S$. Note that each involution z (if exists) in S normalizes $H \cap H^{z}$, the arc-stabilizer of $(1, z)$ in X. Since H is core-free in X, we have following simple result.

Proposition 3.2. Let $\Gamma=\operatorname{Cay}(G, S)$ be a connected X-arc-transitive Cayley graph with $G \leq X \leq \operatorname{Aut}(\Gamma)$. Let H be the stabilizer of $1 \in V(\Gamma)$ in X. If S contains an involution z, then $z \in G \cap N_{X}\left(H \cap H^{z}\right) \backslash\left(\cup_{1 \neq K \unlhd H} \mathrm{~N}_{X}(K)\right), \Gamma \cong \operatorname{Cos}(X, H, z),\langle z, H\rangle=X$ and $G=\langle(G \cap H z H)\rangle$.

The above argument and Remark 2.1 allow us to construct theoretically all possible connected core-free edge-transitive Cayley graphs with a given stabilizer isomorphic to a regular subgroup H of S_{n}. One may take $\tau \in \mathrm{S}_{n} \backslash\left(\cup_{1 \neq K \triangleleft H} \mathrm{~N}_{\mathrm{S}_{n}}(K)\right)$ with $1^{\tau}=1$. Then $\operatorname{Cos}(X, H, \tau) \cong \operatorname{Cay}(G, S)$ is a connected core-free X-edge-transitive Cayley graph with respect to G, where $X=\langle\tau, H\rangle, G=\left\{\sigma \in X \mid 1^{\sigma}=1\right\}$ and $S=\left\{\sigma \in H \tau H \mid 1^{\sigma}=1\right\}$. Note that all isomorphic regular subgroups of S_{n} are conjugate in S_{n} (see [28], for example). Thus, up to isomorphism, $\operatorname{Cos}(X, H, \tau)$ is independent of the choice of H. Note that $\operatorname{Cos}(X, H, \tau) \cong \operatorname{Cos}\left(X^{\sigma}, H, \tau^{\sigma}\right)$ for any $\sigma \in \mathrm{N}_{\mathrm{S}_{n}}(H)$. By Proposition 3.2, we may construct, up to isomorphism, the

Table 2
Vertex-stabilizers of cubic s-transitive graphs.

s	2	3	4	5
H	$\mathrm{~S}_{3}$	D_{12}	$\mathrm{~S}_{4}$	$\mathrm{~S}_{4} \times \mathbb{Z}_{2}$
n	6	12	24	48
P	\mathbb{Z}_{2}	$\mathbb{Z}_{2} \times \mathbb{Z}_{2}$	D_{8}	$\mathrm{D}_{8} \times \mathbb{Z}_{2}$

connected core-free arc-transitive Cayley graphs $\operatorname{Cay}(G, S)$ with a given vertex-stabilizer H of order n, a given arc-stabilizer P and S containing an involution by finding all possible such involutions as follows:
Step 1. Determine $I:=\left\{\tau \in \mathrm{N}_{S_{n}}(P) \backslash \cup_{1 \neq K \leq H} \mathrm{~N}_{\mathrm{S}_{n}}(K) \mid \tau^{2}=1,1^{\tau}=1\right\}$.
Step 2. Determine the set $I(n, H)$ of involutions in I which are not conjugate to each other under $\mathrm{N}_{\mathrm{S}_{n}}(H)$;
Step 3. For $\tau \in I(n, H)$, determine $X=\langle\tau, H\rangle, G=\left\{\sigma \in X \mid 1^{\sigma}=1\right\}$ and $S=\left\{\sigma \in H \tau H \mid 1^{\sigma}=1\right\}$.
Remark 3.1. It is easy to know P has $|H: P|$ orbits on $\Omega=\{1,2, \ldots, n\}$, which give an $\mathrm{N}_{\mathrm{S}_{n}}(P)$-invariant partition of Ω. Then, with the assumption that $1^{\tau}=1, \tau$ fixes set-wise the P-orbit which contains 1 .

4. Core-free cubic s-transitive Cayley graphs

In this section, we construct all possible core-free cubic s-transitive Cayley graphs up to isomorphism. Hereafter, we use σ^{Δ} to denote the restriction of σ on Δ, for $\sigma \in \mathrm{S}_{n}$ which fixes a subset Δ of $\Omega=\{1,2, \ldots, n\}$ set-wise.

Let Γ be a core-free cubic (X, s)-transitive Cayley graph. Then $s \geq 2$ by Corollary 2.2. Note that, for a Cayley graph $\operatorname{Cay}(G, S)$ of odd valency, S must contain an involution. By Proposition 3.2, write $\Gamma=\operatorname{Cos}(X, H, \tau)$, where $H \leq S_{n}$, $\tau \in I(n, H)$ and $n=|H|$. Then s, H, n and $P:=H \cap H^{\tau}$ are listed in Table 2. (See [2, 18c] for example.) Note that P is a Sylow 2-subgroup of H and that $\Gamma=\operatorname{Cos}(X, H, \tau) \cong \operatorname{Cos}\left(X, H, \tau^{\sigma}\right)$ for any $\sigma \in H$. Thus, in practice, we may take a given regular subgroup H of S_{n} and a given Sylow 2-subgroup P of H. Since H acts regularly on $\Omega=\{1,2, \ldots, n\}$ and $|H: P|=3$, we know that P is semiregular on Ω and so has exactly three orbits, say Σ_{1}, Σ_{2} and Σ_{3}. By Remark 3.1, we may assume that $1^{\tau}=1 \in \Sigma_{1}=\Sigma_{1}^{\tau}$, and τ either fixes or interchanges Σ_{2} and Σ_{3} set-wise.

4.1. $s=2$

In this case, $H \cong \mathrm{~S}_{3}, P \cong \mathbb{Z}_{2}$ and $X \leq \mathrm{S}_{6}$. Let $H=\langle\alpha, \beta\rangle$ and $P=\langle\beta\rangle$ where $\alpha=(123)(456)$ and $\beta=(15)(24)(36)$. Set $\Sigma_{1}=\{1,5\}, \Sigma_{2}=\{2,4\}$ and $\Sigma_{3}=\{3,6\}$. Since $\tau \in I(6, H)$, we have $\beta^{\tau}=\beta$ but $\langle\alpha\rangle^{\tau} \neq\langle\alpha\rangle$. Recalling that $\Sigma_{1}=\Sigma_{1}^{\tau}$ and $1^{\tau}=1$, it follows that τ is one of (24), (36), (24)(36) and (26)(34). It is easy to check that the first two permutations are conjugate under $\mathrm{N}_{\mathrm{S}_{6}}(H)$. Thus we assume that τ is one of

$$
\tau_{2,1}=(24), \quad \tau_{2,1^{\prime}}=(24)(36), \quad \tau_{2,2}=(26)(34)
$$

Set $X_{2,1}=\left\langle\tau_{2,1}, H\right\rangle$ and $\Gamma_{2,1}=\operatorname{Cos}\left(X_{2,1}, H, \tau_{2, l}\right)$ for $\imath=1,1^{\prime}, 2$. Let $G_{2,1}=\left\{\sigma \in X_{2, l} \mid 1^{\sigma}=1\right\}$ and $S_{2, l}=G_{2,1} \cap H \tau_{2,1} H$. Then $\Gamma_{2,1} \cong \operatorname{Cay}\left(G_{2, t}, S_{2,1}\right), \imath=1,1^{\prime}, 2$. By calculation, we get

$$
\begin{array}{ll}
S_{2,1}=\{(24),(35),(25)(34)\}, & G_{2,1}=\langle(2543),(24)\rangle \cong D_{8} \\
S_{2,1^{\prime}}=\{(26),(34),(24)(36)\}, & G_{2,1^{\prime}}=\langle(2463),(26)\rangle \cong D_{8} \\
S_{2,2}=\{(26)(43),(2364),(2463)\}, & G_{2,2}=\langle(2364)\rangle \cong \mathbb{Z}_{4}
\end{array}
$$

Let $\rho=(23)(56)$. Then $G_{2,1}^{\rho}=G_{2,1^{\prime}}$ and $S_{2,1}^{\rho}=S_{2,1^{\prime}}$. Hence $\Gamma_{2,1} \cong \operatorname{Cay}\left(G_{2,1}, S_{2,1}\right) \cong \operatorname{Cay}\left(G_{2,1^{\prime}}, S_{2,1^{\prime}}\right) \cong \Gamma_{2,1^{\prime}}$. In fact $\Gamma_{2,1}$ is the 3-dimensional cube Q_{3} and $\Gamma_{2,2}$ is the complete graph K_{4} on four vertices. Thus $\operatorname{Aut}\left(\Gamma_{2,1}\right)=X_{2,1} \cong \mathrm{~S}_{4} \times \mathbb{Z}_{2}$ and $\operatorname{Aut}\left(\Gamma_{2,2}\right)=X_{2,2} \cong \mathrm{~S}_{4}$. In summary, we have

Lemma 4.1.1. $\Gamma_{2,1} \cong \Gamma_{2,1^{\prime}} \cong \mathrm{Q}_{3}, \Gamma_{2,2} \cong \mathrm{~K}_{4}, G_{2,1} \cong G_{2,1^{\prime}} \cong \mathrm{D}_{8}, G_{2,2} \cong \mathbb{Z}_{4}$, $\operatorname{Aut}\left(\Gamma_{2,1}\right)=X_{2,1} \cong \mathrm{~S}_{4} \times \mathbb{Z}_{2}$ and $\operatorname{Aut}\left(\Gamma_{2,2}\right)=X_{2,2} \cong \mathrm{~S}_{4}$.
4.2. $s=3$

In this case, $H \cong \mathrm{D}_{12}$ and $X \leq \mathrm{S}_{12}$. We may take $H=\langle\alpha, \beta\rangle$ and $P=\left\langle\alpha^{3}\right\rangle \times\langle\beta\rangle$, where $\alpha=(123456)(7891011$ 12) and $\beta=(112)(211)(310)(49)(58)(67)$. Set $\Sigma_{1}=\{1,4,9,12\}, \Sigma_{2}=\{2,5,8,11\}$ and $\Sigma_{3}=\{3,6,7,10\}$. It is easy to find all non-trivial normal subgroups of H as follows: $\langle\alpha\rangle,\left\langle\alpha^{2}\right\rangle,\left\langle\alpha^{3}\right\rangle,\left\langle\alpha^{2}, \beta\right\rangle,\left\langle\alpha^{2}, \alpha \beta\right\rangle$ and H itself. Noting that $\langle\alpha\rangle$ is a characteristic subgroup of H, it follows that $\cup_{1 \neq K \leq H} \mathrm{~N}_{\mathrm{S}_{12}}(K)=\mathrm{N}_{\mathrm{S}_{12}}\left(\left\langle\alpha^{2}\right\rangle\right) \cup \mathrm{N}_{\mathrm{S}_{12}}\left(\left\langle\alpha^{3}\right\rangle\right)=\mathrm{N}_{\mathrm{S}_{12}}\left(\left\langle\alpha^{2}\right\rangle\right) \cup \mathrm{C}_{\mathrm{S}_{12}}\left(\left\langle\alpha^{3}\right\rangle\right)$.

Since $\tau \in I(12, H), \tau$ normalizes $P=\left\{\alpha^{3}, \beta, \alpha^{3} \beta, 1\right\}$ and $\tau \notin \mathrm{N}_{\mathrm{S}_{12}}\left(\left\langle\alpha^{2}\right\rangle\right) \cup \mathrm{C}_{\mathrm{S}_{12}}\left(\left\langle\alpha^{3}\right\rangle\right)$. In particular, $\left(\alpha^{3}\right)^{\tau} \neq \alpha^{3}$. It follows that τ fixes, by conjugation, one of β and $\alpha^{3} \beta$, and interchanges the other one and α^{3}. Let $\delta=(912)(811)(710)$. Then $\alpha^{\delta}=\alpha$ and $\left(\alpha^{3} \beta\right)^{\delta}=\beta$; and so $\delta \in \mathrm{N}_{\mathrm{S}_{12}}(H) \cap \mathrm{N}_{\mathrm{S}_{12}}(P)$. By replacing τ with τ^{δ} if necessary, we may assume that $\beta^{\tau}=\beta$ and $\left(\alpha^{3}\right)^{\tau}=\alpha^{3} \beta$. Recall the assumption that $\Sigma_{1}=\Sigma_{1}^{\tau}$ and $1^{\tau}=1$ before Section 4.1. Then $\beta^{\tau}=\beta$ yields $\tau^{\Sigma_{1}}=1$ or (49).

Assume first that τ interchanges Σ_{2} and Σ_{3}. Then, by $\beta^{\tau}=\beta$, we have $(211)^{\tau}(58)^{\tau}=\left(\beta^{\Sigma_{2}}\right)^{\tau}=\beta^{\Sigma_{3}}=(310)(67)$. Since

$$
\begin{aligned}
\alpha^{3} & =(14)(25)(36)(710)(811)(912), \\
\left(\alpha^{3}\right)^{\tau}=\alpha^{3} \beta & =(19)(28)(37)(412)(511)(610)
\end{aligned}
$$

we have $(25)^{\tau}(811)^{\tau}=(37)(610)$. Checking case by case implies that τ is one of the following four permutations:

$$
\begin{array}{ll}
\tau_{3,1}=(49)(27)(611)(35)(810), & \tau_{3,2}=(49)(26)(711)(38)(510) \\
\tau_{3,3}=(49)(23)(1011)(57)(68), & \tau_{3,3^{\prime}}=(49)(210)(311)(56)(78)
\end{array}
$$

Let $\gamma=(26)(35)(711)(810)$. Then $\gamma \in \mathrm{N}_{\mathrm{S}_{12}}(H)$ and $\tau_{3,3}^{\gamma}=\tau_{3,3^{\prime}}$. Thus we may assume that τ is one of $\tau_{3,1}, \tau_{3,2}$ and $\tau_{3,3}$ in this case.

Now let τ fix every Σ_{i} set-wise. By $\beta^{\tau}=\beta$ and $\left(\alpha^{3}\right)^{\tau}=\alpha^{3} \beta$, we have

$$
\begin{array}{rlrl}
(112)^{\tau}(49)^{\tau} & =(112)(49), & & (14)^{\tau}(912)^{\tau} \\
(211)^{\tau}(58)^{\tau} & =(2119)(412), \\
(310)^{\tau}(67)^{\tau} & =(310)(67), & & (25)^{\tau}(811)^{\tau}=(28)(511), \\
(3)^{\tau}(710)^{\tau} & =(37)(610) .
\end{array}
$$

It follows from $1^{\tau}=1$ that τ is one of the following four permutations:
(49)(2 11)(67),
(49)(2 11)(3 10),
(49)(5 8)(3 10),
(49)(58)(67).

It is not difficult to show that the last three involutions above are conjugate under $\mathrm{N}_{\mathrm{s}_{12}}(\mathrm{H})$. Thus, in this case, we may assume that τ is one of

$$
\tau_{3,1^{\prime}}=(49)(211)(67), \quad \tau_{3,2^{\prime}}=(49)(58)(67)
$$

Set $X_{3, l}=\left\langle\tau_{3, l}, H\right\rangle$ and $\Gamma_{3, l}=\operatorname{Cos}\left(X_{3, l}, H, \tau_{3, l}\right)$ for $\imath=1,1^{\prime}, 2,2^{\prime}$, 3. Let $G_{3, l}=\left\{\sigma \in X_{3, l} \mid 1^{\sigma}=1\right\}$ and $S_{3, l}=G_{3, l} \cap H \tau_{3, l} H$. Then $\Gamma_{3,1} \cong \operatorname{Cay}\left(G_{3,1}, S_{3,1}\right)$ and $G_{3,1}=\left\langle S_{3,1}\right\rangle$ for $\imath=1,1^{\prime}, 2,2^{\prime}, 3$, where

$$
\begin{array}{ll}
S_{3,1}=\left\{\tau_{3,1}, \sigma_{3,1}, \sigma_{3,1}^{-1}\right\}, & \sigma_{3,1}=(2114769)(35)(810), \\
S_{3,1^{\prime}}=\left\{\tau_{3,1^{\prime}}, \sigma_{3,1^{\prime}}, \tau_{3,1^{\prime}} \sigma_{3,1^{\prime}} \tau_{3,1^{\prime}}\right\}, & \sigma_{3,1^{\prime}}=(27)(411)(69), \\
S_{3,2}=\left\{\tau_{3,2}, \sigma_{3,2}, \sigma_{3,2}^{-1}\right\}, & \sigma_{3,2}=(269)(35810)(4711), \\
S_{3,2^{\prime}}=\left\{\tau_{3,2^{\prime}}, \sigma_{3,2^{\prime}}, \alpha \sigma_{3,2^{\prime}} \alpha^{-1}\right\}, & \sigma_{3,2^{\prime}}=(38)(47)(512)=\alpha \tau_{3,2^{\prime}} \alpha^{-1}, \\
S_{3,3}=\left\{\tau_{3,3}, \sigma_{3,3}, \sigma_{3,3}^{-1}\right\}, & \sigma_{3,3}=(2810114731256) .
\end{array}
$$

It is easy to show that $G_{3,1} \cong \mathbb{Z}_{6}, G_{3,1^{\prime}} \cong D_{6}, \Gamma_{3,1} \cong \Gamma_{3,1^{\prime}} \cong K_{3,3}$ and $\operatorname{Aut}\left(\Gamma_{3,1}\right)=X_{3,1} \cong X_{3,1^{\prime}} \cong S_{3}$ 2 \mathbb{Z}_{2}. Note that $G_{3,3}$ is a 2-transitive permutation group of degree 11 (on $\Omega \backslash\{1\}$). Thus $X_{3,3}$ is a 3-transitive permutation group of degree 12. Let $\sigma=\tau_{3,3} \sigma_{3,3} \tau_{3,3} \sigma_{3,3}^{-1}$. Then $\sigma=(23561091241187), \sigma^{\tau_{3,3}}=\sigma^{-1}$ and $\sigma^{\sigma_{3,3}}=\sigma^{8}$. Thus $\mathbb{Z}_{11} \cong\langle\sigma\rangle \triangleleft G_{3,3}$. Then $G_{3,3} \cong \mathbb{Z}_{11} \rtimes \mathbb{Z}_{10}$, and hence $X_{3,3}$ is sharply 3-transitive on Ω. Then $X_{3,3} \cong \operatorname{PGL}(2,11)$ by [14, XI.2.6]. Thus we have the following lemma.

Lemma 4.2.1. $\Gamma_{3,1} \cong \Gamma_{3,1^{\prime}} \cong K_{3,3}, G_{3,1} \cong \mathbb{Z}_{6}, G_{3,1^{\prime}} \cong D_{6}, \operatorname{Aut}\left(\Gamma_{3,1}\right)=X_{3,1} \cong X_{3,1^{\prime}} \cong S_{3} 2 \mathbb{Z}_{2}, G_{3,3} \cong \mathbb{Z}_{11} \rtimes \mathbb{Z}_{10}$ and $X_{3,3} \cong \operatorname{PGL}(2,11)$.

In the following we shall determine $X_{3,2}, X_{3,2^{\prime}}, G_{3,2}$ and $G_{3,2^{\prime}}$.
Lemma 4.2.2. $G_{3,2} \cong \mathbb{Z}_{4} \times S_{4}$ and $G_{3,2^{\prime}} \cong \mathbb{Z}_{2}^{4} \rtimes S_{3}$.
Proof. Let $\eta=\sigma_{3,2}^{4}$ and $\rho=\sigma_{3,2}^{6} \tau_{3,2}$. We have $\eta=(269)(4711), \rho=(26)(49)(711)$ and $\eta \rho=(41196)$. Further

$$
\begin{aligned}
& \langle\eta, \rho\rangle=\left\langle(\eta \rho)^{2}, \eta, \rho^{(\eta \rho)^{2}}\right\rangle=\left\langle(\eta \rho)^{2},\left((\eta \rho)^{2}\right)^{\eta}\right\rangle \rtimes\left\langle\eta, \rho^{(\eta \rho)^{2}}\right\rangle \cong \mathrm{S}_{4} \\
& G_{3,2}=\left\langle\tau_{3,2}, \sigma_{3,2}\right\rangle=\left\langle\sigma_{3,2}^{3}, \sigma_{3,2}^{4}, \sigma_{3,2}^{6} \tau_{3,2}\right\rangle=\left\langle\sigma_{3,2}^{3}\right\rangle \times\langle\eta, \rho\rangle \cong \mathbb{Z}_{4} \times \mathrm{S}_{4}
\end{aligned}
$$

Let $\delta_{3,2^{\prime}}=\alpha \sigma_{3,2^{\prime}} \alpha^{-1}$. Then $\delta_{3,2^{\prime}}=(27)(312)(411)$. Set $M=\left\langle\sigma_{3,2^{\prime}}^{\sigma} \mid \sigma \in G_{3,2^{\prime}}\right\rangle$ and $B=\left\langle\tau_{3,2^{\prime}}, \delta_{3,2^{\prime}}^{\tau_{3,2^{\prime}} \sigma_{3,2^{\prime}}}\right\rangle$. Then $M \unlhd G_{3,2^{\prime}}$, and $B \cong \mathrm{~S}_{3}$ by calculation. Let $\pi_{1}=\sigma_{3,2^{\prime}}^{\tau_{3,2^{\prime}}}, \pi_{2}=\sigma_{3,2^{\prime}}^{\delta_{3,2^{\prime}}}$ and $\pi_{3}=\sigma_{3,2^{\prime}}^{\tau_{3,2^{\prime}} \delta_{3,2^{\prime}}}$. It is easily shown that $\left\langle\sigma_{3,2^{\prime}}, \pi_{1}, \pi_{2}, \pi_{3}\right\rangle \cong \mathbb{Z}_{2}^{4}$ and that $\sigma_{3,2^{\prime}}, \tau_{3,2^{\prime}}$ and $\delta_{3,2^{\prime}}$ normalize $\left\langle\sigma_{3,2^{\prime}}, \pi_{1}, \pi_{2}, \pi_{3}\right\rangle$. Then $M=\left\langle\sigma_{3,2^{\prime}}, \pi_{1}, \pi_{2}, \pi_{3}\right\rangle \cong \mathbb{Z}_{2}^{4}$. Noting that $M \cap B \unlhd B$ and each normal subgroup of B has order 1,3 or 6 , it follows that $M \cap B=1$. Hence $G_{3,2^{\prime}}=\left\langle\tau_{3,2^{\prime}}, \sigma_{3,2^{\prime}}, \delta_{3,2^{\prime}}\right\rangle=M B=M \rtimes B \cong$ $\mathbb{Z}_{2}^{4} \rtimes S_{3}$.

Lemma 4.2.3. $X_{3,2} \cong X_{3,2^{\prime}} \cong \mathbb{Z}_{2}^{4} \rtimes\left(\mathrm{~S}_{3} \backslash \mathbb{Z}_{2}\right)$ and $\Gamma_{3,2} \cong \Gamma_{3,2^{\prime}}$.
Proof. By calculation, $\beta=\left(\alpha^{3} \tau_{3,2}\right)^{2}=\left(\alpha^{3} \tau_{3,2^{\prime}}\right)^{2}$. Thus $X_{3,2}=\left\langle\alpha, \tau_{3,2}\right\rangle$ and $X_{3,2^{\prime}}=\left\langle\alpha, \tau_{3,2^{\prime}}\right\rangle$.
Let $\mu=\alpha^{5}\left(\tau_{3,2} \alpha\right)^{2}\left(\alpha \tau_{3,2}\right)^{3} \alpha^{2} \tau_{3,2} \alpha^{2}$. Then $\mu=$ (38)(510), $\tau_{3,2} \mu=\mu \tau_{3,2}, \mu \beta=\beta \mu$ and $\alpha \mu=(128956)$ (341011127). Set $N=\left\langle\mu^{\sigma} \mid \sigma \in X_{3,2}\right\rangle=\left\langle\mu^{\alpha^{i}} \mid 1 \leq i \leq 12\right\rangle$. Then $N \triangleleft X_{3,2}$ and $N=\left\langle\mu, \mu^{\alpha}, \mu^{\alpha^{2}}, \mu^{\alpha^{3}}\right\rangle \cong \mathbb{Z}_{2}^{4}$. Let $v=$ $\left(\alpha^{2} \tau_{3,2}\right)^{4}$ and $\omega=\alpha \tau_{3,2} \alpha^{4}\left(\tau_{3,2} \alpha\right)^{2} \alpha\left(\tau_{3,2} \alpha\right)^{4}$. Then $v=(185)(31012), \omega=(27)(46)(911)$ and $\tau_{3,2}=(\alpha \mu)^{3} v \alpha \mu \omega \alpha \nu \alpha$. Thus

$$
\begin{aligned}
& X_{3,2}=\left\langle\alpha, \tau_{3,2}\right\rangle=\langle\mu, \alpha \mu, v, \omega\rangle=N\langle\alpha \mu, v, \omega\rangle \\
& L:=\langle\alpha \mu, v, \omega\rangle=\left\langle(\alpha \mu)^{2},(\alpha \mu)^{3}, v, \omega, \omega^{\alpha \mu}\right\rangle=\left\langle(\alpha \mu)^{2} v,(\alpha \mu)^{3}, v, \omega, \omega^{\alpha \mu}\right\rangle \\
& \quad=\left(\left\langle v, \omega^{\alpha \mu}\right\rangle \times\left\langle(\alpha \mu)^{2} v^{-1}, \omega\right\rangle\right) \rtimes\left\langle(\alpha \mu)^{3}\right\rangle \cong \mathrm{S}_{3} \text { ? } \mathbb{Z}_{2} .
\end{aligned}
$$

Since $|N||L| /|N \cap L|=\left|X_{3,2}\right|=\left|G_{3,2}\right||H|=\left|\mathbb{Z}_{4} \times \mathrm{S}_{4}\right|\left|\mathrm{D}_{12}\right|=1152$, we have $N \cap L=1$. Thus $X_{3,2}=N \rtimes L \cong \mathbb{Z}_{2}^{4} \rtimes\left(\mathrm{~S}_{3} 2 \mathbb{Z}_{2}\right)$.
The above argument for $X_{3,2}$ also holds for $X_{3,2^{\prime}}$ by replacing $\tau_{3,2}$ with $\tau_{3,2^{\prime}}$. It follows that $\alpha \mapsto \alpha ; \tau_{3,2} \mapsto \tau_{3,2^{\prime}}$ gives an isomorphism ϕ from $X_{3,2}$ to $X_{3,2^{\prime}}$. Then $X_{3,2} \cong X_{3,2^{\prime}} \cong \mathbb{Z}_{2}^{4} \rtimes\left(\mathrm{~S}_{3} 2 \mathbb{Z}_{2}\right)$. Since $\beta=\left(\alpha^{3} \tau_{3,2}\right)^{2}=\left(\alpha^{3} \tau_{3,2^{\prime}}\right)^{2}$, we know that $\beta^{\phi}=\beta$, and $H^{\phi}=H$. It is easy to verify that ϕ induces an isomorphism from $\Gamma_{3,2}=\operatorname{Cos}\left(X_{3,2}, H, \tau_{3,2}\right)$ to $\Gamma_{3,2^{\prime}}=\operatorname{Cos}\left(X_{3,2^{\prime}}, H, \tau_{3,2^{\prime}}\right)$.

4.3. $s=4$

In this case, $H \cong \mathrm{~S}_{4}, P \cong \mathrm{D}_{8}$ and $X \leq \mathrm{S}_{24}$. We may take $H=\langle\alpha, \beta\rangle$ and $P=\langle\alpha, \gamma\rangle$, where $\gamma=\left(\alpha^{2}\right)^{\beta}$ and

$$
\begin{aligned}
& \alpha=(1234)(5678)(9101112)(13141516)(17181920)(21222324), \\
& \beta=(118)(211)(36)(415)(516)(710)(821)(922)(1217)(1324)(1419)(2023), \\
& \gamma=(123)(222)(321)(424)(519)(618)(717)(820)(913)(1016)(1115)(1214) .
\end{aligned}
$$

Then the three orbits of P on Ω are $\Sigma_{1}=\{1,2,3,4,21,22,23,24\}, \Sigma_{2}=\{5,6,7,8,17,18,19,20\}$ and $\Sigma_{3}=$ $\{9,10,11,12,13,14,15,16\}$. It is easy to know that H has in total three non-trivial normal subgroups: $K=\left\langle\alpha^{2}, \gamma\right\rangle \cong \mathbb{Z}_{2}^{2}$, $\left\langle\alpha^{2}, \gamma, \alpha \beta\right\rangle \cong \mathrm{A}_{4}$ and H itself. Noting that K is a characteristic subgroup of H, we have $\cup_{1 \neq M \unlhd H} \mathrm{~N}_{\mathrm{S}_{24}}(M)=\mathrm{N}_{\mathrm{S}_{24}}(K)$.

Assume $\tau \in I(24, H)$. Then $\tau \in \mathrm{N}_{S_{24}}(P) \backslash \mathrm{N}_{S_{24}}(K)$. Noting that $\left\langle\alpha^{2}\right\rangle$ is the center of P, it follows that τ normalizes $\left\langle\alpha^{2}\right\rangle$, and so $\left(\alpha^{2}\right)^{\tau}=\alpha^{2}$. Since $K=\left\{1, \alpha^{2}, \gamma, \alpha^{2} \gamma\right\}$ and P contains in total 5 involutions, say, $\alpha^{2}, \gamma, \alpha \gamma, \alpha^{2} \gamma$ and $\alpha^{3} \gamma$, we have $\left\{\gamma, \alpha^{2} \gamma\right\}^{\tau}=\left\{\alpha \gamma, \alpha^{3} \gamma\right\}$. Recall the assumption that $\Sigma_{1}=\Sigma_{1}^{\tau}$ and $1^{\tau}=1$ before Section 4.1. We have

$$
\begin{array}{ll}
\gamma^{\Sigma_{1}}=(123)(222)(321)(424), & \left(\alpha^{2} \gamma\right)^{\Sigma_{1}}=(121)(224)(323)(422), \\
(\alpha \gamma)^{\Sigma_{1}}=(122)(221)(324)(423), & \left(\alpha^{3} \gamma\right)^{\Sigma_{1}}=(124)(223)(322)(421) .
\end{array}
$$

Then $\{21,23\}^{\tau}=\{22,24\}$, and hence $\tau^{\Sigma_{1}}$ is one of $(24)(2122)(2324)$ and $(24)(2124)(2223)$. Thus, either $\gamma^{\tau}=\alpha^{3} \gamma$ and $\left(\alpha^{2} \gamma\right)^{\tau}=\alpha \gamma$ for $\tau^{\Sigma_{1}}=(24)(2122)(2324)$, or $\gamma^{\tau}=\alpha \gamma$ and $\left(\alpha^{2} \gamma\right)^{\tau}=\alpha^{3} \gamma$ for $\tau^{\Sigma_{1}}=(24)(2124)(2223)$.

Assume that τ interchanges Σ_{2} and Σ_{3}. Set $\Delta=\Sigma_{2} \cup \Sigma_{3}$ and consider the restrictions of $\gamma, \alpha^{2} \gamma, \alpha \gamma$ and $\alpha^{3} \gamma$ on Δ. Then

$$
\begin{aligned}
& \gamma^{\Delta}=(519)(618)(717)(820)(913)(1016)(1115)(1214), \\
& \left(\alpha^{2} \gamma\right)^{\Delta}=(517)(620)(719)(818)(915)(1014)(1113)(1216), \\
& (\alpha \gamma)^{\Delta}=(518)(617)(720)(819)(916)(1015)(1114)(1213), \\
& \left(\alpha^{3} \gamma\right)^{\Delta}=(520)(619)(718)(817)(914)(1013)(1116)(1215) .
\end{aligned}
$$

Considering all possible images of 5 under τ, it follows from $\left\{\gamma, \alpha^{2} \gamma\right\}^{\tau}=\left\{\alpha \gamma, \alpha^{3} \gamma\right\}$ that one of the following eight cases occurs:

$$
\begin{array}{llll}
5^{\tau}=9, & \{17,19\}^{\tau}=\{14,16\} ; & 5^{\tau}=10, & \{17,19\}^{\tau}=\{13,15\} ; \\
5^{\tau}=11, & \{17,19\}^{\tau}=\{14,16\} ; & 5^{\tau}=12, & \{17,19\}^{\tau}=\{13,15\} ; \\
5^{\tau}=13, & \{17,19\}^{\tau}=\{10,12\} ; & 5^{\tau}=14, & \{17,19\}^{\tau}=\{9,11\} ; \\
5^{\tau}=15, & \{17,19\}^{\tau}=\{10,12\} ; & 5^{\tau}=16, & \{17,19\}^{\tau}=\{9,11\}
\end{array}
$$

It is easy to check that there are exactly two possible τ 's arising from each of the above eight cases. Then we get sixteen permutations, which are conjugate under $\mathrm{N}_{\mathrm{s}_{24}}(H)$ to one of the following two permutations:

$$
\begin{aligned}
& \tau_{4,2}=(24)(510)(69)(712)(811)(1319)(1418)(1517)(1620)(2122)(2324), \\
& \tau_{4,3}=(24)(59)(612)(711)(810)(1318)(1417)(1520)(1619)(2124)(2223) .
\end{aligned}
$$

Now assume that τ fixes every Σ_{i} set-wise. Consider the possible images of 5 and of 9 under τ. Then $5^{\tau} \in\{5,6,7,8\}$ and $9^{\tau} \in\{9,10,11,12\}$. If $\tau^{\Sigma_{1}}=(24)(2122)(2324)$, then $\gamma^{\tau}=\alpha^{3} \gamma$ and $\left(\alpha^{2} \gamma\right)^{\tau}=\alpha \gamma$, and we get sixteen permutations. If $\tau^{\Sigma_{1}}=(24)(2124)(2223)$, then $\gamma^{\tau}=\alpha \gamma$ and $\left(\alpha^{2} \gamma\right)^{\tau}=\alpha^{3} \gamma$, and we get another sixteen permutations. Further, these 32 permutations are conjugate under $\mathrm{N}_{\mathrm{S}_{24}}(H)$ to one of the following two permutations:

$$
\begin{aligned}
& \tau_{4,1}=(24)(56)(78)(910)(1112)(1416)(1820)(2122)(2324), \\
& \tau_{4,4}=(24)(56)(78)(910)(1112)(1315)(1719)(2124)(2223) .
\end{aligned}
$$

Set $X_{4, l}=\left\langle\tau_{4, l}, \alpha, \beta\right\rangle$ and $\Gamma_{4,1}=\operatorname{Cos}\left(X_{4,1}, H, \tau_{4, l}\right)$ for $\imath=1,2,3,4$. Let $G_{4, l}=\left\{\sigma \in X_{4, l} \mid 1^{\sigma}=1\right\}$ and $S_{4, l}=G_{4,1} \cap H \tau_{4, l} H$. Then $\Gamma_{4,1} \cong \operatorname{Cay}\left(G_{4,1}, S_{4, l}\right)$ for $1 \leq 1 \leq 4$. By calculation, we have

$$
S_{4, l}=\left\{\tau_{4, l}, \sigma_{4, l}, \delta_{4, l}\right\}, \quad G_{4, l}=\left\langle\tau_{4, l}, \sigma_{4, l}, \delta_{4, l}\right\rangle \quad \text { for } 1 \leq \imath \leq 4
$$

where $\delta_{4,2}=\sigma_{4,2}^{-1}, \delta_{4,3}=\sigma_{4,3}^{-1}$ and

$$
\begin{aligned}
& \sigma_{4,1}=(224)(318)(413)(510)(620)(823)(1122)(1216)(1417), \\
& \delta_{4,1}=(27)(310)(424)(618)(813)(920)(1214)(1621)(1722), \\
& \sigma_{4,2}=(247151911221783166121821231095201413), \\
& \sigma_{4,3}=(247182123108316151961211221713)(59)(1420), \\
& \sigma_{4,4}=(224)(38)(411)(510)(620)(719)(1322)(1417)(1823), \\
& \delta_{4,4}=(217)(316)(424)(722)(813)(920)(1021)(1115)(1214) .
\end{aligned}
$$

It is easy to know $G_{4,1} \cong D_{14}$. By [21], we have the following lemma.
Lemma 4.3.1. $G_{4,1} \cong \mathrm{D}_{14}, X_{4,1}=\operatorname{Aut}\left(\Gamma_{4,1}\right) \cong \operatorname{PGL}(2,7)$ and $\operatorname{Cay}\left(G_{4,1}, S_{4,1}\right)$ is isomorphic to the point-line incidence graph of the seven-point plane.

Lemma 4.3.2. $X_{4,2} \cong \operatorname{PGL}(2,23)$ and $G_{4,2} \cong \mathbb{Z}_{23} \rtimes \mathbb{Z}_{22}$.
Proof. Let $\sigma=\tau_{4,2} \sigma_{4,2}^{11}$. Then σ is a 23-cycle, $\sigma^{\tau_{4,2}}=\sigma^{-1}$ and $\sigma^{\sigma_{4,2}}=\sigma^{19}$. It follows that $G_{4,2}$ is a 2-transitive permutation group on $\Omega \backslash\{1\}$ and $G_{4,2}$ contains a normal regular subgroup $\langle\sigma\rangle \cong \mathbb{Z}_{23}$. Therefore, $G_{4,2} \cong \mathbb{Z}_{23} \rtimes \mathbb{Z}_{22}$. It implies that $X_{4,2}=H G_{4,2}$ is a sharply 3-transitive permutation group of degree 24 . Then $X_{4,2} \cong \operatorname{PGL}(2,23)$ by [14, XI.2.6].

Lemma 4.3.3. $X_{4,3} \cong \mathbb{Z}_{3}^{7} \rtimes \operatorname{PGL}(2,7)$ and $G_{4,3} \cong \mathbb{Z}_{3}^{6} \rtimes\left(\mathbb{Z}_{7} \rtimes \mathbb{Z}_{6}\right)$.
Proof. Let $\pi=\tau_{4,3} \sigma_{4,3}$. Set $\mu=\sigma_{4,3}^{2} \pi \sigma_{4,3}^{10} \pi^{2} \sigma_{4,3}^{2} \pi, v=\sigma_{4,3}^{2} \pi^{2} \sigma_{4,3}^{4} \pi \sigma_{4,3}^{7}$ and $\omega=\pi^{2} \sigma_{4,3}^{3}\left(\pi \sigma_{4,3}\right)^{3} \pi$. Then $\mu=$ (26 10)(14 2024),

$$
\begin{aligned}
& v=(22015111218)(3816101417)(422624217)(59)(1323), \\
& \omega=(222157241312)(314198101617)(461821112023),
\end{aligned}
$$

$\omega^{\nu}=\omega^{3}, \tau_{4,3}=v^{2} \omega v$ and $\sigma_{4,3}=\mu^{2} v \mu \nu^{4} \mu^{2} v^{2} \omega^{2} \mu^{2}$. Thus $\langle\omega\rangle \triangleleft\langle v, \omega\rangle \cong \mathbb{Z}_{7} \rtimes \mathbb{Z}_{6}$, and $G_{4,3}=\left\langle\tau_{4,3}, \sigma_{4,3}\right\rangle=\langle\mu, v, \omega\rangle=$ $M\langle\omega, v\rangle$, where $M=\left\langle\mu^{\sigma} \mid \sigma \in\langle\omega, v\rangle\right\rangle \triangleleft G_{4,3}$. By calculation, we have $M=\left\langle\mu, \mu^{\nu^{2}}, \mu^{\nu^{3}}, \mu^{\nu^{4}}, \mu^{\nu^{5}}, \mu^{\omega^{5}}\right\rangle \cong \mathbb{Z}_{3}^{6}$. Noting that $\langle\omega, v\rangle$ has no nontrivial normal subgroups of order a power of 3 , it yields $M \cap\langle\omega, v\rangle=1$. Thus $G_{4,3}=M \rtimes\langle\omega, v\rangle \cong$ $\mathbb{Z}_{3}^{6} \rtimes\left(\mathbb{Z}_{7} \rtimes \mathbb{Z}_{6}\right)$.

Let μ, v and ω be as above. Then $\mu=\left(\left(\tau_{4,3} \beta\right)^{8}\left(\left(\tau_{4,3} \beta\right)^{8}\right)^{\alpha}\right)^{\alpha \beta \alpha}$. Set $N=\left\langle\mu, \mu^{\alpha}, \mu^{\beta}, \mu^{\tau_{4,3}}, \mu^{\alpha^{2}}, \mu^{\alpha^{3}}, \mu^{\alpha \beta}\right\rangle$. It is easily shown that $N \cong \mathbb{Z}_{3}^{7}$, and further that, for each ε of the seven generators of N, the conjugations of ε by α, β and $\tau_{4,3}$ are contained in N. It implies that $N=\left\langle\mu^{\sigma} \mid \sigma \in X_{4,3}\right\rangle \triangleleft X_{4,3}$ and $M<N$. Suppose that $v^{2} \in N$. Then $N=M \times\left\langle v^{2}\right\rangle \triangleleft G_{4,3}$. It follows that $\left\langle v^{2}\right\rangle \triangleleft\langle v, \omega\rangle$. Noting that $\langle\omega\rangle \triangleleft\langle v, \omega\rangle$, it implies that v^{2} centralizes ω. But $\omega^{\nu^{2}}=\omega^{9}=\omega^{2}$, which is a contradiction. Thus $v^{2} \notin N$.

Consider the normal quotient $\left(\Gamma_{4,3}\right)_{N}$ of $\Gamma_{4,3}$ induced by N. Then $\left(\Gamma_{4,3}\right)_{N}$ is a cubic $\left(X_{4,3} / N, 4\right)$-transitive graph on 14 vertices. It follows from [21] that $\left(\Gamma_{4,3}\right)_{N}$ is (isomorphic to) the point-line incidence graph of the seven-point plane. Thus we conclude that $X_{4,3} / N \cong \operatorname{PGL}(2,7)$. In particular, $\left|X_{4,3}\right|=2^{4} \cdot 3^{8} \cdot 7$, and $N\left\langle v^{2}\right\rangle$ is a Sylow 3-subgroup of $X_{4,3}$. Noting that $N \cap\left\langle v^{2}\right\rangle=1$, it follows from Gaschütz' Theorem (see [1, (10.4)] for example) that there is $L \leq X_{4,3}$ with $X_{4,3}=N L$ and $N \cap L=1$. Thus $L \cong X_{4,3} / N \cong \operatorname{PGL}(2,7)$ and $X_{4,3}=N \rtimes L \cong \mathbb{Z}_{3}^{7} \rtimes \operatorname{PGL}(2,7)$.

Lemma 4.3.4. $X_{4,4}=S_{24}$ and $G_{4,4} \cong S_{23}$.
Proof. Recall that $G_{4,4}=\left\langle\tau_{4,4}, \sigma_{4,4}, \delta_{4,4}\right\rangle$ is the stabilizer of 1 in $X_{4,4}$ acting on Ω. It is easy to see that $G_{4,4}$ is transitive on $\Omega \backslash\{1\}$. Then $X_{4,4}$ is a 2-transitive, and hence primitive on Ω. Let $\rho=\tau_{4,4}^{\alpha} \beta \sigma_{4,4}$. Then $\rho \in X_{4,4}$ and $X_{4,4}$ contains a 7-cycle $\rho^{24}=(51469242110)$. Noting that $\sigma_{4,4}$ is an odd permutation, $X_{4,4}=\mathrm{S}_{24}$ by [8, Theorem 3.3E], and so $G_{4,4} \cong \mathrm{~S}_{23}$.
4.4. $s=5$

For completeness, this paper involves the following content constructing six known 5-transitive Cayley graphs (see [6] for example).

In this case $H \cong \mathrm{~S}_{4} \times \mathbb{Z}_{2}, P \cong \mathrm{D}_{8} \times \mathbb{Z}_{2}$ and $X \leq \mathrm{S}_{48}$. Since all isomorphic regular groups on $\Omega=\{1,2, \ldots, 48\}$ are conjugate in S_{48}, we may take $H=\langle\alpha, \beta, \gamma\rangle \times\langle\delta\rangle$ and $P=\langle\alpha, \beta, \delta\rangle$, where $\alpha^{2}=\beta^{\gamma} \beta$ and

```
\alpha=(12 3 4)(567 8)(9 1011 12)(13 1415 16)(17 18 19 20)(21 22 23 24)
    (25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(4142 43 44)(45 46 47 48),
\beta=(1 8)(2 7)(3 6)(45)(9 16)(10 15)(11 14)(12 13)(17 24)(18 23)(19 22)
    (20 21)(25 32)(26 31)(27 30)(28 29)(33 40)(34 39)(35 38)(36 37)(41 48)(42 47)(43 46)(44 45),
\gamma=(117 33)(2 39 20)(3 24 38)(4 34 23)(5 37 21)(6 19 40)(7 36 18)
    (8 22 35)(9 25 41)(10 47 28)(11 32 46)(1242 31)(13 45 29)(14 27 48)(15 44 26)(16 30 43),
\delta=(1 9)(2 10)(3 11)(4 12)(5 13)(6 14)(7 15)(8 16)(17 25)(18 26)(19 27)
    (20 28)(21 29)(22 30)(23 31)(24 32)(33 41)(34 42)(35 43)(36 44)(37 45)(38 46)(39 47)(40 48).
```

Then P has three orbits on $\Omega=\{1,2, \ldots, 48\}$, say, $\Sigma_{i}=\{16(i-1)+j \mid 1 \leq j \leq 16\}$, where $i=1,2$ and 3 . It is easy to know that H has in total eight non-trivial normal subgroups, say $\langle\delta\rangle,\left\langle\alpha^{2}, \beta\right\rangle,\left\langle\alpha^{2}, \beta, \delta\right\rangle,\langle\beta, \gamma\rangle,\langle\beta, \gamma, \delta\rangle$, $\langle\alpha, \beta, \gamma\rangle,\langle\alpha \delta, \beta, \gamma\rangle$ and H itself, which are isomorphic to $\mathbb{Z}_{2}, \mathbb{Z}_{2}^{2}, \mathbb{Z}_{2}^{3}, \mathrm{~A}_{4}, \mathrm{~A}_{4} \times \mathbb{Z}_{2}, \mathrm{~S}_{4}, \mathrm{~S}_{4}$ and $\mathrm{S}_{4} \times \mathbb{Z}_{2}$, respectively. Note that $\langle\delta\rangle$ is a characteristic subgroup of H and $\left\langle a^{2}, \beta\right\rangle$ is a characteristic subgroup of $\langle\alpha, \beta, \gamma\rangle$ and of $\langle\alpha \delta, \beta, \gamma\rangle$. It yields $\cup_{1 \neq K \triangleleft H} \mathrm{~N}_{\mathrm{S}_{48}}(K)=\mathrm{N}_{\mathrm{S}_{48}}(\langle\delta\rangle) \cup \mathrm{N}_{\mathrm{S}_{48}}\left(\left\langle\alpha^{2}, \beta\right\rangle\right) \cup \mathrm{N}_{\mathrm{S}_{48}}\left(\left\langle\alpha^{2}, \beta, \delta\right\rangle\right)$.

Let $\tau \in I(48, H)$. Then $\tau \in \mathrm{N}_{\mathrm{S}_{48}}(P) \backslash\left(\mathrm{N}_{\mathrm{S}_{48}}(\langle\delta\rangle) \cup \mathrm{N}_{\mathrm{S}_{48}}\left(\left\langle\alpha^{2}, \beta\right\rangle\right) \cup \mathrm{N}_{\mathrm{S}_{48}}\left(\left\langle\alpha^{2}, \beta, \delta\right\rangle\right)\right)$. Since τ normalizes P, we know that τ normalizes the Frattini subgroup $\Phi(P)=\left\langle\alpha^{2}\right\rangle$ and the center $Z(P)=\left\{1, \alpha^{2}, \delta, \alpha^{2} \delta\right\}$ of P. It follows that $\left(\alpha^{2}\right)^{\tau}=\alpha^{2}, \delta^{\tau}=\alpha^{2} \delta$, and hence $\beta^{\tau} \notin\left\langle\alpha^{2}, \beta, \delta\right\rangle$ as $\tau \notin \mathrm{N}_{\mathrm{S}_{48}}\left(\left\langle\alpha^{2}, \beta, \delta\right\rangle\right)$. Considering the involutions in P, we have $\beta^{\tau} \in\left\{\alpha \beta, \alpha^{3} \beta, \alpha \beta \delta, \alpha^{3} \beta \delta\right\}$. Let

$$
\begin{aligned}
\iota_{1}= & (24)(57)(1012)(1315)(1719)(2224)(2527)(3032)(3338) \\
& (3437)(3540)(3639)(4146)(4245)(4348)(4447), \\
\iota_{2}= & (210)(412)(513)(715)(1826)(2028)(2129)(2331)(3442)(3644)(3745)(3947) .
\end{aligned}
$$

Then $\iota_{1}, \iota_{2} \in \mathrm{~N}_{\mathrm{S}_{48}}(H) \cap \mathrm{N}_{\mathrm{S}_{48}}(P) \cap \mathrm{C}_{\mathrm{S}_{48}}\left(\left\langle\alpha^{2}, \beta, \delta\right\rangle\right),(\alpha \beta)^{\iota_{1}}=\alpha^{3} \beta,(\alpha \beta \delta)^{\iota_{1}}=\alpha^{3} \beta \delta$ and $(\alpha \beta)^{\iota_{2}}=\alpha \beta \delta$. Further, both ι_{1} and ι_{2} fix every P-orbit set-wise. Thus, replacing τ with $\tau^{\iota 1}, \tau^{\iota_{2}}$ or $\tau^{\iota_{2} \iota_{1}}$ if necessary, we may assume $\beta^{\tau}=\alpha \beta$. Then $\beta=\beta^{\tau^{2}}=\alpha^{\tau} \beta^{\tau}=a^{\tau} \alpha \beta$, and hence $\alpha^{\tau}=\alpha^{-1}$.

Recall the assumption that $\Sigma_{1}=\Sigma_{1}^{\tau}$ and $1^{\tau}=1$ before Section 4.1. Then $\left(\alpha^{2}\right)^{\tau}=\alpha^{2}$ yields $3^{\tau}=3, \delta^{\tau}=\alpha^{2} \delta$ yields $9^{\tau}=11$ and $\beta^{\tau}=\alpha \beta$ yields $8^{\tau}=7$. It follows that $5^{\tau}=6,4^{\tau}=2,16^{\tau}=13,14^{\tau}=15,10^{\tau}=10$ and $12^{\tau}=12$. Thus $\tau^{\Sigma_{1}}=(24)(56)(78)(911)(1316)(1415)$.

Note that $Z(P)$ has eight orbits on $\Omega \backslash \Sigma_{1}$ as follows:

$$
\begin{array}{ll}
\Sigma_{21}=\{17,19,25,27\}, & \Sigma_{22}=\{18,20,26,28\}, \\
\Sigma_{23}=\{21,23,29,31\}, & \Sigma_{24}=\{22,24,30,32\}, \\
\Sigma_{31}=\{33,35,41,43\}, & \Sigma_{32}=\{34,36,42,44\}, \\
\Sigma_{33}=\{37,39,45,47\}, & \Sigma_{34}=\{38,40,46,48\},
\end{array}
$$

which form a τ-invariant partition of $\Sigma_{2} \cup \Sigma_{3}$. Further, we have

$$
\Sigma_{i 1}^{\beta}=\Sigma_{i 4}, \quad \Sigma_{i 2}^{\beta}=\Sigma_{i 3}, \quad \Sigma_{i 1}^{\alpha \beta}=\Sigma_{i 3}, \quad \Sigma_{i 2}^{\alpha \beta}=\Sigma_{i 4}, \quad \text { for } i=2,3 .
$$

Assume that τ fixes every Σ_{i} set-wise. It follows from $\beta^{\tau}=\alpha \beta$ that one of the following four cases occurs:

$$
\begin{array}{llllll}
\Sigma_{21}^{\tau}=\Sigma_{21}, & \Sigma_{22}^{\tau}=\Sigma_{22}, & \Sigma_{23}^{\tau}=\Sigma_{24}, & \Sigma_{31}^{\tau}=\Sigma_{31}, & \Sigma_{32}^{\tau}=\Sigma_{32}, & \Sigma_{33}^{\tau}=\Sigma_{34} ; \\
\Sigma_{21}^{\tau}=\Sigma_{21}, & \Sigma_{22}^{\tau}=\Sigma_{22}, & \Sigma_{23}^{\tau}=\Sigma_{24}, & \Sigma_{33}^{\tau}=\Sigma_{33}, & \Sigma_{34}^{\tau}=\Sigma_{34}, & \Sigma_{31}^{\tau}=\Sigma_{32} \\
\Sigma_{23}^{\tau}=\Sigma_{23}, & \Sigma_{24}^{\tau}=\Sigma_{24}^{\tau}, & \Sigma_{21}^{\tau}=\Sigma_{22}, & \Sigma_{31}^{\tau}=\Sigma_{31}, & \Sigma_{32}^{\tau}=\Sigma_{32}, & \Sigma_{33}^{\tau}=\Sigma_{34} \\
\Sigma_{23}^{\tau}=\Sigma_{23}^{\tau}, & \Sigma_{24}^{\tau}=\Sigma_{24}^{\tau}, & \Sigma_{21}^{\tau}=\Sigma_{22}, & \Sigma_{33}^{\tau}=\Sigma_{33}, & \Sigma_{34}^{\tau}=\Sigma_{34}^{\tau}, & \Sigma_{31}^{\tau}=\Sigma_{32}^{\tau}
\end{array}
$$

Combining with $\delta^{\tau}=\alpha^{2} \delta$, each case gives 4 choices of $\tau^{\Sigma_{2} \cup \Sigma_{3}}$. Thus we get 16 possible τ 's, which are conjugate under $\mathrm{N}_{\mathrm{S}_{48}}(H)$ to one of the following two permutations:


```
    (30 32)(33 36)(34 35)(37 39)(41 42)(43 44)(46 48), or
```



```
    (31 32)(33 35)(37 40)(38 39)(42 44)(45 46)(47 48).
```

Now assume that $\Sigma_{2}^{\tau}=\Sigma_{3}$. Then one of the following four cases holds:

$$
\begin{array}{cccc}
\Sigma_{21}^{\tau}=\Sigma_{31}, & \Sigma_{22}^{\tau}=\Sigma_{32}, & \Sigma_{23}^{\tau}=\Sigma_{34}, & \Sigma_{24}^{\tau}=\Sigma_{33} ; \\
\Sigma_{21}^{\tau}=\Sigma_{32}, & \Sigma_{22}^{\tau}=\Sigma_{31}, & \Sigma_{23}^{\tau}=\Sigma_{33}, & \Sigma_{24}^{\tau}=\Sigma_{34} ; \\
\Sigma_{21}^{\tau}=\Sigma_{33}, & \Sigma_{22}^{\tau}=\Sigma_{34}, & \Sigma_{23}^{\tau}=\Sigma_{32}, & \Sigma_{24}^{\tau}=\Sigma_{31} ; \\
\Sigma_{21}^{\tau}=\Sigma_{34}, & \Sigma_{22}^{\tau}=\Sigma_{33}, & \Sigma_{23}^{\tau}=\Sigma_{31}, & \Sigma_{24}^{\tau}=\Sigma_{32} .
\end{array}
$$

Further, each case gives four choices of $\tau^{\Sigma_{2} \cup \Sigma_{3}}$, and then we get 16 possible τ 's, which are conjugate under $\mathrm{N}_{\mathrm{S}_{48}}(H)$ to one of the following permutations:


```
    (21 40)(22 39)(23 38)(24 37)(25 41)(26 44)(27 43)(28 42)(29 46)(30 45)(31 48)(32 47),
```



```
    (21 37)(22 40)(23 39)(24 38)(25 44)(26 43)(27 42)(28 41)(29 47)(30 46)(31 45)(32 48),
```



```
    (21 42)(22 41)(23 44)(24 43)(25 39)(26 38)(27 37)(28 40)(29 36)(30 35)(31 34)(32 33),
\tau5,6}=(24)(5 6)(7 8)(9 11)(13 16)(14 15)(17 46)(18 45)(19 48)(20 47)
    (21 41)(22 44)(23 43)(24 42)(25 40)(26 39)(27 38)(28 37)(29 35)(30 34)(31 33)(32 36).
```

Set $X_{5, l}=\left\langle\alpha, \beta, \delta, \gamma, \tau_{5, l}\right\rangle, \Gamma_{5, l}=\operatorname{Cos}\left(X_{5, l}, H, \tau_{5, l}\right), G_{5, l}=\left\{\sigma \in X_{5, l} \mid 1^{\sigma}=1\right\}$ and $S_{5, l}=\left\{\sigma \in H \tau_{5, l} H \mid 1^{\sigma}=1\right\}$, $\imath=1,2,3,4,5,6$. Then $\Gamma_{5, l} \cong \operatorname{Cay}\left(G_{5, l}, S_{5, l}\right)$. By calculation, $S_{5, l}=\left\{\tau_{5, l}, \sigma_{5, l}, \delta_{5, l}\right\}$ and $G_{5, l}=\left\langle\tau_{5, l}, \sigma_{5, l}, \delta_{5, l}\right\rangle$ for $1 \leq 1 \leq 6$, where $\delta_{5, j}=\sigma_{5, j}^{-1}$ for $\jmath \geq 3$, and

```
\sigma
    (20 33)(23 38)(25 30)(28 46)(3141)(36 39)(43 48) = < < 2
\delta 5,1}=(27)(3 20)(435)(5 38)(6 21)(9 16)(11 29)(12 46)(13 43)(14 28)(17 39)
    (18 23)(24 34)(25 42)(27 30)(32 47)(36 37)(41 48) = < \beta\gamma (2 5,1\gamma,
```



```
    (18 23)(19 36)(22 37)(27 45)(30 44)(41 48)(42 47) = 人\beta\gamma \mp@subsup{\tau}{5,2}{}\alpha\gamma,
```



```
    (21 35)(25 30)(26 43)(28 31)(29 48)(33 38)(36 39) = 人 2}\delta\gamma\mp@subsup{\tau}{5,2}{2}\alpha\delta
\sigma5,3}=(241918364022218634233920337355243317 38)(914454825
```



```
\sigma5,4}=(242420863721334331723393851935)(91442461015122748
    252811452647413043133231442916)(18 36)(22 40) = \alpha < \tau 5,4 \gamma\alpha,
\sigma5,5}=(254402510124136233015482438442634320274637682142
    1491628 22)(7334511293918473119353243 17) = \beta\gamma ( 
\sigma5,6}=(254332746193542112837321251541227404731362345149
    16292438301012483468204426 17)(183243 39) = \delta\alpha\beta\mp@subsup{\gamma}{}{2}\mp@subsup{\tau}{5,6}{}\mp@subsup{\gamma}{}{2}\mp@subsup{\alpha}{}{3}.
```

In the following we determine $X_{5, l}$ and $G_{5, l}$. Noting that $\alpha, \beta, \delta, \gamma$ and $\tau_{5, l}$ are all even permutations, we have $G_{5, l} \leq X_{5, l} \leq$ A_{48} for $1 \leq \imath \leq 6$.

Lemma 4.4.1. $G_{5,1} \cong\left(\mathbb{Z}_{7} \times \operatorname{PSL}(2,7)\right) \rtimes \mathbb{Z}_{2}$ and $X_{5,1} \cong(\operatorname{PSL}(2,7) \times \operatorname{PSL}(2,7)) \rtimes \mathbb{Z}_{2}^{2}$.
Proof. Let $\mu=\left(\delta_{5,1}^{\tau_{5,1}} \sigma_{5,1}\right)^{3}$. Then

$$
\mu=(2435724834)(3332037391736)(5232161838 \text { 19) }
$$

and $\mu^{\tau_{5,1}}=\mu^{-1}, \mu^{\sigma_{5,1}}=\mu^{-1}, \mu^{\delta_{5,1}}=\mu^{-1}$. Then $\langle\mu\rangle \triangleleft G_{5,1}$. Further, $\delta_{5,1}=\left(\left(\sigma_{5,1} \delta_{5,1}\right)^{5} \tau_{5,1}\right)^{2}\left(\sigma_{5,1} \delta_{5,1}\right)^{2} \tau_{5,1}$. Thus

$$
G_{5,1}=\left\langle\tau_{5,1}, \sigma_{5,1}, \delta_{5,1}\right\rangle=\left\langle\mu, \mu \sigma_{5,1} \delta_{5,1}, \tau_{5,1}\right\rangle=\langle\mu\rangle\left\langle\mu \sigma_{5,1} \delta_{5,1}, \tau_{5,1}\right\rangle .
$$

Let $v=\mu \sigma_{5,1} \delta_{5,1}, \omega=\tau_{5,1} \tau_{5,1}^{v}, N=\langle v, \omega\rangle$ and $L=\left\langle v, \omega, \tau_{5,1}\right\rangle$. Then

$$
\begin{aligned}
& v=(9281246141645)(10304229112527)(13473243413148), \\
& \omega=(911)(1012)(1315)(1416)(2527)(2628)(2931)(3032)(4143)(4244)(4547)(4648) .
\end{aligned}
$$

Further, $v^{\tau_{5,1}}=v \omega, \tau_{5,1}$ centralizes ω and μ centralizes N; in particular, $L=N \rtimes\left\langle\tau_{5,1}\right\rangle$ and hence $G_{5,1}=(\langle\mu\rangle \times N) \rtimes\left\langle\tau_{5,1}\right\rangle$. Note that $N=\left\langle v^{4}, \omega\right\rangle$ has the same presentation as $\operatorname{PSL}(2,7)$. Then $N \cong \operatorname{PSL}(2,7)$ (see [7] for example), and hence $G_{5,1} \cong\left(\mathbb{Z}_{7} \times \operatorname{PSL}(2,7)\right) \rtimes \mathbb{Z}_{2}$.

Set $M=\left\langle N, N^{\delta}\right\rangle$. Then $M=\left\langle\nu, \omega, v^{\delta}, \omega^{\delta}\right\rangle=N \times N^{\delta}$ and $\left|X_{5,1}: M\right|=\left|X_{5,1}\right| /|M|=\left|G_{5,1}\right||H| /|M|=4$. Considering the transitive permutation representation of $X_{5,1}$ on the right cosets of M, we have $X_{5,1} / \operatorname{Core}_{X_{5,1}}(M) \lesssim S_{4}$. It follows that $M \triangleleft X_{5,1}$. It is easy to know that M has exactly two orbits, say $\Delta=\{i+16 j \mid 1 \leq i \leq 8, j=0,1,2\}$ and $\Theta=\Omega \backslash \Delta$. Further, $\Delta^{\delta}=\Theta$; in particular, $\delta \notin M$. Consider the restrictions M^{Δ} and \bar{M}^{Θ} of M on Δ and Θ, respectively. It follows that $M^{\Delta}=N^{\delta} \leq \operatorname{Alt}(\Delta)$ and $M^{\Theta}=N \leq \operatorname{Alt}(\Theta)$. Let $\rho=\tau_{5,1}^{\nu}$. Then $v^{\rho}=\omega v, \omega^{\rho}=\omega$ and $\delta \rho=\rho \delta$. By calculation, $\rho^{\Delta}=(24)(56)(78)(1720)(1819)(2123)(3336)(3435)(3739)$ and $\rho^{\Theta}=(1012)(1314)$ $(1516)(2528)(2627)(2931)(4144)(4243)(4547)$ are odd permutations. Then $\rho \notin M,\langle N, \rho\rangle=N\langle\rho\rangle \cong \operatorname{PGL}(2,7)$, $\left\langle N^{\delta}, \rho\right\rangle=N^{\delta}\langle\rho\rangle \cong \operatorname{PGL}(2,7)$ and $X_{5,1}=M \rtimes\langle\rho, \delta\rangle \cong(\operatorname{PSL}(2,7) \times \operatorname{PSL}(2,7)) \rtimes \mathbb{Z}_{2}^{2}$.

Lemma 4.4.2. $G_{5,2} \cong\left(A_{23} \times A_{24}\right) \rtimes \mathbb{Z}_{2}$ and $X_{5,2} \cong\left(A_{24} \times A_{24}\right) \rtimes \mathbb{Z}_{2}^{2}$.
Proof. Let $\mu=\sigma_{5,2} \tau_{5,2}$ and $v=\delta_{5,2} \tau_{5,2}$. Then $\mu^{\tau_{5,2}}=\mu^{-1}, v^{\tau_{5,2}}=v^{-1}$ and $L:=\langle\mu, v\rangle \triangleleft G_{5,2}=\langle\mu, v\rangle\left\langle\tau_{5,2}\right\rangle$, where

$$
\begin{aligned}
\mu= & (28743938)(32419361721)(53335620)(91345274616112628) \\
& (1243)(143042484147442915)(1822403723)(3132), \\
\nu=\quad & (21719484018377)(334)(5213339363835246)(91514114645) \\
& (103126432832)(1327164442)(2223)(2529474830) .
\end{aligned}
$$

It is easy to know that L has two orbits, say $\Delta_{1}=\Delta \backslash\{1\}$ and Θ on $\Omega \backslash\{1\}$, where Δ and Θ are given as in Lemma 4.4.1. Consider the restrictions of μ and v on Δ_{1} and Θ. We know that $\mu^{\Delta_{1}}$ and $v^{\Delta_{1}}$ are even permutations (on Δ_{1}), μ^{Θ} and v^{Θ}
are even permutations (on Θ). It implies $L \leq L^{\Delta_{1}} \times L^{\Theta} \leq \operatorname{Alt}\left(\Delta_{1}\right) \times \operatorname{Alt}(\Theta) \cong \mathrm{A}_{23} \times \mathrm{A}_{24}$. By calculation,

```
\mp@subsup{\mu}{}{\mp@subsup{\Delta}{1}{}}\mp@subsup{v}{}{\mp@subsup{\Delta}{1}{}}=(24078)(36202134)(436193817 33 24)(5 3935)(1823 37 22),
\mu
( ( }\mp@subsup{}{\mp@subsup{\Delta}{1}{}}{v}\mp@subsup{v}{}{\mp@subsup{\Delta}{1}{}}\mp@subsup{)}{}{4}=(33421206)(4173633 192438)(5 3935)
((\mu\nu\mu)}\mp@subsup{)}{}{8}\nu\mp@subsup{)}{}{36}=(5352436383339)(1327164442)
```

It follows that $L^{\Delta_{1}}$ is 2 -transitive on Δ_{1} and contains a 3 -cycle (53935). Then $L^{\Delta_{1}}=\operatorname{Alt}\left(\Delta_{1}\right) \cong \mathrm{A}_{23}$ by [8, Theorem 3.3A]. A similar argument yields $L^{\Theta}=\operatorname{Alt}(\Theta) \cong \mathrm{A}_{24}$. Further, L contains a 7 -cycle $\iota=(5352436383339)$ and a 5-cycle $\kappa=$ (1327164442). Since $\iota \in L^{\Delta_{1}}$ and $\kappa \in L^{\Theta}$, we have $\iota^{\sigma}=\iota^{\sigma^{\Delta_{1}}}$ and $\kappa^{\sigma}=\kappa^{\sigma^{\Theta}}$ for any $\sigma \in L$. Take $\epsilon=(53524)(3338)(3639) \in L^{\Delta_{1}}$ and $\varepsilon=(131644)$. Then $u^{\epsilon}=(52435) \in L$ and $\kappa \kappa^{\varepsilon}=(134416) \in L$. Consider the conjugations of (52435) and (134416) under $L^{\Delta_{1}}$ and L^{Θ}, respectively. We conclude that L contains all 3 -cycles of $L^{\Delta_{1}}$ and of L^{Θ}. Then $L^{\Delta_{1}} \leq L$ and $L^{\Theta} \leq L$, so $L=L^{\Delta_{1}} \times L^{\Theta}=\operatorname{Alt}\left(\Delta_{1}\right) \times \operatorname{Alt}(\Theta) \cong \mathrm{A}_{23} \times \mathrm{A}_{24}$. Note that $\tau_{5,2}^{\Delta_{1}}$ and $\tau_{5,2}^{\Theta}$ are odd permutations. Then $\tau_{5,2} \notin L$. Thus $G_{5,2}=L\left\langle\tau_{5,2}\right\rangle=L \rtimes\left\langle\tau_{5,2}\right\rangle \cong\left(\mathrm{A}_{23} \times \mathrm{A}_{24}\right) \rtimes \mathbb{Z}_{2}$.

Set $N=\left\langle\mu^{\Theta}, v^{\Theta}\right\rangle$ and $M=\left\langle N, N^{\delta}\right\rangle=N \times N^{\delta}$. A similar argument as in the proof of Lemma 4.4.1 leads to $\left|X_{5,2}: M\right|=4$ and $M \triangleleft X_{5,2}$. Let $o=(1012)(2527), \pi=(56)(78)(1719)(2124)(2223)(3335)(3740)(3839)$ and $\bar{m}=(911)(1316)(1415)(2527)(2628)(2930)(3132)(4244)(4546)(4748)$. We have $\pi \in M^{\Delta}=N^{\delta}$ and $o, ~ \varpi \in$ $M^{\Theta}=N$, and so $\rho:=(24)(1012)=\tau_{5,2} 0 \pi \varpi \in X_{5,2}$. It is easy to see that $\rho, \delta \notin M$ and $\rho \delta=\delta \rho$. Then $X_{5,2}=M \rtimes\langle\rho, \delta\rangle \cong\left(\mathrm{A}_{24} \times \mathrm{A}_{24}\right) \rtimes \mathbb{Z}_{2}^{2}$.

Lemma 4.4.3. $G_{5,3} \cong\left(\mathbb{Z}_{23} \rtimes \mathbb{Z}_{11} \times \operatorname{PSL}(2,23)\right) \rtimes \mathbb{Z}_{2}$ and $X_{5,3} \cong(\operatorname{PSL}(2,23) \times \operatorname{PSL}(2,23)) \rtimes \mathbb{Z}_{2}^{2}$.
Proof. Let $\omega=\left(\tau_{5,3} \tau_{5,3}^{\sigma_{5,3}}\right)^{12}, \mu=\left(\tau_{5,3} \tau_{5,3}^{\sigma_{5,3}}\right)^{23}, v=\left(\left(\tau_{5,3} \sigma_{5,3}\right)^{6}\left(\tau_{5,3} \tau_{5,3}^{\sigma_{5,3}}\right)^{23}\right)^{12}, v=\left(\left(\tau_{5,3} \sigma_{5,3}\right)^{6}\left(\tau_{5,3} \tau_{5,3}^{\sigma_{5,3}}\right)^{23}\right)^{11}$ and $\rho=\omega^{5} \tau_{5,3}$. By calculation, we have

$$
\begin{aligned}
& \omega=(261938353618212433740342017233354739228), \\
& v=(2319371733518342336)(6222420354038839721), \\
& \mu=(94332472711164215142813)(104648444145123025263129), \\
& v=(91027321625114315454112)(132830483142264629474414), \\
& \rho=(220)(335)(57)(634)(817)(1821)(1940)(2223)(2436)(3339)(3738) \\
& (911)(1316)(1415)(2541)(2644)(2743)(2842)(2946)(3045)(3148)(3247), \\
& G_{5,3}=\left\langle\tau_{5,3}, \sigma_{5,3}\right\rangle=\left\langle\tau_{5,3}, \tau_{5,3} \sigma_{5,3}, \tau_{5,3} \tau_{5,3}^{\sigma_{5,3}}\right\rangle=\left\langle\rho,\left(\tau_{5,3} \sigma_{5,3}\right)^{6}, \mu, \omega\right\rangle \\
& \quad=\left\langle\rho,\left(\tau_{5,3} \sigma_{5,3}\right)^{6} \mu, \mu, \omega\right\rangle=\langle\rho, v, v, \mu, \omega\rangle .
\end{aligned}
$$

Further, $\omega^{v}=\omega^{12}, \omega^{\rho}=\omega^{-1}, v^{\rho}=v, \mu^{\rho}=\mu^{-1}$ and $v^{\rho}=\mu^{9} v\left(\mu^{2} v^{2}\right)^{2} \mu v \mu$. Set $L=\langle\omega, v\rangle$ and $N=\langle\mu, v\rangle$. Then $L\langle\rho\rangle \cong \mathbb{Z}_{23} \rtimes \mathbb{Z}_{22}$ and $L N=L \times N \triangleleft G_{5,3}$. Note that $L N$ has exactly two orbits on $\Omega \backslash\{1\}$ given as in the proof of Lemma 4.4.2, say Δ_{1} and Θ. Considering the restrictions of ρ, L and N on Δ_{1} and Θ, we have $\rho \notin L N$. Thus $G_{5,3}=(L \times N) \rtimes\langle\rho\rangle$. Let $\pi=(\mu \nu)^{2} \nu^{4} \mu^{4}$ and $\varpi=\mu^{8} \nu^{2} \mu^{4} \nu^{4} \mu^{2}$. Then $\mu=\pi^{17} \varpi \pi^{7} \varpi \pi^{2} \varpi \pi^{3} \varpi$ and $v=\pi^{20} \varpi \pi^{9} \varpi \pi$, and hence $N=\langle\pi$, $\varpi\rangle$. Further, calculation shows that $\pi^{23}=\left(\pi^{4} \varpi \pi^{12} \varpi\right)^{2}=(\pi \varpi)^{3}=\varpi^{2}=1$. Then $N \cong \operatorname{PSL}(2,23)$ and $N\langle\rho\rangle \cong \operatorname{PGL}(2,23)$. Thus $G_{5,3} \cong\left(\mathbb{Z}_{23} \rtimes \mathbb{Z}_{11} \times \operatorname{PSL}(2,23)\right) \rtimes \mathbb{Z}_{2}$.

Let $M=\left\langle N, N^{\delta}\right\rangle$. Then $\delta \notin M$ and $M=N \times N^{\delta}$ has index 4 in $X_{5,3}$, and then $M \triangleleft X_{5,3}$. Consider the restrictions of M on $\Delta=\Delta_{1} \cup\{1\}$ and on Θ. We conclude that all elements of M^{Δ} and M^{Θ} are even permutations. It implies that $\rho \notin M$. Note that $\langle\rho, \delta\rangle \cong \mathrm{D}_{92}$ and $|M \cap\langle\rho, \delta\rangle|=23$. It follows that $X_{5,3}=M\langle\rho, \delta\rangle=M \rtimes\left\langle(\rho \delta)^{23}, \delta\right\rangle \cong(\operatorname{PSL}(2,23) \times \operatorname{PSL}(2,23)) \rtimes \mathbb{Z}_{2}^{2}$.

Lemma 4.4.4. $G_{5,4} \cong\left(\mathbb{Z}_{3}^{6} \rtimes\left(\mathbb{Z}_{7} \rtimes \mathbb{Z}_{3}\right) \times \mathbb{Z}_{3}^{7} \rtimes \operatorname{PSL}(2,7)\right) \rtimes \mathbb{Z}_{2}$ and $X_{5,4} \cong\left(\mathbb{Z}_{3}^{7} \rtimes \operatorname{PSL}(2,7) \times \mathbb{Z}_{3}^{7} \rtimes \operatorname{PSL}(2,7)\right) \rtimes \mathbb{Z}_{2}^{2}$.
Proof. Let $\zeta=\tau_{5,4} \sigma_{5,4}$ and $\xi=\tau_{5,4} \tau_{5,4}^{\sigma_{5,4}}$. Then, by calculation, we have

$$
\begin{aligned}
\zeta= & (224537334233820)(619181733363587) \\
& (94544283010154248312613)(111412274643471632252941), \\
\xi= & (22439333557)(3211917343637)(48620182338)(93048) \\
& (104344311415452526)(113246)(124227)(134129)(164728) .
\end{aligned}
$$

Then $G_{5,4}=\left\langle\tau_{5,4}, \sigma_{5,4}\right\rangle=\left\langle\tau_{5,4}, \tau_{5,4} \sigma_{5,4}, \tau_{5,4} \tau_{5,4}^{\sigma_{5,4}}\right\rangle=\left\langle\tau_{5,4}, \zeta, \xi\right\rangle$. Further, $\xi^{\tau_{5,4}}=\xi^{-1}$ and $\zeta^{\tau_{5,4}}=\zeta \xi^{-1}$. Set $L=\langle\zeta, \xi\rangle$. Then $L \triangleleft G_{5,4}$. Since both ζ and ξ fix 22 and 40, we have $\tau_{5,4} \notin L$. Thus $G_{5,4}=L \rtimes\left\langle\tau_{5,4},\right\rangle$. Let $v=\left(\xi^{2} \zeta \xi\right)^{4}, \omega=\xi^{9}$, $\mu=\left(\xi^{2} \zeta \xi\right)^{9}, v=\xi^{7}, K=\langle v, \omega\rangle$ and $N=\langle\mu, v\rangle$. Then

```
L=\langle\zeta,\xi\rangle=\langle\mp@subsup{\xi}{}{2}\zeta\xi,\xi\rangle=\langlev,\omega,\mu,v\rangle=\langlev,\omega\rangle\times\langle\mu,v\rangle=K\timesN,
v=(283823193373324)(462039355211734),
\omega=(23935724335)(31934372117 36)(46 18 388 20 23),
\mu}=(91431 27)(101648 43)(114442 12)(132932 15)(254541 30)(26 28 47 46),
v=(93048)(10251531432645 1444)(11 32 46)(1242 27)(13 41 29)(1647 28).
```

Let $\eta=v^{7} \omega^{-1} v^{3} \omega^{2} v^{3} \omega$ and $\epsilon=v^{3}$. Then $\epsilon^{\eta}=\epsilon^{\omega^{2}}, \omega^{\eta}=\omega^{4}$ and $\epsilon \epsilon^{\omega} \epsilon^{\omega^{2}} \epsilon^{\omega^{3}} \epsilon^{\omega^{4}} \epsilon^{\omega^{5}} \epsilon^{\omega^{6}}=1$. It follows that $B:=\left\langle\epsilon^{\sigma} \mid \sigma \in L\right\rangle \cong \mathbb{Z}_{3}^{6}, Q:=\langle\omega, \eta\rangle \cong \mathbb{Z}_{7} \rtimes \mathbb{Z}_{3}$. Noting that Q has no normal subgroups of order 3 , we have $B \cap Q=1$. Thus $K=\langle v, \omega\rangle=\left\langle v^{7}, v^{3}, \omega\right\rangle=\left\langle v^{7} \omega^{-1} v^{3} \omega^{2} v^{3} \omega, v^{3}, \omega\right\rangle=\langle\epsilon, \eta, \omega\rangle=B \rtimes Q \cong \mathbb{Z}_{3}^{6} \rtimes\left(\mathbb{Z}_{7} \rtimes \mathbb{Z}_{3}\right)$.

Let $\varepsilon=v^{3}, \pi=\left(v^{-1} \nu^{\mu}\right)^{3}$ and $o=\left(\varepsilon^{2}\right)^{\mu} \pi \varepsilon^{2} \pi^{-1} \nu \pi^{-1}$. Then

$$
\begin{aligned}
& \varepsilon=(103145)(142543)(152644), \\
& \pi=(9311347253215)(10422914114448)(12434626304528), \\
& o=(915)(1029)(1114)(1245)(1327)(1642)(2532)(2630)(2841)(3147)(4346)(4448) .
\end{aligned}
$$

Then $\pi^{7}=o^{2}=\left(\pi^{4} o\right)^{4}=(\pi o)^{3}=1, \mu=\left(\pi^{-1} \varepsilon\right)^{2} \varepsilon \pi^{5}\left(\varepsilon \pi^{-1}\right)^{2} \varepsilon \pi^{2} o \pi^{4} o$ and $v=\varepsilon^{\pi^{-1}} \varepsilon^{\mu} o \pi$. It follows that $\langle\pi, o\rangle \cong \operatorname{PSL}(2,7)$ and $N=\left\langle\varepsilon^{\sigma} \mid \sigma \in N\right\rangle\langle\pi, o\rangle=\left\langle\varepsilon, \varepsilon^{\pi}, \varepsilon^{\pi^{2}}, \varepsilon^{\pi^{3}}, \varepsilon^{\pi^{4}}, \varepsilon^{\pi^{5}}, \varepsilon^{\mu}\right\rangle \rtimes\langle\pi, o\rangle \cong \mathbb{Z}_{3}^{7} \rtimes \operatorname{PSL}(2,7)$.

The above argument yields $G_{5,4} \cong\left(\mathbb{Z}_{3}^{6} \rtimes\left(\mathbb{Z}_{7} \rtimes \mathbb{Z}_{3}\right) \times \mathbb{Z}_{3}^{7} \rtimes \operatorname{PSL}(2,7)\right) \rtimes \mathbb{Z}_{2}$. Set $M=\left\langle N, N^{\delta}\right\rangle$. Then $\delta \notin M, M=N \times N^{\delta}$ and $\left|X_{5,4}: M\right|=4$. Considering the transitive permutation representation of $X_{5,4}$ on the right cosets of M, we have $X_{5,4} / \operatorname{Core}_{X_{5,4}}(M) \lesssim S_{4}$. It is easily shown that $M=\operatorname{Core}_{X_{5,4}}(M) \triangleleft X_{5,4}$. Let $\rho=\sigma_{5,4} \delta \sigma_{5,4}^{-1}$. Then $\rho \delta=\delta \rho$, and $\rho \notin M$ by considering the restrictions of M on its orbits on Ω. Thus $X_{5,4}=M \rtimes\langle\rho, \delta\rangle \cong\left(\mathbb{Z}_{3}^{7} \rtimes \operatorname{PSL}(2,7) \times \mathbb{Z}_{3}^{7} \rtimes \operatorname{PSL}(2,7)\right) \rtimes \mathbb{Z}_{2}^{2}$.

Lemma 4.4.5. $G_{5,5}=G_{5,6} \cong A_{47}$ and $X_{5,5}=X_{5,6}=A_{48}$.
Proof. Let $\imath=5$ or 6 . Consider the actions of $G_{5,1}$ and of $\left\langle\sigma_{5, l}^{-1} \sigma_{5,1}^{\tau_{5, l}},\left(\sigma_{5,1}^{2} \tau_{5, l}\right)^{2}\right\rangle$ on $\Omega \backslash\{1\}$. Then $G_{5, l}$ is a 2-transitive permutation group of degree 47 . Since all generators of $G_{5,1}$ are even permutations (on $\Omega \backslash\{1\}$), we have $G_{5,1} \leq \operatorname{Alt}(\Omega \backslash\{1\}$). Note that $\left(\tau_{5,5} \sigma_{5,5}^{7}\right)^{36}$ is a 5-cycle and $\left(\tau_{5,6} \sigma_{5,6}^{9}\right)^{32}$ is a 7-cycle. It follows from [8, Theorem 3.3E] that $G_{5, l}=\operatorname{Alt}(\Omega \backslash\{1\}) \cong \mathrm{A}_{47}$, and hence $X_{5,5}=X_{5,6}=A_{48}$.

4.5. Conclusions

Now we prove Theorems 1.1 and 1.2.
Proof of Theorem 1.1. Let Γ be a connected core-free cubic (X, s)-transitive Cayley graph. Then $s \geq 2$ by Corollary 2.2. The argument in Sections 4.1-4.4 says that Γ is isomorphic to one of $\Gamma_{s, l}$ and $\Gamma_{t, j_{1}} \neq \Gamma_{t, j_{2}}$, where $2 \leq s, t \leq 5, t \neq 5,1 \leq \imath \leq \ell_{s}$, $1 \leq J_{1}, \jmath_{2} \leq \ell_{t}, \jmath_{1} \neq J_{2}, \ell_{2}=2, \ell_{3}=3, \ell_{4}=4$ and $\ell_{5}=6$.

We claim that $\Gamma_{s, J}$ is not t-transitive for $s<t$. Suppose to the contrary that $\Gamma_{s, j}$ is $\left(X_{J}, t\right)$-transitive for some $G_{s, j} \leq$ $X_{\jmath} \leq \operatorname{Aut}\left(\Gamma_{s, \jmath}\right)$. By Corollary 2.2, the quotient $\left(\Gamma_{s, \jmath}\right)_{N}$ induced by $N=\operatorname{Core}_{X_{J}}\left(G_{s, \jmath}\right)$ is isomorphic to some $\Gamma_{t, l}$, in particular, $G_{t, l} \cong G_{s, j} / N$, which is impossible. It follows that $\operatorname{Aut}\left(\Gamma_{s, \jmath}\right)=X_{s, \jmath}$ for $2 \leq s \leq 5$ and $1 \leq \jmath \leq \ell_{s}$, and $\Gamma_{s, j} \neq \Gamma_{t, l}$ for possible $s<t, \jmath$ and \imath. Thus it suffices to show that $\Gamma_{5,5} \neq \Gamma_{5,6}$ in the following.

Recall that $\Gamma_{5,1}=\operatorname{Cos}\left(X_{5,1}, H, \tau_{5,1}\right)$ and $\operatorname{Aut}\left(\Gamma_{5,1}\right)=X_{5,1}=\mathrm{A}_{48}$, where $H \cong \mathrm{~S}_{4} \times \mathbb{Z}_{2}$ is a regular subgroup of A_{48} under the natural action. Suppose that $\Gamma_{5,5} \cong \Gamma_{5,6}$. Then, by [19, Lemma 2.3], there is some $\sigma \in \operatorname{Aut}\left(\mathrm{A}_{48}\right)=\mathrm{S}_{48}$ with $H \tau_{5,5}^{\sigma} H=H \tau_{5,6} H$ such that $H \tau \mapsto H \tau^{\sigma}$ gives an isomorphism from $\Gamma_{5,5}$ to $\Gamma_{5,6}$. Consider the neighborhood of H (as a vertex) in $\Gamma_{5, l}$. Then $\left\{H \tau_{5,5}^{\sigma}, H \sigma_{5,5}^{\sigma}, H\left(\sigma_{5,5}^{-1}\right)^{\sigma}\right\}=\left\{H \tau_{5,6}, H \sigma_{5,6}, H \sigma_{5,6}^{-1}\right\}$. In particular, one of cosets $H \tau_{5,5} H \sigma_{5,5}$ and $H \sigma_{5,5}^{-1}$ must contain a permutation with the same order 84 of $\sigma_{5,6}$, which is impossible by calculation. Thus $\Gamma_{5,5} \neq \Gamma_{5,6}$.

Theorem 1.2 is a direct consequence of Corollary 2.2 and Theorem 1.1.
Finally, since a Cayley graph of a finite non-abelian simple group is either normal or core-free, our argument leads to the following well-known result which can be derived from [15,27,28].

Theorem 4.1. Let Γ be a connected cubic arc-transitive Cayley graph of a finite non-abelian simple group T. Then either Γ is normal with respect to T, or Γ is isomorphic to one of $\Gamma_{5,5}$ and $\Gamma_{5,6}$.

Note: All calculation results in this paper were also confirmed by GAP.

Acknowledgements

The second author supported partially by the NSF and the 973 program of China.

References

[1] M. Aschbacher, Finite Group Theory, Cambridge University Press, New York, 1994.
[2] N. Biggs, A new 5-arc-transitive cubic graph, J. Graph Theory 6 (1982) 447-451.
[3] M. Conder, An infinite family of 5-arc-transitive cubic graphs, in: Eleventh British Combinatorial Conference (London, 1987), Ars Combin. 25A (1988) 95-108.
[4] M. Conder, M. Mortona, A note on groups associated with 4-arc-transitive cubic graphs, Bull. London Math. Soc. 22 (1990) $553-560$.
[5] M. Conder, C.G. Walker, The infinitude of 7-arc-transitive graphs, J. Algebra 208 (1998) 619-629.
[6] M. Conder, On symmetries of Cayley graphs and the graphs underlying regular maps, J. Algebra 321 (2009) 3112-3127.
[7] J.H. Conway, R.T. Curtis, S.P. Noton, R.A. Parker, R.A. Wilson, Atlas of Finite Groups, Clarendon Press, Oxford, 1985.
[8] J.D. Dixon, B. Mortimer, Permutation Groups, Springer-Verlag, New York, Berlin, Heidelberg, 1996.
[9] D.Ž. Djoković, G.L. Miller, Regular groups of automorphisms of cubic graphs, J. Combin. Theory Ser. B 29 (1980) 195-230.
[10] X.G. Fang, C.E. Praeger, Finite two-arc transitive graphs admitting a Suzuki simple group, Comm. Algebra 27 (1999) 3727-3754.
[11] A. Gardiner, Doubly-primitive vertex stabilisers in graphs, Math. Z. 135 (1974) 257-266.
[12] A. Gardiner, Arc-transitivity in graphs.II, Quart. J. Math. Oxford Ser. 25 (1974) 163-167.
[13] A. Gardiner, Arc-transitivity in graphs.III, Quart. J. Math. Oxford Ser. 27 (1976) 313-323.
[14] B. Huppert, N. Blackburn, Finite Groups III, Springer-Verlag, Berlin, Heidelberg, New York, 1982.
[15] C.H. Li, Isomorphisms of finite Cayley graphs, Ph.D. Thesis, The University of Western Australia, 1996.
[16] C.H. Li, The finite vertex-primitive and vertex-biprimitive s-transitive graphs for $s \geq 4$, Trans. Amer. Math. Soc. 353 (2001) $3511-3529$.
[17] C.H. Li, On finite s-transitive graphs of odd order, J. Combin. Theory Ser. B 81 (2001) 307-317.
[18] C.H. Li, Finite s-arc transitive Cayley graphs and flag-transitive projective planes, Proc. Amer. Math. Soc. 133 (2005) 31-40.
[19] C.H. Li, Z.P. Lu, D. Marušič, On primitive permutation groups with small suborbits and their orbital graphs, J. Algebra 279 (2004) 749-770.
[20] Z.P. Lu, On the automorphism groups of biCayley graphs, Acta Sci. Nat. Univ. Pekin. 39 (2003) 1-5.
[21] D. Marušič, P. Potočnik, Classifying 2-arc-transitive graphs of order a product of two primes, Discrete Math. 244 (2002) 331 -338.
[22] C.E. Praeger, An O'Nan-Scott theorem for finite quasiprimitive permutation groups and an application to 2-arc transitive graphs, J. London Math. Soc. 47 (1992) 227-239.
[23] W.T. Tutte, A family of cubical graphs, Proc. Cambridge Philos. Soc. 43 (1947) 459-474.
[24] W.T. Tutte, On the symmetry of cubic graphs, Canad. J. Math. 11 (1959) 621-624.
[25] R. Weiss, The non-existence of 8-transitive grsphs, Combinatorica 1 (1981) 309-311.
[26] M.Y. Xu, Automorphism groups and isomorphisms of Cayley digraphs, Discrete Math. 182 (1998) 309-320.
[27] S.J. Xu, X.G. Fang, J. Wang, M.Y. Xu, On cubic s-arc-transitive Cayley graphs of finite simple groups, European J. Combin. 26 (2005) 133-143.
[28] S.J. Xu, X.G. Fang, J. Wang, M.Y. Xu, 5-arc transitive cubic Cayley graphs on finite simple groups, European J. Combin. 28 (2007) $1023-1036$.

[^0]: * Corresponding author.

 E-mail addresses: ljj@cfc.nankai.edu.cn (J.J. Li), lu@nankai.edu.cn (Z.P. Lu).

