Contents lists available at ScienceDirect

# **Discrete Mathematics**

journal homepage: www.elsevier.com/locate/disc

# Cubic s-arc transitive Cayley graphs

# Jing Jian Li, Zai Ping Lu\*

Center for Combinatorics, LPMC, Nankai University, Tianjin 300071, PR China

## ARTICLE INFO

Article history: Received 21 November 2008 Received in revised form 22 April 2009 Accepted 1 May 2009 Available online 21 May 2009

Keywords: Cayley graph s-arc-transitive Core-free Normal quotient

### ABSTRACT

This paper gives a characterization of connected cubic *s*-transitive Cayley graphs. It is shown that, for  $s \ge 3$ , every connected cubic *s*-transitive Cayley graph is a normal cover of one of 13 graphs: three 3-transitive graphs, four 4-transitive graphs and six 5-transitive graphs. Moreover, the argument in this paper also gives another proof for a well-known result which says that all connected cubic arc-transitive Cayley graphs of finite non-abelian simple groups are normal except two 5-transitive Cayley graphs of the alternating group A<sub>47</sub>.

© 2009 Elsevier B.V. All rights reserved.

### 1. Introduction

All graphs in this paper are assumed to be finite, simple and undirected.

Let  $\Gamma$  be a graph with vertex set  $V(\Gamma)$ , edge set  $E(\Gamma)$  and full automorphism group  $Aut(\Gamma)$ . Let X be a subgroup of  $Aut(\Gamma)$  (written as  $X \leq Aut(\Gamma)$ ). Then  $\Gamma$  is said to be X-vertex-transitive or X-edge-transitive if X acts transitively on  $V(\Gamma)$  or on  $E(\Gamma)$ , respectively. Let s be a positive integer. An (s + 1)-sequence  $(\alpha_0, \alpha_1, \ldots, \alpha_s)$  of vertices of  $\Gamma$  is called an s-arc if  $\{\alpha_{i-1}, \alpha_i\} \in E(\Gamma)$  for  $1 \leq i \leq s$  and  $\alpha_{i-1} \neq \alpha_{i+1}$  for  $1 \leq i \leq s - 1$ . The graph  $\Gamma$  is called (X, s)-arc-transitive if  $\Gamma$  has at least one s-arc and X is transitive on the vertices and on the s-arcs of  $\Gamma$ ; and  $\Gamma$  is said to be (X, s)-transitive if it is (X, s)-arc-transitive but not (X, s + 1)-arc-transitive. In particular, a 1-arc is simply called an arc, and an (X, 1)-arc-transitive graph is said to be X-arc-transitive or X-symmetric. An arc-transitive graph  $\Gamma$  is said to be (X, s)-regular if it is (X, s)-arc-transitive and, for any two s-arcs of  $\Gamma$ , there is a unique automorphism of  $\Gamma$  mapping one arc to the other one. In the case where  $X = Aut(\Gamma)$ , an (X, s)-arc-transitive ((X, s)-transitive, (X, s)-regular and X-symmetric, respectively) graph is simply called an s-arc-transitive (s-transitive (s-transitive, s-regular and symmetric, respectively) graph.

Tutte [23,24] proved that every finite connected cubic symmetric graph is *s*-regular for some  $s \le 5$ . Since Tutte's seminal work, the study of *s*-arc-transitive graphs, aiming at constructing and characterizing such graphs, has received considerable attention in the literature, see [11–13,9,25,2–4,22,5,10,16,17,19,18,27,28] for example, and now there is an extensive body of knowledge on such graphs. In this paper, we investigate the cubic symmetric Cayley graphs.

Let *G* be a group and *S* a subset of *G* such that  $S = S^{-1} := \{g^{-1} | g \in S\}$  and *S* does not contain the identity element 1 of *G*. The *Cayley graph* Cay(*G*, *S*) of *G* with respect to *S* is the graph with vertex set *G* and edge set  $\{\{g, sg\} | g \in G, s \in S\}$ . Then a Cayley graph Cay(*G*, *S*) has valency |S|, and it is connected if and only if  $\langle S \rangle = G$ . Further, each  $g \in G$  gives an automorphism  $g : G \to G, x \mapsto xg$  of Cay(*G*, *S*). Thus *G* can be viewed as a regular subgroup of Aut(Cay(*G*, *S*)). A Cayley graph Cay(*G*, *S*) is said to be *normal* (with respect to *G*) if *G* is normal in Aut(Cay(*G*, *S*)); and Cay(*G*, *S*) is said to be *core-free* (with respect to *G*) if *G* is core-free in some  $X \leq Aut(Cay(G, S))$ , that is,  $Core_X(G) := \bigcap_{x \in X} G^x = 1$ .

\* Corresponding author. E-mail addresses: ljj@cfc.nankai.edu.cn (J.J. Li), lu@nankai.edu.cn (Z.P. Lu).





<sup>0012-365</sup>X/\$ – see front matter S 2009 Elsevier B.V. All rights reserved. doi:10.1016/j.disc.2009.05.002

| Table 1                                     |
|---------------------------------------------|
| Core-free cubic s-transitive Cayley graphs. |

| s | $\operatorname{Aut}(\Gamma)$                    | G                                                                                            | Remark                                         |
|---|-------------------------------------------------|----------------------------------------------------------------------------------------------|------------------------------------------------|
| 2 | $S_4\times \mathbb{Z}_2$                        | D <sub>8</sub>                                                                               | Cube                                           |
| 2 | S <sub>4</sub>                                  | $\mathbb{Z}_4$                                                                               | K4                                             |
| 3 | $S_3 \wr \mathbb{Z}_2$                          | $\mathbb{Z}_6$ or $\mathbb{D}_6$                                                             | K <sub>3,3</sub>                               |
| 3 | $\mathbb{Z}_2^4 \rtimes (S_3 \wr \mathbb{Z}_2)$ | $\mathbb{Z}_4 \times S_4$ or $\mathbb{Z}_2^4 \rtimes S_3$                                    |                                                |
| 3 | $PGL_2(11)$                                     | $\mathbb{Z}_{11} \rtimes \mathbb{Z}_{10}$                                                    |                                                |
| 4 | $PGL_2(7)$                                      | D <sub>14</sub>                                                                              | Heawood's graph                                |
| 4 | PGL <sub>2</sub> (23)                           | $\mathbb{Z}_{23} \rtimes \mathbb{Z}_{22}$                                                    |                                                |
| 4 | $\mathbb{Z}_3^7 \rtimes \mathrm{PGL}_2(7)$      | $\mathbb{Z}_3^6 \rtimes (\mathbb{Z}_7 \rtimes \mathbb{Z}_6)$                                 |                                                |
| 4 | S <sub>24</sub>                                 | S <sub>23</sub>                                                                              |                                                |
| 5 | $S_{24} N^2  times \mathbb{Z}_2^2$              | $(\mathbb{Z}_7 \times N) \rtimes \mathbb{Z}_2$                                               | N = PSL(2, 7)                                  |
| 5 | $N^2 \rtimes \mathbb{Z}_2^{\tilde{2}}$          | $(A_{23} \times N) \rtimes \mathbb{Z}_2$                                                     | $N = A_{24}$                                   |
| 5 | $N^2 \rtimes \mathbb{Z}_2^{\hat{2}}$            | $(\mathbb{Z}_{23} \rtimes \mathbb{Z}_{11} \times \overline{N}) \rtimes \mathbb{Z}_2$         | N = PSL(2, 23)                                 |
| 5 | $N^2 \rtimes \mathbb{Z}_2^{\hat{2}}$            | $(\mathbb{Z}_3^6 \rtimes (\mathbb{Z}_7 \rtimes \mathbb{Z}_3) \times N) \rtimes \mathbb{Z}_2$ | $N = \mathbb{Z}_3^7 \rtimes \mathrm{PSL}(2,7)$ |
| 5 | A <sub>48</sub>                                 | A <sub>47</sub>                                                                              | Two graphs                                     |

The main motivation for this paper arises from one result of Li [18] which says that for  $s \in \{2, 3, 4, 5, 7\}$  and  $k \ge 3$  there are only finite number of core-free *s*-transitive Cayley graphs of valency *k*, and that, with the exceptions s = 2 and (s, k) = (3, 7), every *s*-transitive Cayley graph is a normal cover (see Section 3 for the definition) of a core-free one. In this paper, we shall give a characterization of cubic *s*-transitive Cayley graphs; in particular, determine all connected core-free cubic *s*-transitive Cayley graphs up to isomorphism, and then prove the following results.

**Theorem 1.1.** Let  $\Gamma = Cay(G, S)$  be a connected core-free (with respect to G) cubic s-transitive Cayley graph. Then  $\Gamma \cong Cay(G_{s,1}, S_{s,1})$  for  $2 \le s \le 5$  and  $1 \le \iota \le \ell_s$ , where  $\ell_2 = 2$ ,  $\ell_3 = 3$ ,  $\ell_4 = 4$ ,  $\ell_5 = 6$ ,  $G_{s,1} = \langle S_{s,1} \rangle$  and  $S_{s,1}$  is given as in Sections 4.1–4.4 while s = 2, 3, 4 and 5, respectively. Further, s, Aut( $\Gamma$ ) and G are listed in Table 1.

**Theorem 1.2.** Let  $\Gamma$  be a connected cubic s-transitive Cayley graph. Then

- (1)  $s \leq 2$  and Aut( $\Gamma$ ) contains a semi-regular normal subgroup which has at most two orbits on  $V(\Gamma)$ ; or
- (2) Aut( $\Gamma$ ) contains a regular subgroup which has a quotient group isomorphic to one of the groups listed in the third column of Table 1.

#### 2. A reduction to the core-free case

Let  $\Gamma$  be a connected *X*-vertex-transitive and *X*-edge-transitive graph with  $X \leq \operatorname{Aut}(\Gamma)$ . Denote by  $\operatorname{val}(\Gamma)$  the valency of  $\Gamma$ . Let *N* be an intransitive normal subgroup of *X* and  $\mathcal{B}$  be the set of *N*-orbits on  $V(\Gamma)$ . The *normal quotient*  $\Gamma_N$  of  $\Gamma$ induced by *N* is the graph with vertex set  $\mathcal{B}$  such that  $B_1, B_2 \in \mathcal{B}$  are adjacent in  $\Gamma_N$  if and only if some vertex  $u \in B_1$ is adjacent in  $\Gamma$  to some vertex  $v \in B_2$ . Since  $\Gamma$  is connected and *X*-edge-transitive, we conclude that  $\Gamma_N$  is *X*/*N*-edgetransitive, each  $B \in \mathcal{B}$  is an independent subset of  $\Gamma$  and, for an edge  $\{B_1, B_2\} \in E(\Gamma_N)$ , the subgraph  $\Gamma[B_1, B_2]$  of  $\Gamma$  induced by  $B_1 \cup B_2$  is a regular bipartite graph which is independent of the choice of  $\{B_1, B_2\}$  up to isomorphism. In particular,  $\operatorname{val}(\Gamma) = \operatorname{val}(\Gamma_N)\operatorname{val}(\Gamma[B_1, B_2])$ . If  $\operatorname{val}(\Gamma) = \operatorname{val}(\Gamma_N)$ , then  $\Gamma$  is called a *normal cover* of  $\Gamma_N$ . It was proved by Praeger [22] that  $\Gamma_N$  is (X/N, s)-arc-transitive if  $\Gamma$  is (X, s)-arc-transitive, and that  $\Gamma$  is a normal cover of  $\Gamma_N$  if  $s \ge 2$  and  $|\mathcal{B}| \ge 3$ . In general, if  $\Gamma$  is a normal cover of  $\Gamma_N$  then *N* acts regularly on each *N*-orbit, X/N is isomorphic to a subgroup of  $\operatorname{Aut}(\Gamma_N)$  and  $\Gamma_N$  is (X/N, s)-arc-transitive if and only if  $\Gamma$  is (X, s)-arc-transitive.

In the following, we assume that  $\Gamma = Cay(G, S)$  is a connected X-edge-transitive Cayley graph with  $G \le X \le Aut(\Gamma)$ . Set  $Aut(G, S) = \{\sigma \in Aut(G) | S^{\sigma} = S\}$ . Let N be the maximal one among normal subgroups of X contained in G, that is,  $N = Core_X(G)$  is the core of G in X. Then either  $|G : N| \le 2$  or N has at least three orbits on  $V(\Gamma)$ . If N = G, then  $X \le G \rtimes Aut(G, S)$  by [26]; if N is intransitive on  $V(\Gamma)$ , then every N-orbit is an independent set of  $\Gamma$  since  $\Gamma$  is connected and X-edge-transitive.

Assume that |G : N| = 2. Then N has exactly two orbits on  $V(\Gamma)$  and  $\Gamma$  is a bipartite graph; in this case  $\Gamma$  is called a *bi-normal Cayley graph* [18]. Further,  $\Gamma$  is in fact a *bi-Cayley graph* [20] of N, say  $\Gamma = BCay(N, D)$ , where  $D \subseteq N$  and contains the identity of N with  $\langle D \rangle = N$ . Moreover, by [20], the arc-stabilizer  $X_{uv}$  is contained in Aut(N, D) for some arc (u, v) of  $\Gamma$ .

Now assume that *N* has at least three orbits on  $V(\Gamma)$ , and it is easily shown that G/N acts regularly on  $V(\Gamma_N)$ . Then  $\Gamma_N$  is a Cayley graph of the quotient G/N, and X/N acts transitively on the edges of  $\Gamma_N$ . Further either  $val(\Gamma) > val(\Gamma_N)$  and  $\Gamma$  is not (X, 2)-arc-transitive, or  $val(\Gamma) = val(\Gamma_N)$ ,  $X/N \leq Aut(\Gamma_N)$  and  $\Gamma$  is a normal cover of  $\Gamma_N$ . In addition, if  $\Gamma$  is a normal cover of  $\Gamma_N$  then  $\Gamma_N$  is core-free with respect to G/N.

In summary we get a reduction for edge-transitive Cayley graphs.

**Proposition 2.1.** Let  $\Gamma = Cay(G, S)$  be a connected X-edge-transitive Cayley graph with  $G \leq X \leq Aut(\Gamma)$  and let  $N = Core_X(G)$ .

(1) If G = N then  $X \leq G \rtimes Aut(G, S)$  and  $X_1 \leq Aut(G, S)$ .

- (2) If |G:N| = 2, then there exists  $D \subseteq N$  with  $1 \in D$ ,  $\langle D \rangle = N$  and  $X_{uv} \leq Aut(N, D)$  for an arc (u, v) of  $\Gamma$ .
- (3) If N has at least three orbits on  $V(\Gamma)$ , then  $\Gamma_N$  is an X/N-edge-transitive Cayley graph of G/N and either

(a)  $val(\Gamma_N) < val(\Gamma)$  and  $\Gamma$  is not (X, 2)-arc-transitive; or (b)  $\Gamma$  is a normal cover of  $\Gamma_N$ ,  $G/N \le X/N \le Aut(\Gamma_N)$  and  $\Gamma_N$  is core-free with respect to G/N.

- **Remark 2.1.** (i) If we assume  $\Gamma$  with some further limits, then several cases in Proposition 2.1 are not necessary to happen. For example, (2) cannot happen when  $|V(\Gamma)|$  is odd, and (3.a) cannot occur when  $\Gamma$  is either 2-arc-transitive or of prime valency.
- (ii) In case (3.b), if N = 1 then, by considering the right multiplication action of X on the right cosets of G in X, we may view X as a subgroup of the symmetric group  $S_n$  for some n, which contains a regular subgroup (of  $S_n$ ) isomorphic to a stabilizer of X acting on  $V(\Gamma)$ ; and in this way, G is a stabilizer of X acting on  $\{1, 2, ..., n\}$ . Replacing by a conjugation of G in X, we may assume G fixes 1.

**Corollary 2.2.** Let  $\Gamma = Cay(G, S)$  be a connected cubic (X, s)-transitive Cayley graph with  $G \le X \le Aut(\Gamma)$  and let  $N = Core_X(G)$ . Then either

(1)  $|G:N| \leq 2$ , and  $s \leq 2$  in this case; or

(2)  $|G:N| > 2, s \ge 2, \Gamma_N$  is a core-free (X/N, s)-transitive Cayley graph of G/N, and  $\Gamma$  is a normal cover of  $\Gamma_N$ .

**Proof.** Assume  $|G : N| \le 2$ . Then, by Proposition 2.1, either  $X_1 \le Aut(G, S) \le S_3$  or  $X_{uv} \le Aut(N, D) \cong \mathbb{Z}_2$  for an arc (u, v) of  $\Gamma$ . Each of these two cases implies that  $\Gamma$  is not (X, 3)-arc-transitive, and so  $s \le 2$ . Thus, by Proposition 2.1, it suffices to show that |G : N| > 2 yields  $s \ge 2$ . Suppose to the contrary that |G : N| > 2 and s = 1. Then  $\Gamma$  is X-arc-regular and  $X_1 \cong \mathbb{Z}_3$ . By Remark 2.1 and Proposition 2.1 (3),  $\overline{G} := G/N$  is a core-free subgroup of  $\overline{X} := X/N = \overline{GX_1}$ , where  $\overline{X_1} = X_1N/N$ . Further,  $|X_1| = |X_1| = 3$  and  $|\overline{X}| = |\overline{G}||\overline{X_1}|$ . Consider the right multiplication action of  $\overline{X}$  on the right cosets of  $\overline{G}$  in  $\overline{X}$ . Then  $\overline{X}$  has a faithful permutation representation of degree  $|\overline{X_1}| = 3$ , and so  $X/N = \overline{X} \le S_3$ . Thus  $G/N \le \mathbb{Z}_2$ , a contradiction. Hence  $s \ge 2$ .

#### 3. Construction of core-free Cayley graphs

Let *X* be an arbitrary finite group with a core-free subgroup *H* and let  $D \subseteq X \setminus H$  with  $D^{-1} = D$ . The coset graph Cos(X, H, D), and denoted by Cos(X, H, z) for a singleton  $D = \{z\}$  or a binary set  $D = \{z, z^{-1}\}$ , is the graph with vertex set  $[X : H] := \{Hx | x \in X\}$  such that Hx and Hy are adjacent if and only if  $yx^{-1} \in HDH$ . Consider the action of *X* on [X : H] by right multiplication on right cosets. Then this action is faithful and preserves the adjacency of the coset graph. Thus we identify *X* with a subgroup of Aut(Cos(X, H, D)). Further, we have the following basic facts.

#### **Proposition 3.1.** Let Cos(X, H, D) be defined as above.

- (1) Cos(X, H, D) is connected if and only if  $X = \langle H, D \rangle$ ;
- (2) Cos(X, H, D) is X-edge-transitive if and only if  $HDH = H\{z, z^{-1}\}H$  for some  $z \in X$ ;
- (3) The valency of Cos(X, H, z) is either  $|H|/|H \cap H^z|$  if  $HzH = Hz^{-1}H$ , or  $2|H|/|H \cap H^z|$  otherwise;
- (4) Cos(X, H, z) is X-arc-transitive if and only if  $HzH = Hz^{-1}H$ .

(5) If X has a subgroup G acting regularly on the vertices of Cos(X, H, D), then  $Cos(X, H, D) \cong Cay(G, S)$ , where  $S = G \cap HDH$ .

**Proof.** (1), (2), (3) and (4) are well-known, see [19] for example. Assume that *X* contains a regular subgroup *G* acting on [X : H]. Then X = GH and  $G \cap H = 1$ , hence every right coset of *H* in *X* can be uniquely written as *Hg* for  $g \in G$ . Set  $S = G \cap HDH$ . Then for any  $g_1, g_2 \in G$ , the pair  $(Hg_1, Hg_2)$  is an arc of Cos(X, H, D) if and only if  $g_2g_1^{-1} \in G \cap HDH = S$ . Thus  $Cos(X, H, D) \cong Cay(G, S)$ , and (5) holds.

Let  $\Gamma = \text{Cay}(G, S)$  be a Cayley graph and  $G \le X \le \text{Aut}(\Gamma)$ . Let  $H = X_1$  be the stabilizer of  $1 \in V(\Gamma)$  in X. Define  $\rho : V(\Gamma) \to [X : H]; g \mapsto Hg$ . It follows from X = GH and  $G \cap H = 1$  that  $\rho$  is a bijection. Further, it is easily shown that  $\rho$  is an isomorphism from  $\Gamma$  to Cos(X, H, S). Assume further that  $\Gamma = \text{Cay}(G, S)$  is X-arc-transitive. Then Cos(X, H, S) is X-arc-transitive. It follows that HSH = HzH and  $HzH = Hz^{-1}H$  for any  $z \in S$ . Then  $\Gamma \cong \text{Cos}(X, H, z)$  for any  $z \in S$ . Note that each involution z (if exists) in S normalizes  $H \cap H^z$ , the arc-stabilizer of (1, z) in X. Since H is core-free in X, we have following simple result.

**Proposition 3.2.** Let  $\Gamma = Cay(G, S)$  be a connected X-arc-transitive Cayley graph with  $G \le X \le Aut(\Gamma)$ . Let H be the stabilizer of  $1 \in V(\Gamma)$  in X. If S contains an involution z, then  $z \in G \cap N_X(H \cap H^z) \setminus (\bigcup_{1 \ne K \le H} N_X(K)), \Gamma \cong Cos(X, H, z), \langle z, H \rangle = X$  and  $G = \langle (G \cap HzH) \rangle$ .

The above argument and Remark 2.1 allow us to construct theoretically all possible connected core-free edge-transitive Cayley graphs with a given stabilizer isomorphic to a regular subgroup H of  $S_n$ . One may take  $\tau \in S_n \setminus (\bigcup_{1 \neq K \leq H} N_{S_n}(K))$ with  $1^{\tau} = 1$ . Then  $Cos(X, H, \tau) \cong Cay(G, S)$  is a connected core-free X-edge-transitive Cayley graph with respect to G, where  $X = \langle \tau, H \rangle$ ,  $G = \{\sigma \in X | 1^{\sigma} = 1\}$  and  $S = \{\sigma \in H\tau H | 1^{\sigma} = 1\}$ . Note that all isomorphic regular subgroups of  $S_n$ are conjugate in  $S_n$  (see [28], for example). Thus, up to isomorphism,  $Cos(X, H, \tau)$  is independent of the choice of H. Note that  $Cos(X, H, \tau) \cong Cos(X^{\sigma}, H, \tau^{\sigma})$  for any  $\sigma \in N_{S_n}(H)$ . By Proposition 3.2, we may construct, up to isomorphism, the

| Table 2                                          |
|--------------------------------------------------|
| Vertex-stabilizers of cubic s-transitive graphs. |

| S | 2              | 3                                 | 4              | 5                        |
|---|----------------|-----------------------------------|----------------|--------------------------|
| Н | S <sub>3</sub> | D <sub>12</sub>                   | S <sub>4</sub> | $S_4\times \mathbb{Z}_2$ |
| n | 6              | 12                                | 24             | 48                       |
| Р | $\mathbb{Z}_2$ | $\mathbb{Z}_2 	imes \mathbb{Z}_2$ | D <sub>8</sub> | $D_8\times \mathbb{Z}_2$ |

connected core-free arc-transitive Cayley graphs Cay(G, S) with a given vertex-stabilizer H of order n, a given arc-stabilizer P and S containing an involution by finding all possible such involutions as follows:

Step 1. Determine  $I := \{ \tau \in N_{S_n}(P) \setminus \bigcup_{1 \neq K \leq H} N_{S_n}(K) | \tau^2 = 1, 1^{\tau} = 1 \}.$ 

Step 2. Determine the set I(n, H) of involutions in I which are not conjugate to each other under N<sub>S<sub>n</sub></sub>(H);

Step 3. For  $\tau \in I(n, H)$ , determine  $X = \langle \tau, H \rangle$ ,  $G = \{ \sigma \in X | 1^{\sigma} = 1 \}$  and  $S = \{ \sigma \in H\tau H | 1^{\sigma} = 1 \}$ .

**Remark 3.1.** It is easy to know *P* has |H : P| orbits on  $\Omega = \{1, 2, ..., n\}$ , which give an  $N_{S_n}(P)$ -invariant partition of  $\Omega$ . Then, with the assumption that  $1^{\tau} = 1$ ,  $\tau$  fixes set-wise the *P*-orbit which contains 1.

#### 4. Core-free cubic s-transitive Cayley graphs

In this section, we construct all possible core-free cubic *s*-transitive Cayley graphs up to isomorphism. Hereafter, we use  $\sigma^{\Delta}$  to denote the restriction of  $\sigma$  on  $\Delta$ , for  $\sigma \in S_n$  which fixes a subset  $\Delta$  of  $\Omega = \{1, 2, ..., n\}$  set-wise.

Let  $\Gamma$  be a core-free cubic (X, s)-transitive Cayley graph. Then  $s \ge 2$  by Corollary 2.2. Note that, for a Cayley graph Cay(G, S) of odd valency, S must contain an involution. By Proposition 3.2, write  $\Gamma = Cos(X, H, \tau)$ , where  $H \le S_n$ ,  $\tau \in I(n, H)$  and n = |H|. Then s, H, n and  $P := H \cap H^{\tau}$  are listed in Table 2. (See [2, 18c] for example.) Note that P is a Sylow 2-subgroup of H and that  $\Gamma = Cos(X, H, \tau) \cong Cos(X, H, \tau^{\sigma})$  for any  $\sigma \in H$ . Thus, in practice, we may take a given regular subgroup H of  $S_n$  and a given Sylow 2-subgroup P of H. Since H acts regularly on  $\Omega = \{1, 2, ..., n\}$  and |H : P| = 3, we know that P is semiregular on  $\Omega$  and so has exactly three orbits, say  $\Sigma_1, \Sigma_2$  and  $\Sigma_3$ . By Remark 3.1, we may assume that  $1^{\tau} = 1 \in \Sigma_1 = \Sigma_1^{\tau}$ , and  $\tau$  either fixes or interchanges  $\Sigma_2$  and  $\Sigma_3$  set-wise.

4.1. 
$$s = 2$$

In this case,  $H \cong S_3$ ,  $P \cong \mathbb{Z}_2$  and  $X \le S_6$ . Let  $H = \langle \alpha, \beta \rangle$  and  $P = \langle \beta \rangle$  where  $\alpha = (1 \ 2 \ 3)(4 \ 5 \ 6)$  and  $\beta = (1 \ 5)(2 \ 4)(3 \ 6)$ . Set  $\Sigma_1 = \{1, 5\}$ ,  $\Sigma_2 = \{2, 4\}$  and  $\Sigma_3 = \{3, 6\}$ . Since  $\tau \in I(6, H)$ , we have  $\beta^{\tau} = \beta$  but  $\langle \alpha \rangle^{\tau} \neq \langle \alpha \rangle$ . Recalling that  $\Sigma_1 = \Sigma_1^{\tau}$  and  $1^{\tau} = 1$ , it follows that  $\tau$  is one of (2 4), (3 6), (2 4)(3 6) and (2 6)(3 4). It is easy to check that the first two permutations are conjugate under  $N_{S_6}(H)$ . Thus we assume that  $\tau$  is one of

 $\tau_{2,1} = (24), \qquad \tau_{2,1'} = (24)(36), \qquad \tau_{2,2} = (26)(34).$ 

Set  $X_{2,i} = \langle \tau_{2,i}, H \rangle$  and  $\Gamma_{2,i} = \text{Cos}(X_{2,i}, H, \tau_{2,i})$  for i = 1, 1', 2. Let  $G_{2,i} = \{\sigma \in X_{2,i} | 1^{\sigma} = 1\}$  and  $S_{2,i} = G_{2,i} \cap H\tau_{2,i}H$ . Then  $\Gamma_{2,i} \cong \text{Cay}(G_{2,i}, S_{2,i}), i = 1, 1', 2$ . By calculation, we get

 $\begin{array}{ll} S_{2,1}=\{(2\,4),\,(3\,5),\,(2\,5)(3\,4)\}, & G_{2,1}=\langle(2\,5\,4\,3),\,(2\,4)\rangle\cong D_8,\\ S_{2,1'}=\{(2\,6),\,(3\,4),\,(2\,4)(3\,6)\}, & G_{2,1'}=\langle(2\,4\,6\,3),\,(2\,6)\rangle\cong D_8,\\ S_{2,2}=\{(2\,6)(4\,3),\,(2\,3\,6\,4),\,(2\,4\,6\,3)\}, & G_{2,2}=\langle(2\,3\,6\,4)\rangle\cong \mathbb{Z}_4. \end{array}$ 

Let  $\rho = (2 \ 3)(5 \ 6)$ . Then  $G_{2,1}^{\rho} = G_{2,1'}$  and  $S_{2,1}^{\rho} = S_{2,1'}$ . Hence  $\Gamma_{2,1} \cong \text{Cay}(G_{2,1}, S_{2,1}) \cong \text{Cay}(G_{2,1'}, S_{2,1'}) \cong \Gamma_{2,1'}$ . In fact  $\Gamma_{2,1}$  is the 3-dimensional cube  $Q_3$  and  $\Gamma_{2,2}$  is the complete graph  $K_4$  on four vertices. Thus  $\text{Aut}(\Gamma_{2,1}) = X_{2,1} \cong S_4 \times \mathbb{Z}_2$  and  $\text{Aut}(\Gamma_{2,2}) = X_{2,2} \cong S_4$ . In summary, we have

**Lemma 4.1.1.**  $\Gamma_{2,1} \cong \Gamma_{2,1'} \cong Q_3$ ,  $\Gamma_{2,2} \cong K_4$ ,  $G_{2,1} \cong G_{2,1'} \cong D_8$ ,  $G_{2,2} \cong \mathbb{Z}_4$ ,  $Aut(\Gamma_{2,1}) = X_{2,1} \cong S_4 \times \mathbb{Z}_2$  and  $Aut(\Gamma_{2,2}) = X_{2,2} \cong S_4$ .

In this case,  $H \cong D_{12}$  and  $X \le S_{12}$ . We may take  $H = \langle \alpha, \beta \rangle$  and  $P = \langle \alpha^3 \rangle \times \langle \beta \rangle$ , where  $\alpha = (1\ 2\ 3\ 4\ 5\ 6)(7\ 8\ 9\ 10\ 11\ 12)$ and  $\beta = (1\ 12)(2\ 11)(3\ 10)(4\ 9)(5\ 8)(6\ 7)$ . Set  $\Sigma_1 = \{1, 4, 9, 12\}$ ,  $\Sigma_2 = \{2, 5, 8, 11\}$  and  $\Sigma_3 = \{3, 6, 7, 10\}$ . It is easy to find all non-trivial normal subgroups of H as follows:  $\langle \alpha \rangle, \langle \alpha^2 \rangle, \langle \alpha^3 \rangle, \langle \alpha^2, \beta \rangle, \langle \alpha^2, \alpha \beta \rangle$  and H itself. Noting that  $\langle \alpha \rangle$  is a characteristic subgroup of H, it follows that  $\bigcup_{1 \neq K \leq H} N_{S_{12}}(K) = N_{S_{12}}(\langle \alpha^2 \rangle) \cup N_{S_{12}}(\langle \alpha^2 \rangle) \cup C_{S_{12}}(\langle \alpha^2 \rangle)$ .

characteristic subgroup of *H*, it follows that  $\bigcup_{1 \neq K \leq H} N_{S_{12}}(K) = N_{S_{12}}(\langle \alpha^2 \rangle) \cup N_{S_{12}}(\langle \alpha^3 \rangle) = N_{S_{12}}(\langle \alpha^2 \rangle) \cup C_{S_{12}}(\langle \alpha^3 \rangle)$ . Since  $\tau \in I(12, H)$ ,  $\tau$  normalizes  $P = \{\alpha^3, \beta, \alpha^3\beta, 1\}$  and  $\tau \notin N_{S_{12}}(\langle \alpha^2 \rangle) \cup C_{S_{12}}(\langle \alpha^3 \rangle)$ . In particular,  $(\alpha^3)^{\tau} \neq \alpha^3$ . It follows that  $\tau$  fixes, by conjugation, one of  $\beta$  and  $\alpha^3\beta$ , and interchanges the other one and  $\alpha^3$ . Let  $\delta = (9 \, 12)(8 \, 11)(7 \, 10)$ . Then  $\alpha^\delta = \alpha$  and  $(\alpha^3\beta)^\delta = \beta$ ; and so  $\delta \in N_{S_{12}}(H) \cap N_{S_{12}}(P)$ . By replacing  $\tau$  with  $\tau^\delta$  if necessary, we may assume that  $\beta^{\tau} = \beta$  and  $(\alpha^3)^{\tau} = \alpha^3\beta$ . Recall the assumption that  $\Sigma_1 = \Sigma_1^{\tau}$  and  $1^{\tau} = 1$  before Section 4.1. Then  $\beta^{\tau} = \beta$  yields  $\tau^{\Sigma_1} = 1$  or (4 9).

Assume first that  $\tau$  interchanges  $\Sigma_2$  and  $\Sigma_3$ . Then, by  $\beta^{\tau} = \beta$ , we have  $(2\ 11)^{\tau}(5\ 8)^{\tau} = (\beta^{\Sigma_2})^{\tau} = \beta^{\Sigma_3} = (3\ 10)(6\ 7)$ . Since

 $\alpha^3 = (14)(25)(36)(710)(811)(912).$  $(\alpha^3)^{\tau} = \alpha^3 \beta = (19)(28)(37)(412)(511)(610),$ 

we have  $(25)^{\tau}(811)^{\tau} = (37)(610)$ . Checking case by case implies that  $\tau$  is one of the following four permutations:

 $\tau_{3,2} = (49)(26)(711)(38)(510),$  $\tau_{3,1} = (49)(27)(611)(35)(810),$ 

 $\tau_{3,3'} = (49)(210)(311)(56)(78).$  $\tau_{3,3} = (49)(23)(1011)(57)(68),$ 

Let  $\gamma = (26)(35)(711)(810)$ . Then  $\gamma \in N_{S_{12}}(H)$  and  $\tau_{3,3}^{\gamma} = \tau_{3,3'}$ . Thus we may assume that  $\tau$  is one of  $\tau_{3,1}, \tau_{3,2}$  and  $\tau_{3,3}$  in this case.

Now let  $\tau$  fix every  $\Sigma_i$  set-wise. By  $\beta^{\tau} = \beta$  and  $(\alpha^3)^{\tau} = \alpha^3 \beta$ , we have

 $(1\,12)^{\tau}(4\,9)^{\tau} = (1\,12)(4\,9).$  $(14)^{\tau}(912)^{\tau} = (19)(412).$  $(2\,11)^{\tau}(5\,8)^{\tau} = (2\,11)(5\,8),$  $(25)^{\tau}(811)^{\tau} = (28)(511),$ 

 $(3\,10)^{\tau}(6\,7)^{\tau} = (3\,10)(6\,7),$  $(36)^{\tau}(710)^{\tau} = (37)(610).$ 

It follows from  $1^{\tau} = 1$  that  $\tau$  is one of the following four permutations:

(49)(211)(67).(49)(211)(310),(49)(58)(310).(49)(58)(67).

It is not difficult to show that the last three involutions above are conjugate under  $N_{S_{12}}(H)$ . Thus, in this case, we may assume that  $\tau$  is one of

 $\tau_{3,2'} = (49)(58)(67).$  $\tau_{3 1'} = (49)(211)(67),$ 

Set  $X_{3,\iota} = \langle \tau_{3,\iota}, H \rangle$  and  $\Gamma_{3,\iota} = \text{Cos}(X_{3,\iota}, H, \tau_{3,\iota})$  for  $\iota = 1, 1', 2, 2', 3$ . Let  $G_{3,\iota} = \{\sigma \in X_{3,\iota} | 1^{\sigma} = 1\}$  and  $S_{3,\iota} = G_{3,\iota} \cap H \tau_{3,\iota} H$ . Then  $\Gamma_{3,\iota} \cong Cay(G_{3,\iota}, S_{3,\iota})$  and  $G_{3,\iota} = \langle S_{3,\iota} \rangle$  for  $\iota = 1, 1', 2, 2', 3$ , where

 $S_{3,1} = \{\tau_{3,1}, \sigma_{3,1}, \sigma_{3,1}^{-1}\},\$  $\sigma_{3,1} = (2\,11\,4\,7\,6\,9)(3\,5)(8\,10),$ 
$$\begin{split} s_{3,1} &= \{\tau_{3,1}, \sigma_{3,1}, \sigma_{3,1}\}, \qquad \sigma_{3,1} = (2\,11\,47\,6\,9)(3\,5) \\ s_{3,1'} &= \{\tau_{3,1'}, \sigma_{3,1'}, \tau_{3,1'}\sigma_{3,1'}\tau_{3,1'}\}, \quad \sigma_{3,1'} = (2\,7)(4\,11)(6\,9), \end{split}$$
 $\begin{aligned} & \varsigma_{3,2} - \{\iota_{3,2}, \sigma_{3,2}, \sigma_{3,2}^{-1}\}, \\ & S_{3,2'} = \{\tau_{3,2'}, \sigma_{3,2'}, \alpha \sigma_{3,2'} \alpha^{-1}\}, \\ & S_{3,3} = \{\tau_{3,3}, \sigma_{3,3}, \sigma_{3,3}^{-1}\}, \end{aligned} \qquad \begin{array}{l} & \sigma_{3,2} = (2\,6\,9)(3\,5\,8\,10)(4\,7\,11), \\ & \sigma_{3,2'} = (3\,8)(4\,7)(5\,12) = \alpha \tau_{3,2'} \alpha^{-1}, \\ & \sigma_{3,3} = (2\,8\,10\,11\,4\,7\,2\,12\,5\,5\,12) \end{aligned}$ 

It is easy to show that  $G_{3,1} \cong \mathbb{Z}_6$ ,  $G_{3,1'} \cong D_6$ ,  $\Gamma_{3,1} \cong \Gamma_{3,1'} \cong K_{3,3}$  and  $Aut(\Gamma_{3,1}) = X_{3,1} \cong X_{3,1'} \cong S_3 \wr \mathbb{Z}_2$ . Note that  $G_{3,3}$  is a 2-transitive permutation group of degree 11 (on  $\Omega \setminus \{1\}$ ). Thus  $X_{3,3}$  is a 3-transitive permutation group of degree 12. Let  $\sigma = \tau_{3,3}\sigma_{3,3}\tau_{3,3}\sigma_{3,3}^{-1}$ . Then  $\sigma = (23561091241187)$ ,  $\sigma^{\tau_{3,3}} = \sigma^{-1}$  and  $\sigma^{\sigma_{3,3}} = \sigma^8$ . Thus  $\mathbb{Z}_{11} \cong \langle \sigma \rangle \triangleleft G_{3,3}$ . Then  $G_{3,3} \cong \mathbb{Z}_{11} \rtimes \mathbb{Z}_{10}$ , and hence  $X_{3,3}$  is sharply 3-transitive on  $\Omega$ . Then  $X_{3,3} \cong PGL(2, 11)$  by [14, XI.2.6]. Thus we have the following lemma.

**Lemma 4.2.1.**  $\Gamma_{3,1} \cong \Gamma_{3,1'} \cong K_{3,3}$ ,  $G_{3,1} \cong \mathbb{Z}_6$ ,  $G_{3,1'} \cong D_6$ ,  $Aut(\Gamma_{3,1}) = X_{3,1} \cong X_{3,1'} \cong S_3 \wr \mathbb{Z}_2$ ,  $G_{3,3} \cong \mathbb{Z}_{11} \rtimes \mathbb{Z}_{10}$  and  $X_{3,3} \cong PGL(2, 11).$ 

In the following we shall determine  $X_{3,2}, X_{3,2'}, G_{3,2}$  and  $G_{3,2'}$ .

**Lemma 4.2.2.**  $G_{3,2} \cong \mathbb{Z}_4 \times S_4$  and  $G_{3,2'} \cong \mathbb{Z}_2^4 \rtimes S_3$ .

**Proof.** Let  $\eta = \sigma_{3,2}^4$  and  $\rho = \sigma_{3,2}^6 \tau_{3,2}$ . We have  $\eta = (269)(4711)$ ,  $\rho = (26)(49)(711)$  and  $\eta \rho = (41196)$ . Further

$$\begin{array}{l} \langle \eta, \rho \rangle = \langle (\eta\rho)^2, \eta, \rho^{(\eta\rho)^2} \rangle = \langle (\eta\rho)^2, ((\eta\rho)^2)^\eta \rangle \rtimes \langle \eta, \rho^{(\eta\rho)^2} \rangle \cong \mathsf{S}_4, \\ \mathsf{G}_{3,2} = \langle \tau_{3,2}, \sigma_{3,2} \rangle = \langle \sigma_{3,2}^3, \sigma_{3,2}^4, \sigma_{3,2}^6, \tau_{3,2}^2 \rangle = \langle \sigma_{3,2}^3 \rangle \times \langle \eta, \rho \rangle \cong \mathbb{Z}_4 \times \mathsf{S}_4 \end{array}$$

Let  $\delta_{3,2'} = \alpha \sigma_{3,2'} \alpha^{-1}$ . Then  $\delta_{3,2'} = (27)(312)(411)$ . Set  $M = \langle \sigma_{3,2'}^{\sigma} | \sigma \in G_{3,2'} \rangle$  and  $B = \langle \tau_{3,2'}, \delta_{3,2'}^{\tau_{3,2'},\sigma_{3,2'}} \rangle$ . Then  $M \trianglelefteq G_{3,2'}$ and  $B \cong S_3$  by calculation. Let  $\pi_1 = \sigma_{3,2'}^{\tau_{3,2'}}, \pi_2 = \sigma_{3,2'}^{\delta_{3,2'}}$  and  $\pi_3 = \sigma_{3,2'}^{\tau_{3,2'}\delta_{3,2'}}$ . It is easily shown that  $\langle \sigma_{3,2'}, \pi_1, \pi_2, \pi_3 \rangle \cong \mathbb{Z}_2^4$ and that  $\sigma_{3,2'}$ ,  $\tau_{3,2'}$  and  $\delta_{3,2'}$  normalize  $\langle \sigma_{3,2'}, \pi_1, \pi_2, \pi_3 \rangle$ . Then  $M = \langle \sigma_{3,2'}, \pi_1, \pi_2, \pi_3 \rangle \cong \mathbb{Z}_2^4$ . Noting that  $M \cap B \trianglelefteq B$  and each normal subgroup of *B* has order 1, 3 or 6, it follows that  $M \cap B = 1$ . Hence  $G_{3,2'} = \langle \tau_{3,2'}, \sigma_{3,2'}, \delta_{3,2'} \rangle = MB = M \rtimes B \cong$  $\mathbb{Z}_2^4 \rtimes S_3$ .

**Lemma 4.2.3.**  $X_{3,2} \cong X_{3,2'} \cong \mathbb{Z}_2^4 \rtimes (S_3 \wr \mathbb{Z}_2)$  and  $\Gamma_{3,2} \cong \Gamma_{3,2'}$ .

**Proof.** By calculation,  $\beta = (\alpha^3 \tau_{3,2})^2 = (\alpha^3 \tau_{3,2'})^2$ . Thus  $X_{3,2} = \langle \alpha, \tau_{3,2} \rangle$  and  $X_{3,2'} = \langle \alpha, \tau_{3,2'} \rangle$ . Let  $\mu = \alpha^5 (\tau_{3,2} \alpha)^2 (\alpha \tau_{3,2})^3 \alpha^2 \tau_{3,2} \alpha^2$ . Then  $\mu = (38)(510), \tau_{3,2} \mu = \mu \tau_{3,2}, \mu \beta = \beta \mu$  and  $\alpha \mu = (128956)$ (341011127). Set  $N = \langle \mu^{\sigma} | \sigma \in X_{3,2} \rangle = \langle \mu^{\alpha^{i}} | 1 \le i \le 12 \rangle$ . Then  $N \triangleleft X_{3,2}$  and  $N = \langle \mu, \mu^{\alpha}, \mu^{\alpha^{2}}, \mu^{\alpha^{3}} \rangle \cong \mathbb{Z}_{2}^{4}$ . Let  $\nu =$  $(\alpha^2 \tau_{3,2})^4$  and  $\omega = \alpha \tau_{3,2} \alpha^4 (\tau_{3,2} \alpha)^2 \alpha (\tau_{3,2} \alpha)^4$ . Then  $\nu = (185)(31012), \omega = (27)(46)(911)$  and  $\tau_{3,2} = (\alpha \mu)^3 \nu \alpha \mu \omega \alpha \nu \alpha$ . Thus

 $X_{3,2} = \langle \alpha, \tau_{3,2} \rangle = \langle \mu, \alpha \mu, \nu, \omega \rangle = N \langle \alpha \mu, \nu, \omega \rangle,$  $L := \langle \alpha \mu, \nu, \omega \rangle = \langle (\alpha \mu)^2, (\alpha \mu)^3, \nu, \omega, \omega^{\alpha \mu} \rangle = \langle (\alpha \mu)^2 \nu, (\alpha \mu)^3, \nu, \omega, \omega^{\alpha \mu} \rangle$  $= (\langle \nu, \omega^{\alpha \mu} \rangle \times \langle (\alpha \mu)^2 \nu^{-1}, \omega \rangle) \rtimes \langle (\alpha \mu)^3 \rangle \cong S_3 \wr \mathbb{Z}_2.$ 

Since  $|N||L|/|N \cap L| = |X_{3,2}| = |G_{3,2}||H| = |\mathbb{Z}_4 \times S_4||D_{12}| = 1152$ , we have  $N \cap L = 1$ . Thus  $X_{3,2} = N \rtimes L \cong \mathbb{Z}_2^4 \rtimes (S_3 \wr \mathbb{Z}_2)$ . The above argument for  $X_{3,2}$  also holds for  $X_{3,2'}$  by replacing  $\tau_{3,2}$  with  $\tau_{3,2'}$ . It follows that  $\alpha \mapsto \alpha$ ;  $\tau_{3,2} \mapsto \tau_{3,2'}$  gives an isomorphism  $\phi$  from  $X_{3,2}$  to  $X_{3,2'}$ . Then  $X_{3,2} \cong X_{3,2'} \cong \mathbb{Z}_2^4 \times (S_3 \wr \mathbb{Z}_2)$ . Since  $\beta = (\alpha^3 \tau_{3,2})^2 = (\alpha^3 \tau_{3,2'})^2$ , we know that  $\beta^{\phi} = \beta$ , and

 $H^{\phi} = H$ . It is easy to verify that  $\phi$  induces an isomorphism from  $\Gamma_{3,2} = \text{Cos}(X_{3,2}, H, \tau_{3,2})$  to  $\Gamma_{3,2'} = \text{Cos}(X_{3,2'}, H, \tau_{3,2'})$ .

#### 4.3. s = 4

In this case,  $H \cong S_4$ ,  $P \cong D_8$  and  $X \leq S_{24}$ . We may take  $H = \langle \alpha, \beta \rangle$  and  $P = \langle \alpha, \gamma \rangle$ , where  $\gamma = (\alpha^2)^\beta$  and

 $\alpha = (1234)(5678)(9101112)(13141516)(17181920)(21222324),$ 

 $\beta = (1\,18)(2\,11)(3\,6)(4\,15)(5\,16)(7\,10)(8\,21)(9\,22)(12\,17)(13\,24)(14\,19)(20\,23),$ 

 $\gamma = (123)(222)(321)(424)(519)(618)(717)(820)(913)(1016)(1115)(1214).$ 

Then the three orbits of *P* on  $\Omega$  are  $\Sigma_1 = \{1, 2, 3, 4, 21, 22, 23, 24\}$ ,  $\Sigma_2 = \{5, 6, 7, 8, 17, 18, 19, 20\}$  and  $\Sigma_3 = \{1, 2, 3, 4, 21, 22, 23, 24\}$ ,  $\Sigma_2 = \{5, 6, 7, 8, 17, 18, 19, 20\}$  $\{9, 10, 11, 12, 13, 14, 15, 16\}$ . It is easy to know that *H* has in total three non-trivial normal subgroups:  $K = \langle \alpha^2, \gamma \rangle \cong \mathbb{Z}_{2}^2$ ,  $\langle \alpha^2, \gamma, \alpha\beta \rangle \cong A_4$  and *H* itself. Noting that *K* is a characteristic subgroup of *H*, we have  $\bigcup_{1 \neq M \leq H} N_{S_{24}}(M) = N_{S_{24}}(K)$ .

Assume  $\tau \in I(24, H)$ . Then  $\tau \in N_{S_{24}}(P) \setminus N_{S_{24}}(K)$ . Noting that  $\langle \alpha^2 \rangle$  is the center of *P*, it follows that  $\tau$  normalizes  $\langle \alpha^2 \rangle$ , and so  $(\alpha^2)^{\tau} = \alpha^2$ . Since  $K = \{1, \alpha^2, \gamma, \alpha^2\gamma\}$  and *P* contains in total 5 involutions, say,  $\alpha^2, \gamma, \alpha\gamma, \alpha^2\gamma$  and  $\alpha^3\gamma$ , we have  $\{\gamma, \alpha^2 \gamma\}^{\tau} = \{\alpha \gamma, \alpha^3 \gamma\}$ . Recall the assumption that  $\Sigma_1 = \Sigma_1^{\tau}$  and  $1^{\tau} = 1$  before Section 4.1. We have

$$\gamma^{\Sigma_1} = (123)(222)(321)(424), \qquad (\alpha^2 \gamma)^{\Sigma_1} = (121)(224)(323)(422), (\alpha \gamma)^{\Sigma_1} = (122)(221)(324)(423), \qquad (\alpha^3 \gamma)^{\Sigma_1} = (124)(223)(322)(421).$$

Then  $\{21, 23\}^{\tau} = \{22, 24\}$ , and hence  $\tau^{\Sigma_1}$  is one of (24)(2122)(2324) and (24)(2124)(2223). Thus, either  $\gamma^{\tau} = \alpha^3 \gamma$  and  $(\alpha^2 \gamma)^{\tau} = \alpha \gamma$  for  $\tau^{\Sigma_1} = (24)(2122)(2324)$ , or  $\gamma^{\tau} = \alpha \gamma$  and  $(\alpha^2 \gamma)^{\tau} = \alpha^3 \gamma$  for  $\tau^{\Sigma_1} = (24)(2124)(2223)$ .

Assume that  $\tau$  interchanges  $\Sigma_2$  and  $\Sigma_3$ . Set  $\Delta = \Sigma_2 \cup \Sigma_3$  and consider the restrictions of  $\gamma$ ,  $\alpha^2 \gamma$ ,  $\alpha \gamma$  and  $\alpha^3 \gamma$  on  $\Delta$ . Then

 $\gamma^{\Delta} = (5\,19)(6\,18)(7\,17)(8\,20)(9\,13)(10\,16)(11\,15)(12\,14),$  $(\alpha^2 \gamma)^{\Delta} = (5\,17)(6\,20)(7\,19)(8\,18)(9\,15)(10\,14)(11\,13)(12\,16),$  $(\alpha \gamma)^{\Delta} = (5\,18)(6\,17)(7\,20)(8\,19)(9\,16)(10\,15)(11\,14)(12\,13),$  $(\alpha^{3}\gamma)^{\Delta} = (5\ 20)(6\ 19)(7\ 18)(8\ 17)(9\ 14)(10\ 13)(11\ 16)(12\ 15).$ 

Considering all possible images of 5 under  $\tau$ , it follows from  $\{\gamma, \alpha^2 \gamma\}^{\tau} = \{\alpha \gamma, \alpha^3 \gamma\}$  that one of the following eight cases occurs:

 $5^{\tau} = 9.$  $\{17, 19\}^{\tau} = \{14, 16\}; 5^{\tau} = 10, \{17, 19\}^{\tau} = \{13, 15\};$  $5^{\tau} = 11, \{17, 19\}^{\tau} = \{14, 16\}; 5^{\tau} = 12, \{17, 19\}^{\tau} = \{13, 15\};$  $5^{\tau} = 13, \{17, 19\}^{\tau} = \{10, 12\}; 5^{\tau} = 14, \{17, 19\}^{\tau} = \{9, 11\}; 5^{\tau} = 15, \{17, 19\}^{\tau} = \{10, 12\}; 5^{\tau} = 16, \{17, 19\}^{\tau} = \{9, 11\}.$ 

It is easy to check that there are exactly two possible  $\tau$ 's arising from each of the above eight cases. Then we get sixteen permutations, which are conjugate under  $N_{S_{24}}(H)$  to one of the following two permutations:

 $\tau_{4,2} = (2\,4)(5\,10)(6\,9)(7\,12)(8\,11)(13\,19)(14\,18)(15\,17)(16\,20)(21\,22)(23\,24),$  $\tau_{4,3} = (24)(59)(612)(711)(810)(1318)(1417)(1520)(1619)(2124)(2223).$ 

Now assume that  $\tau$  fixes every  $\Sigma_i$  set-wise. Consider the possible images of 5 and of 9 under  $\tau$ . Then  $5^{\tau} \in \{5, 6, 7, 8\}$ and  $9^{\tau} \in \{9, 10, 11, 12\}$ . If  $\tau^{\Sigma_1} = (24)(2122)(2324)$ , then  $\gamma^{\tau} = \alpha^3 \gamma$  and  $(\alpha^2 \gamma)^{\tau} = \alpha \gamma$ , and we get sixteen permutations. If  $\tau^{\Sigma_1} = (24)(2124)(2223)$ , then  $\gamma^{\tau} = \alpha \gamma$  and  $(\alpha^2 \gamma)^{\tau} = \alpha^3 \gamma$ , and we get another sixteen permutations. Further, these 32 permutations are conjugate under  $N_{S_{24}}(H)$  to one of the following two permutations:

 $\tau_{4,1} = (24)(56)(78)(910)(1112)(1416)(1820)(2122)(2324),$  $\tau_{4,4} = (24)(56)(78)(910)(1112)(1315)(1719)(2124)(2223).$ 

Set  $X_{4,\iota} = \langle \tau_{4,\iota}, \alpha, \beta \rangle$  and  $\Gamma_{4,\iota} = \text{Cos}(X_{4,\iota}, H, \tau_{4,\iota})$  for  $\iota = 1, 2, 3, 4$ . Let  $G_{4,\iota} = \{ \sigma \in X_{4,\iota} | 1^{\sigma} = 1 \}$  and  $S_{4,\iota} = G_{4,\iota} \cap H\tau_{4,\iota}H$ . Then  $\Gamma_{4,\iota} \cong \text{Cay}(G_{4,\iota}, S_{4,\iota})$  for  $1 \le \iota \le 4$ . By calculation, we have

 $S_{4,\iota} = \{\tau_{4,\iota}, \sigma_{4,\iota}, \delta_{4,\iota}\}, \qquad G_{4,\iota} = \langle \tau_{4,\iota}, \sigma_{4,\iota}, \delta_{4,\iota}\rangle \quad \text{for } 1 \le \iota \le 4,$ 

where  $\delta_{4,2} = \sigma_{4,2}^{-1}$ ,  $\delta_{4,3} = \sigma_{4,3}^{-1}$  and

$$\begin{split} \sigma_{4,1} &= (2\,24)(3\,18)(4\,13)(5\,10)(6\,20)(8\,23)(11\,22)(12\,16)(14\,17), \\ \delta_{4,1} &= (2\,7)(3\,10)(4\,24)(6\,18)(8\,13)(9\,20)(12\,14)(16\,21)(17\,22), \\ \sigma_{4,2} &= (2\,47\,15\,19\,11\,22\,17\,8\,3\,16\,6\,12\,18\,21\,23\,10\,9\,5\,20\,14\,13), \\ \sigma_{4,3} &= (2\,47\,18\,21\,23\,10\,8\,3\,16\,15\,19\,6\,12\,11\,22\,17\,13)(5\,9)(14\,20), \\ \sigma_{4,4} &= (2\,24)(3\,8)(4\,11)(5\,10)(6\,20)(7\,19)(13\,22)(14\,17)(18\,23), \\ \delta_{4,4} &= (2\,17)(3\,16)(4\,24)(7\,22)(8\,13)(9\,20)(10\,21)(11\,15)(12\,14). \end{split}$$

It is easy to know  $G_{4,1} \cong D_{14}$ . By [21], we have the following lemma.

**Lemma 4.3.1.**  $G_{4,1} \cong D_{14}, X_{4,1} = Aut(\Gamma_{4,1}) \cong PGL(2,7)$  and  $Cay(G_{4,1}, S_{4,1})$  is isomorphic to the point-line incidence graph of the seven-point plane.

**Lemma 4.3.2.**  $X_{4,2} \cong PGL(2, 23)$  and  $G_{4,2} \cong \mathbb{Z}_{23} \rtimes \mathbb{Z}_{22}$ .

**Proof.** Let  $\sigma = \tau_{4,2}\sigma_{4,2}^{11}$ . Then  $\sigma$  is a 23-cycle,  $\sigma^{\tau_{4,2}} = \sigma^{-1}$  and  $\sigma^{\sigma_{4,2}} = \sigma^{19}$ . It follows that  $G_{4,2}$  is a 2-transitive permutation group on  $\Omega \setminus \{1\}$  and  $G_{4,2}$  contains a normal regular subgroup  $\langle \sigma \rangle \cong \mathbb{Z}_{23}$ . Therefore,  $G_{4,2} \cong \mathbb{Z}_{23} \rtimes \mathbb{Z}_{22}$ . It implies that  $X_{4,2} = HG_{4,2}$  is a sharply 3-transitive permutation group of degree 24. Then  $X_{4,2} \cong PGL(2, 23)$  by [14, XI.2.6].

**Lemma 4.3.3.**  $X_{4,3} \cong \mathbb{Z}_3^7 \rtimes \text{PGL}(2,7)$  and  $G_{4,3} \cong \mathbb{Z}_3^6 \rtimes (\mathbb{Z}_7 \rtimes \mathbb{Z}_6)$ .

**Proof.** Let  $\pi = \tau_{4,3}\sigma_{4,3}$ . Set  $\mu = \sigma_{4,3}^2 \pi \sigma_{4,3}^{10} \pi^2 \sigma_{4,3}^2 \pi$ ,  $\nu = \sigma_{4,3}^2 \pi^2 \sigma_{4,3}^4 \pi \sigma_{4,3}^7$  and  $\omega = \pi^2 \sigma_{4,3}^3 (\pi \sigma_{4,3})^3 \pi$ . Then  $\mu = (2610)(142024)$ ,

 $\nu = (2\ 20\ 15\ 11\ 12\ 18)(3\ 8\ 16\ 10\ 14\ 17)(4\ 22\ 6\ 24\ 21\ 7)(5\ 9)(13\ 23),$  $\omega = (2\ 22\ 15\ 7\ 24\ 13\ 12)(3\ 14\ 19\ 8\ 10\ 16\ 17)(4\ 6\ 18\ 21\ 11\ 20\ 23),$ 

 $\omega^{\nu} = \omega^3$ ,  $\tau_{4,3} = \nu^2 \omega \nu$  and  $\sigma_{4,3} = \mu^2 \nu \mu \nu^4 \mu^2 \nu^2 \omega^2 \mu^2$ . Thus  $\langle \omega \rangle \lhd \langle \nu, \omega \rangle \cong \mathbb{Z}_7 \rtimes \mathbb{Z}_6$ , and  $G_{4,3} = \langle \tau_{4,3}, \sigma_{4,3} \rangle = \langle \mu, \nu, \omega \rangle = M \langle \omega, \nu \rangle$ , where  $M = \langle \mu^{\sigma} | \sigma \in \langle \omega, \nu \rangle \rangle \lhd G_{4,3}$ . By calculation, we have  $M = \langle \mu, \mu^{\nu^2}, \mu^{\nu^3}, \mu^{\nu^4}, \mu^{\nu^5}, \mu^{\omega^5} \rangle \cong \mathbb{Z}_3^6$ . Noting that  $\langle \omega, \nu \rangle$  has no nontrivial normal subgroups of order a power of 3, it yields  $M \cap \langle \omega, \nu \rangle = 1$ . Thus  $G_{4,3} = M \rtimes \langle \omega, \nu \rangle \cong \mathbb{Z}_3^6 \rtimes (\mathbb{Z}_7 \rtimes \mathbb{Z}_6)$ .

Let  $\mu$ ,  $\nu$  and  $\omega$  be as above. Then  $\mu = ((\tau_{4,3}\beta)^8((\tau_{4,3}\beta)^8)^{\alpha})^{\alpha\beta\alpha}$ . Set  $N = \langle \mu, \mu^{\alpha}, \mu^{\beta}, \mu^{\tau_{4,3}}, \mu^{\alpha^2}, \mu^{\alpha^3}, \mu^{\alpha\beta} \rangle$ . It is easily shown that  $N \cong \mathbb{Z}_3^7$ , and further that, for each  $\varepsilon$  of the seven generators of N, the conjugations of  $\varepsilon$  by  $\alpha$ ,  $\beta$  and  $\tau_{4,3}$  are contained in N. It implies that  $N = \langle \mu^{\sigma} | \sigma \in X_{4,3} \rangle \triangleleft X_{4,3}$  and M < N. Suppose that  $\nu^2 \in N$ . Then  $N = M \times \langle \nu^2 \rangle \triangleleft G_{4,3}$ . It follows that  $\langle \nu^2 \rangle \triangleleft \langle \nu, \omega \rangle$ . Noting that  $\langle \omega \rangle \triangleleft \langle \nu, \omega \rangle$ , it implies that  $\nu^2$  centralizes  $\omega$ . But  $\omega^{\nu^2} = \omega^9 = \omega^2$ , which is a contradiction. Thus  $\nu^2 \notin N$ .

Consider the normal quotient  $(\Gamma_{4,3})_N$  of  $\Gamma_{4,3}$  induced by N. Then  $(\Gamma_{4,3})_N$  is a cubic  $(X_{4,3}/N, 4)$ -transitive graph on 14 vertices. It follows from [21] that  $(\Gamma_{4,3})_N$  is (isomorphic to) the point-line incidence graph of the seven-point plane. Thus we conclude that  $X_{4,3}/N \cong \text{PGL}(2, 7)$ . In particular,  $|X_{4,3}| = 2^4 \cdot 3^8 \cdot 7$ , and  $N \langle \nu^2 \rangle$  is a Sylow 3-subgroup of  $X_{4,3}$ . Noting that  $N \cap \langle \nu^2 \rangle = 1$ , it follows from Gaschütz' Theorem (see [1, (10.4)] for example) that there is  $L \leq X_{4,3}$  with  $X_{4,3} = NL$  and  $N \cap L = 1$ . Thus  $L \cong X_{4,3}/N \cong \text{PGL}(2, 7)$  and  $X_{4,3} = N \rtimes L \cong \mathbb{Z}_3^7 \rtimes \text{PGL}(2, 7)$ .

**Lemma 4.3.4.**  $X_{4,4} = S_{24}$  and  $G_{4,4} \cong S_{23}$ .

**Proof.** Recall that  $G_{4,4} = \langle \tau_{4,4}, \sigma_{4,4}, \delta_{4,4} \rangle$  is the stabilizer of 1 in  $X_{4,4}$  acting on  $\Omega$ . It is easy to see that  $G_{4,4}$  is transitive on  $\Omega \setminus \{1\}$ . Then  $X_{4,4}$  is a 2-transitive, and hence primitive on  $\Omega$ . Let  $\rho = \tau_{4,4}^{\alpha}\beta\sigma_{4,4}$ . Then  $\rho \in X_{4,4}$  and  $X_{4,4}$  contains a 7-cycle  $\rho^{24} = (5\ 14\ 6\ 9\ 24\ 21\ 10)$ . Noting that  $\sigma_{4,4}$  is an odd permutation,  $X_{4,4} = S_{24}$  by [8, Theorem 3.3E], and so  $G_{4,4} \cong S_{23}$ .

4.4. s = 5

For completeness, this paper involves the following content constructing six known 5-transitive Cayley graphs (see [6] for example).

In this case  $H \cong S_4 \times \mathbb{Z}_2$ ,  $P \cong D_8 \times \mathbb{Z}_2$  and  $X \leq S_{48}$ . Since all isomorphic regular groups on  $\Omega = \{1, 2, ..., 48\}$  are conjugate in  $S_{48}$ , we may take  $H = \langle \alpha, \beta, \gamma \rangle \times \langle \delta \rangle$  and  $P = \langle \alpha, \beta, \delta \rangle$ , where  $\alpha^2 = \beta^{\gamma} \beta$  and

- $\alpha = (1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)$ 
  - (25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48),
- $\beta = (1\ 8)(2\ 7)(3\ 6)(4\ 5)(9\ 16)(10\ 15)(11\ 14)(12\ 13)(17\ 24)(18\ 23)(19\ 22)$ 
  - $(20\ 21)(25\ 32)(26\ 31)(27\ 30)(28\ 29)(33\ 40)(34\ 39)(35\ 38)(36\ 37)(41\ 48)(42\ 47)(43\ 46)(44\ 45),$
- $\gamma = (1\ 17\ 33)(2\ 39\ 20)(3\ 24\ 38)(4\ 34\ 23)(5\ 37\ 21)(6\ 19\ 40)(7\ 36\ 18)$

 $(8\ 22\ 35)(9\ 25\ 41)(10\ 47\ 28)(11\ 32\ 46)(12\ 42\ 31)(13\ 45\ 29)(14\ 27\ 48)(15\ 44\ 26)(16\ 30\ 43),$ 

$$\begin{split} \delta &= (1\ 9)(2\ 10)(3\ 11)(4\ 12)(5\ 13)(6\ 14)(7\ 15)(8\ 16)(17\ 25)(18\ 26)(19\ 27)\\ &\quad (20\ 28)(21\ 29)(22\ 30)(23\ 31)(24\ 32)(33\ 41)(34\ 42)(35\ 43)(36\ 44)(37\ 45)(38\ 46)(39\ 47)(40\ 48). \end{split}$$

Then *P* has three orbits on  $\Omega = \{1, 2, ..., 48\}$ , say,  $\Sigma_i = \{16(i-1) + j|1 \le j \le 16\}$ , where i = 1, 2 and 3. It is easy to know that *H* has in total eight non-trivial normal subgroups, say  $\langle \delta \rangle$ ,  $\langle \alpha^2, \beta \rangle$ ,  $\langle \alpha^2, \beta, \delta \rangle$ ,  $\langle \beta, \gamma \rangle$ ,  $\langle \beta, \gamma, \delta \rangle$ ,  $\langle \alpha, \beta, \gamma \rangle$ ,  $\langle \alpha \delta, \beta, \gamma \rangle$  and *H* itself, which are isomorphic to  $\mathbb{Z}_2$ ,  $\mathbb{Z}_2^2$ ,  $\mathbb{Z}_2^3$ ,  $A_4$ ,  $A_4 \times \mathbb{Z}_2$ ,  $S_4$ ,  $S_4$  and  $S_4 \times \mathbb{Z}_2$ , respectively. Note that  $\langle \delta \rangle$  is a characteristic subgroup of *H* and  $\langle a^2, \beta \rangle$  is a characteristic subgroup of  $\langle \alpha, \beta, \gamma \rangle$  and of  $\langle \alpha \delta, \beta, \gamma \rangle$ . It yields  $\bigcup_{1 \ne K \le H} N_{S_{48}}(K) = N_{S_{48}}(\langle \delta^2, \beta \rangle) \cup N_{S_{48}}(\langle \alpha^2, \beta, \delta \rangle)$ .

Let  $\tau \in I(48, H)$ . Then  $\tau \in N_{S_{48}}(P) \setminus (N_{S_{48}}(\langle \delta \rangle) \cup N_{S_{48}}(\langle \alpha^2, \beta \rangle) \cup N_{S_{48}}(\langle \alpha^2, \beta, \delta \rangle))$ . Since  $\tau$  normalizes P, we know that  $\tau$  normalizes the Frattini subgroup  $\Phi(P) = \langle \alpha^2 \rangle$  and the center  $Z(P) = \{1, \alpha^2, \delta, \alpha^2 \delta\}$  of P. It follows that  $(\alpha^2)^{\tau} = \alpha^2, \delta^{\tau} = \alpha^2 \delta$ , and hence  $\beta^{\tau} \notin \langle \alpha^2, \beta, \delta \rangle$  as  $\tau \notin N_{S_{48}}(\langle \alpha^2, \beta, \delta \rangle)$ . Considering the involutions in P, we have  $\beta^{\tau} \in \{\alpha\beta, \alpha^3\beta, \alpha\beta\delta, \alpha^3\beta\delta\}$ . Let

$$\begin{split} \iota_1 &= (2\,4)(5\,7)(10\,12)(13\,15)(17\,19)(22\,24)(25\,27)(30\,32)(33\,38)\\ &\quad (34\,37)(35\,40)(36\,39)(41\,46)(42\,45)(43\,48)(44\,47),\\ \iota_2 &= (2\,10)(4\,12)(5\,13)(7\,15)(18\,26)(20\,28)(21\,29)(23\,31)(34\,42)(36\,44)(37\,45)(39\,47). \end{split}$$

Then  $\iota_1, \iota_2 \in N_{S_{48}}(H) \cap N_{S_{48}}(P) \cap C_{S_{48}}(\langle \alpha^2, \beta, \delta \rangle)$ ,  $(\alpha\beta)^{\iota_1} = \alpha^3\beta$ ,  $(\alpha\beta\delta)^{\iota_1} = \alpha^3\beta\delta$  and  $(\alpha\beta)^{\iota_2} = \alpha\beta\delta$ . Further, both  $\iota_1$  and  $\iota_2$  fix every *P*-orbit set-wise. Thus, replacing  $\tau$  with  $\tau^{\iota_1}, \tau^{\iota_2}$  or  $\tau^{\iota_2\iota_1}$  if necessary, we may assume  $\beta^{\tau} = \alpha\beta$ . Then  $\beta = \beta^{\tau^2} = \alpha^{\tau}\beta^{\tau} = a^{\tau}\alpha\beta$ , and hence  $\alpha^{\tau} = \alpha^{-1}$ .

Recall the assumption that  $\Sigma_1 = \Sigma_1^{\tau}$  and  $1^{\tau} = 1$  before Section 4.1. Then  $(\alpha^2)^{\tau} = \alpha^2$  yields  $3^{\tau} = 3$ ,  $\delta^{\tau} = \alpha^2 \delta$  yields  $9^{\tau} = 11$  and  $\beta^{\tau} = \alpha\beta$  yields  $8^{\tau} = 7$ . It follows that  $5^{\tau} = 6$ ,  $4^{\tau} = 2$ ,  $16^{\tau} = 13$ ,  $14^{\tau} = 15$ ,  $10^{\tau} = 10$  and  $12^{\tau} = 12$ . Thus  $\tau^{\Sigma_1} = (24)(56)(78)(911)(1316)(1415)$ .

Note that *Z*(*P*) has eight orbits on  $\Omega \setminus \Sigma_1$  as follows:

 $\begin{array}{ll} \varSigma_{21} = \{17,\,19,\,25,\,27\}, & \varSigma_{22} = \{18,\,20,\,26,\,28\}, \\ \varSigma_{23} = \{21,\,23,\,29,\,31\}, & \varSigma_{24} = \{22,\,24,\,30,\,32\}, \\ \varSigma_{31} = \{33,\,35,\,41,\,43\}, & \varSigma_{32} = \{34,\,36,\,42,\,44\}, \\ \varSigma_{33} = \{37,\,39,\,45,\,47\}, & \varSigma_{34} = \{38,\,40,\,46,\,48\}, \end{array}$ 

which form a  $\tau$ -invariant partition of  $\Sigma_2 \cup \Sigma_3$ . Further, we have

$$\Sigma_{i1}^{\beta} = \Sigma_{i4}, \quad \Sigma_{i2}^{\beta} = \Sigma_{i3}, \quad \Sigma_{i1}^{\alpha\beta} = \Sigma_{i3}, \quad \Sigma_{i2}^{\alpha\beta} = \Sigma_{i4}, \quad \text{for } i = 2, 3.$$

Assume that  $\tau$  fixes every  $\Sigma_i$  set-wise. It follows from  $\beta^{\tau} = \alpha \beta$  that one of the following four cases occurs:

| $\Sigma_{21}^{\tau} = \Sigma_{21},$            | $\Sigma_{22}^{\tau}=\Sigma_{22},$              | $\Sigma_{23}^{\tau} = \Sigma_{24},$            | $\Sigma_{31}^{\tau} = \Sigma_{31},$ | $\Sigma_{32}^{\tau} = \Sigma_{32},$            | $\Sigma_{33}^{\tau} = \Sigma_{34};$ |
|------------------------------------------------|------------------------------------------------|------------------------------------------------|-------------------------------------|------------------------------------------------|-------------------------------------|
| $\Sigma_{21}^{\tau} = \Sigma_{21},$            | $\Sigma_{22}^{\tau}=\Sigma_{22},$              | $\Sigma_{23}^{\tau} = \Sigma_{24},$            | $\Sigma_{33}^{\tau} = \Sigma_{33},$ | $\Sigma_{34}^{\tau} = \Sigma_{34},$            | $\Sigma_{31}^{\tau} = \Sigma_{32};$ |
| $\Sigma_{23}^{\tau} = \Sigma_{23},$            | $\Sigma_{24}^{\tau} = \Sigma_{24},$            | $\Sigma_{21}^{\tau} = \Sigma_{22},$            | $\Sigma_{31}^{\tau} = \Sigma_{31},$ | $\Sigma_{32}^{\tau} = \Sigma_{32},$            | $\Sigma_{33}^{\tau} = \Sigma_{34};$ |
| $\Sigma_{23}^{\overline{\tau}} = \Sigma_{23},$ | $\Sigma_{24}^{\overline{\tau}} = \Sigma_{24},$ | $\Sigma_{21}^{\overline{\tau}} = \Sigma_{22},$ | $\Sigma_{33}^{\tau} = \Sigma_{33},$ | $\Sigma_{34}^{\overline{\tau}} = \Sigma_{34},$ | $\Sigma_{31}^{\tau} = \Sigma_{32}.$ |

Combining with  $\delta^{\tau} = \alpha^2 \delta$ , each case gives 4 choices of  $\tau^{\Sigma_2 \cup \Sigma_3}$ . Thus we get 16 possible  $\tau$ 's, which are conjugate under  $N_{S_{48}}(H)$  to one of the following two permutations:

 $\begin{aligned} \tau_{5,1} = & (2\,4)(5\,6)(7\,8)(9\,11)(13\,16)(14\,15)(17\,20)(18\,19)(21\,23)(25\,26)(27\,28) \\ & (30\,32)(33\,36)(34\,35)(37\,39)(41\,42)(43\,44)(46\,48), \text{ or} \\ \tau_{5,2} = & (2\,4)(5\,6)(7\,8)(9\,11)(13\,16)(14\,15)(17\,19)(21\,24)(22\,23)(26\,28)(29\,30) \\ & (31\,32)(33\,35)(37\,40)(38\,39)(42\,44)(45\,46)(47\,48). \end{aligned}$ 

Now assume that  $\Sigma_2^{\tau} = \Sigma_3$ . Then one of the following four cases holds:

| $\Sigma_{21}^{\tau} = \Sigma_{31},$            | $\Sigma_{22}^{\tau}=\Sigma_{32},$              | $\Sigma_{23}^{\tau} = \Sigma_{34},$            | $\Sigma_{24}^{\tau} = \Sigma_{33};$            |
|------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|
| $\Sigma_{21}^{\tau} = \Sigma_{32},$            | $\Sigma_{22}^{\tau} = \Sigma_{31},$            | $\Sigma_{23}^{\tau} = \Sigma_{33},$            | $\Sigma_{24}^{\tau} = \Sigma_{34};$            |
| $\Sigma_{21}^{\overline{\tau}} = \Sigma_{33},$ | $\Sigma_{22}^{\overline{\tau}} = \Sigma_{34},$ | $\Sigma_{23}^{\overline{\tau}} = \Sigma_{32},$ | $\Sigma_{24}^{\overline{\tau}} = \Sigma_{31};$ |
| $\Sigma_{21}^{\overline{\tau}} = \Sigma_{34},$ | $\Sigma_{22}^{\overline{\tau}} = \Sigma_{33},$ | $\Sigma_{23}^{\tilde{\tau}} = \Sigma_{31},$    | $\Sigma_{24}^{\overline{\tau}} = \Sigma_{32}.$ |

Further, each case gives four choices of  $\tau^{\Sigma_2 \cup \Sigma_3}$ , and then we get 16 possible  $\tau$ 's, which are conjugate under N<sub>S48</sub>(*H*) to one of the following permutations:

$$\begin{split} \tau_{5,3} &= (2\,4)(5\,6)(7\,8)(9\,11)(13\,16)(14\,15)(17\,35)(18\,34)(19\,33)(20\,36) \\ &\quad (21\,40)(22\,39)(23\,38)(24\,37)(25\,41)(26\,44)(27\,43)(28\,42)(29\,46)(30\,45)(31\,48)(32\,47), \\ \tau_{5,4} &= (2\,4)(5\,6)(7\,8)(9\,11)(13\,16)(14\,15)(17\,34)(18\,33)(19\,36)(20\,35) \\ &\quad (21\,37)(22\,40)(23\,39)(24\,38)(25\,44)(26\,43)(27\,42)(28\,41)(29\,47)(30\,46)(31\,45)(32\,48), \\ \tau_{5,5} &= (2\,4)(5\,6)(7\,8)(9\,11)(13\,16)(14\,15)(17\,45)(18\,48)(19\,47)(20\,46) \\ &\quad (21\,42)(22\,41)(23\,44)(24\,43)(25\,39)(26\,38)(27\,37)(28\,40)(29\,36)(30\,35)(31\,34)(32\,33), \\ \tau_{5,6} &= (2\,4)(5\,6)(7\,8)(9\,11)(13\,16)(14\,15)(17\,46)(18\,45)(19\,48)(20\,47) \\ &\quad (21\,41)(22\,44)(23\,43)(24\,42)(25\,40)(26\,39)(27\,38)(28\,37)(29\,35)(30\,34)(31\,33)(32\,36). \end{split}$$

Set  $X_{5,1} = \langle \alpha, \beta, \delta, \gamma, \tau_{5,1} \rangle$ ,  $\Gamma_{5,1} = \text{Cos}(X_{5,1}, H, \tau_{5,1})$ ,  $G_{5,1} = \{\sigma \in X_{5,1} | 1^{\sigma} = 1\}$  and  $S_{5,1} = \{\sigma \in H\tau_{5,1}H | 1^{\sigma} = 1\}$ , i = 1, 2, 3, 4, 5, 6. Then  $\Gamma_{5,1} \cong \text{Cay}(G_{5,1}, S_{5,1})$ . By calculation,  $S_{5,1} = \{\tau_{5,1}, \sigma_{5,1}, \delta_{5,1}\}$  and  $G_{5,1} = \langle \tau_{5,1}, \sigma_{5,1}, \delta_{5,1} \rangle$  for  $1 \le i \le 6$ , where  $\delta_{5,j} = \sigma_{5,1}^{-1}$  for  $j \ge 3$ , and

$$\begin{split} \sigma_{5,1} &= (2\,24)(3\,37)(4\,7)(5\,19)(8\,34)(9\,14)(10\,27)(11\,42)(13\,32)(16\,45)(18\,21)\\ &\quad (20\,33)(23\,38)(25\,30)(28\,46)(31\,41)(36\,39)(43\,48) = \gamma\alpha^2\tau_{5,1}\beta\gamma\alpha,\\ \delta_{5,1} &= (2\,7)(3\,20)(4\,35)(5\,38)(6\,21)(9\,16)(11\,29)(12\,46)(13\,43)(14\,28)(17\,39)\\ &\quad (18\,23)(24\,34)(25\,42)(27\,30)(32\,47)(36\,37)(41\,48) = \alpha\beta\gamma\tau_{5,1}\gamma,\\ \sigma_{5,2} &= (2\,7)(3\,21)(4\,38)(5\,35)(6\,20)(9\,16)(11\,28)(12\,43)(13\,46)(14\,29)(17\,24)\\ &\quad (18\,23)(19\,36)(22\,37)(27\,45)(30\,44)(41\,48)(42\,47) = \alpha\beta\gamma\tau_{5,2}\alpha\gamma,\\ \delta_{5,2} &= (2\,19)(3\,34)(4\,7)(5\,24)(8\,37)(9\,14)(10\,32)(11\,45)(13\,27)(16\,42)(18\,40)\\ &\quad (21\,35)(25\,30)(26\,43)(28\,31)(29\,48)(33\,38)(36\,39) = \alpha^2\delta\gamma\tau_{5,2}\gamma\alpha\delta,\\ \sigma_{5,3} &= (2\,4\,19\,18\,36\,40\,22\,21\,8\,6\,34\,23\,39\,20\,3\,37\,35\,5\,24\,33\,17\,38)(9\,14\,45\,48\,25\\ &\quad 41\,30\,26\,47\,31\,44\,43\,10\,15\,12\,32\,46\,13\,27\,29\,11\,42\,28\,16) = \delta\gamma^2\tau_{5,3}\gamma^2\delta,\\ \sigma_{5,4} &= (2\,424\,20\,8\,6\,37\,21\,3\,34\,33\,17\,23\,39\,38\,5\,19\,35)(9\,14\,42\,46\,10\,15\,12\,27\,48\\ &\quad 25\,28\,11\,45\,26\,47\,41\,30\,43\,13\,32\,31\,44\,29\,16)(18\,36)(22\,40) = \alpha\gamma\tau_{5,4}\gamma\alpha,\\ \sigma_{5,5} &= (2\,5\,4\,40\,25\,10\,12\,41\,36\,23\,30\,15\,48\,24\,38\,44\,26\,34\,3\,20\,27\,46\,37\,6\,8\,21\,42\\ &\quad 14\,9\,16\,28\,22)(7\,33\,45\,11\,29\,39\,18\,47\,31\,19\,35\,32\,43\,17) = \beta\gamma\tau_{5,5}\gamma\delta,\\ \sigma_{5,6} &= (2\,5\,4\,33\,27\,46\,19\,35\,42\,11\,28\,37\,3\,21\,25\,15\,41\,22\,7\,40\,47\,31\,36\,23\,45\,14\,9\\ &\quad 16\,29\,24\,38\,30\,10\,12\,48\,34\,6\,8\,20\,44\,26\,17)(18\,32\,43\,39) = \delta\alpha\beta\gamma^2\tau_{5\,6}\gamma^2\alpha^3 \end{split}$$

In the following we determine  $X_{5,\iota}$  and  $G_{5,\iota}$ . Noting that  $\alpha$ ,  $\beta$ ,  $\delta$ ,  $\gamma$  and  $\tau_{5,\iota}$  are all even permutations, we have  $G_{5,\iota} \leq X_{5,\iota} \leq A_{48}$  for  $1 \leq \iota \leq 6$ .

**Lemma 4.4.1.**  $G_{5,1} \cong (\mathbb{Z}_7 \times \text{PSL}(2,7)) \rtimes \mathbb{Z}_2$  and  $X_{5,1} \cong (\text{PSL}(2,7) \times \text{PSL}(2,7)) \rtimes \mathbb{Z}_2^2$ .

**Proof.** Let  $\mu = (\delta_{5,1}^{\tau_{5,1}} \sigma_{5,1})^3$ . Then

 $\mu = (2\,4\,35\,7\,24\,8\,34)(3\,33\,20\,37\,39\,17\,36)(5\,23\,21\,6\,18\,38\,19),$ 

and  $\mu^{\tau_{5,1}} = \mu^{-1}$ ,  $\mu^{\sigma_{5,1}} = \mu^{-1}$ ,  $\mu^{\delta_{5,1}} = \mu^{-1}$ . Then  $\langle \mu \rangle \lhd G_{5,1}$ . Further,  $\delta_{5,1} = ((\sigma_{5,1}\delta_{5,1})^5 \tau_{5,1})^2 (\sigma_{5,1}\delta_{5,1})^2 \tau_{5,1}$ . Thus

 $G_{5,1} = \langle \tau_{5,1}, \sigma_{5,1}, \delta_{5,1} \rangle = \langle \mu, \mu \sigma_{5,1} \delta_{5,1}, \tau_{5,1} \rangle = \langle \mu \rangle \langle \mu \sigma_{5,1} \delta_{5,1}, \tau_{5,1} \rangle.$ 

Let  $\nu = \mu \sigma_{5,1} \delta_{5,1}$ ,  $\omega = \tau_{5,1} \tau_{5,1}^{\nu}$ ,  $N = \langle \nu, \omega \rangle$  and  $L = \langle \nu, \omega, \tau_{5,1} \rangle$ . Then

 $\nu = (9\,28\,12\,46\,14\,16\,45)(10\,30\,42\,29\,11\,25\,27)(13\,47\,32\,43\,41\,31\,48),$ 

 $\omega = (9\ 11)(10\ 12)(13\ 15)(14\ 16)(25\ 27)(26\ 28)(29\ 31)(30\ 32)(41\ 43)(42\ 44)(45\ 47)(46\ 48).$ 

Further,  $\nu^{\tau_{5,1}} = \nu\omega$ ,  $\tau_{5,1}$  centralizes  $\omega$  and  $\mu$  centralizes N; in particular,  $L = N \rtimes \langle \tau_{5,1} \rangle$  and hence  $G_{5,1} = (\langle \mu \rangle \times N) \rtimes \langle \tau_{5,1} \rangle$ . Note that  $N = \langle \nu^4, \omega \rangle$  has the same presentation as PSL(2, 7). Then  $N \cong$  PSL(2, 7) (see [7] for example), and hence  $G_{5,1} \cong (\mathbb{Z}_7 \times \text{PSL}(2,7)) \rtimes \mathbb{Z}_2$ .

Solution (a) we have  $X_{5,1} = (\omega, m, \nu)$ . Then  $M = \langle \nu, \omega, \nu^{\delta}, \omega^{\delta} \rangle = N \times N^{\delta}$  and  $|X_{5,1} : M| = |X_{5,1}|/|M| = |G_{5,1}||H|/|M| = 4$ . Considering the transitive permutation representation of  $X_{5,1}$  on the right cosets of M, we have  $X_{5,1}/\text{Core}_{X_{5,1}}(M) \lesssim S_4$ . It follows that  $M \triangleleft X_{5,1}$ . It is easy to know that M has exactly two orbits, say  $\Delta = \{i + 16j | 1 \le i \le 8, j = 0, 1, 2\}$ and  $\Theta = \Omega \setminus \Delta$ . Further,  $\Delta^{\delta} = \Theta$ ; in particular,  $\delta \notin M$ . Consider the restrictions  $M^{\Delta}$  and  $M^{\Theta}$  of M on  $\Delta$  and  $\Theta$ , respectively. It follows that  $M^{\Delta} = N^{\delta} \le \text{Alt}(\Delta)$  and  $M^{\Theta} = N \le \text{Alt}(\Theta)$ . Let  $\rho = \tau_{5,1}^{\nu}$ . Then  $\nu^{\rho} = \omega \nu, \omega^{\rho} = \omega$ and  $\delta \rho = \rho \delta$ . By calculation,  $\rho^{\Delta} = (24)(56)(78)(1720)(1819)(2123)(3336)(3435)(3739)$  and  $\rho^{\Theta} = (1012)(1314)$ (1516)(2528)(2627)(2931)(4144)(4243)(4547) are odd permutations. Then  $\rho \notin M$ ,  $\langle N, \rho \rangle = N \langle \rho \rangle \cong \text{PGL}(2,7)$ ,  $\langle N^{\delta}, \rho \rangle = N^{\delta} \langle \rho \rangle \cong \text{PGL}(2,7)$  and  $X_{5,1} = M \rtimes \langle \rho, \delta \rangle \cong (\text{PSL}(2,7) \rtimes \text{PSL}(2,7)) \rtimes \mathbb{Z}_2^2$ .

**Lemma 4.4.2.**  $G_{5,2} \cong (A_{23} \times A_{24}) \rtimes \mathbb{Z}_2$  and  $X_{5,2} \cong (A_{24} \times A_{24}) \rtimes \mathbb{Z}_2^2$ .

**Proof.** Let  $\mu = \sigma_{5,2}\tau_{5,2}$  and  $\nu = \delta_{5,2}\tau_{5,2}$ . Then  $\mu^{\tau_{5,2}} = \mu^{-1}$ ,  $\nu^{\tau_{5,2}} = \nu^{-1}$  and  $L := \langle \mu, \nu \rangle \triangleleft G_{5,2} = \langle \mu, \nu \rangle \langle \tau_{5,2} \rangle$ , where

- $\mu = (28743938)(32419361721)(53335620)(91345274616112628)$ 
  - (1243)(143042484147442915)(1822403723)(3132),
- $\nu = (2\ 17\ 19\ 4\ 8\ 40\ 18\ 37\ 7)(3\ 34)(5\ 21\ 33\ 39\ 36\ 38\ 35\ 24\ 6)(9\ 15\ 14\ 11\ 46\ 45)$
- $(10\,31\,26\,43\,28\,32)(13\,27\,16\,44\,42)(22\,23)(25\,29\,47\,48\,30).$

It is easy to know that *L* has two orbits, say  $\Delta_1 = \Delta \setminus \{1\}$  and  $\Theta$  on  $\Omega \setminus \{1\}$ , where  $\Delta$  and  $\Theta$  are given as in Lemma 4.4.1. Consider the restrictions of  $\mu$  and  $\nu$  on  $\Delta_1$  and  $\Theta$ . We know that  $\mu^{\Delta_1}$  and  $\nu^{\Delta_1}$  are even permutations (on  $\Delta_1$ ),  $\mu^{\Theta}$  and  $\nu^{\Theta}$  are even permutations (on  $\Theta$ ). It implies  $L \leq L^{\Delta_1} \times L^{\Theta} \leq \text{Alt}(\Delta_1) \times \text{Alt}(\Theta) \cong A_{23} \times A_{24}$ . By calculation,

$$\begin{split} \mu^{\Delta_1} \nu^{\Delta_1} &= (2\,40\,7\,8)(3\,6\,20\,21\,34)(4\,36\,19\,38\,17\,33\,24)(5\,39\,35)(18\,23\,37\,22), \\ \mu^{\Delta_1} \nu^{\Delta_1} \mu^{\Delta_1} &= (2\,37\,40\,4\,17\,35\,33\,19)(3\,20)(5\,38\,21\,34\,24\,39\,6), \\ (\mu^{\Delta_1} \nu^{\Delta_1})^4 &= (3\,34\,21\,20\,6)(4\,17\,36\,33\,19\,24\,38)(5\,39\,35), \\ ((\mu\nu\mu)^8\nu)^{36} &= (5\,35\,24\,36\,38\,33\,39)(13\,27\,16\,44\,42). \end{split}$$

It follows that  $L^{\Delta_1}$  is 2-transitive on  $\Delta_1$  and contains a 3-cycle (5 39 35). Then  $L^{\Delta_1} = \text{Alt}(\Delta_1) \cong A_{23}$  by [8, Theorem 3.3A]. A similar argument yields  $L^{\Theta} = \text{Alt}(\Theta) \cong A_{24}$ . Further, *L* contains a 7-cycle  $\iota = (5 35 24 36 38 33 39)$  and a 5-cycle  $\kappa = (13 27 16 44 42)$ . Since  $\iota \in L^{\Delta_1}$  and  $\kappa \in L^{\Theta}$ , we have  $\iota^{\sigma} = \iota^{\sigma^{\Delta_1}}$  and  $\kappa^{\sigma} = \kappa^{\sigma^{\Theta}}$  for any  $\sigma \in L$ . Take  $\epsilon = (5 35 24)(33 38)(36 39) \in L^{\Delta_1}$  and  $\varepsilon = (13 16 44)$ . Then  $u^{\epsilon} = (5 24 35) \in L$  and  $\kappa \kappa^{\varepsilon} = (13 44 16) \in L$ . Consider the conjugations of (5 24 35) and (13 44 16) under  $L^{\Delta_1}$  and  $L^{\Theta}$ , respectively. We conclude that *L* contains all 3-cycles of  $L^{\Delta_1}$  and of  $L^{\Theta}$ . Then  $L^{\Delta_1} \leq L$  and  $L^{\Theta} \leq L$ , so  $L = L^{\Delta_1} \times L^{\Theta} = \text{Alt}(\Delta_1) \times \text{Alt}(\Theta) \cong A_{23} \times A_{24}$ . Note that  $\tau_{5,2}^{\Delta_1}$  are odd permutations. Then  $\tau_{5,2} \notin L$ . Thus  $G_{5,2} = L\langle \tau_{5,2} \rangle \equiv L \rtimes \langle \tau_{5,2} \rangle \cong (A_{23} \times A_{24}) \rtimes \mathbb{Z}_2$ . Set  $N = \langle \mu^{\Theta}, \nu^{\Theta} \rangle$  and  $M = \langle N, N^{\delta} \rangle = N \times N^{\delta}$ . A similar argument as in the proof of Lemma 4.4.1 leads to  $M^{\delta} = M^{\delta} = M^{\delta} \otimes M^{\delta}$ 

Set  $N = \langle \mu^{\Theta}, \nu^{\Theta} \rangle$  and  $M = \langle N, N^{\delta} \rangle = N \times N^{\delta}$ . A similar argument as in the proof of Lemma 4.4.1 leads to  $|X_{5,2}: M| = 4$  and  $M \triangleleft X_{5,2}$ . Let  $o = (10\,12)(25\,27), \pi = (5\,6)(7\,8)(17\,19)(21\,24)(22\,23)(33\,35)(37\,40)(38\,39)$  and  $\varpi = (9\,11)(13\,16)(14\,15)(25\,27)(26\,28)(29\,30)(31\,32)(42\,44)(45\,46)(47\,48)$ . We have  $\pi \in M^{\Delta} = N^{\delta}$  and  $o, \varpi \in M^{\Theta} = N$ , and so  $\rho := (2\,4)(10\,12) = \tau_{5,2}o\pi \varpi \in X_{5,2}$ . It is easy to see that  $\rho, \delta \notin M$  and  $\rho\delta = \delta\rho$ . Then  $X_{5,2} = M \rtimes \langle \rho, \delta \rangle \cong (A_{24} \times A_{24}) \rtimes \mathbb{Z}_2^2$ .

**Lemma 4.4.3.**  $G_{5,3} \cong (\mathbb{Z}_{23} \rtimes \mathbb{Z}_{11} \times \text{PSL}(2, 23)) \rtimes \mathbb{Z}_2$  and  $X_{5,3} \cong (\text{PSL}(2, 23) \times \text{PSL}(2, 23)) \rtimes \mathbb{Z}_2^2$ .

**Proof.** Let  $\omega = (\tau_{5,3}\tau_{5,3}^{\sigma_{5,3}})^{12}$ ,  $\mu = (\tau_{5,3}\tau_{5,3}^{\sigma_{5,3}})^{23}$ ,  $\upsilon = ((\tau_{5,3}\sigma_{5,3})^6(\tau_{5,3}\tau_{5,3}^{\sigma_{5,3}})^{23})^{12}$ ,  $\nu = ((\tau_{5,3}\sigma_{5,3})^6(\tau_{5,3}\tau_{5,3}^{\sigma_{5,3}})^{23})^{11}$  and  $\rho = \omega^5 \tau_{5,3}$ . By calculation, we have

$$\begin{split} & \omega = (2\ 6\ 19\ 38\ 35\ 36\ 18\ 21\ 24\ 3\ 37\ 40\ 34\ 20\ 17\ 23\ 33\ 5\ 47\ 39\ 22\ 8), \\ & \upsilon = (2\ 3\ 19\ 37\ 17\ 33\ 5\ 18\ 34\ 23\ 36)(6\ 22\ 24\ 20\ 35\ 40\ 38\ 8\ 39\ 7\ 21), \\ & \mu = (9\ 43\ 32\ 47\ 27\ 11\ 16\ 42\ 15\ 14\ 28\ 13)(10\ 46\ 48\ 44\ 14\ 5\ 12\ 30\ 25\ 26\ 31\ 29), \\ & \upsilon = (9\ 10\ 27\ 32\ 16\ 25\ 11\ 43\ 15\ 45\ 41\ 12)(13\ 28\ 30\ 48\ 31\ 42\ 26\ 46\ 29\ 47\ 44\ 14), \\ & \rho = (2\ 20)(3\ 35)(5\ 7)(6\ 34)(8\ 17)(18\ 21)(19\ 40)(22\ 23)(24\ 36)(33\ 39)(37\ 38) \\ & (9\ 11)(13\ 16)(14\ 15)(25\ 41)(26\ 44)(27\ 43)(28\ 42)(29\ 46)(30\ 45)(31\ 48)(32\ 47), \\ & G_{5,3} = \langle \tau_{5,3}, \sigma_{5,3} \rangle = \langle \tau_{5,3}, \tau_{5,3}\sigma_{5,3}, \tau_{5,3}\tau_{5,3}^{\sigma_{5,3}} \rangle = \langle \rho, (\tau_{5,3}\sigma_{5,3})^6, \mu, \omega \rangle \\ & = \langle \rho, (\tau_{5,3}\sigma_{5,3})^6\mu, \mu, \omega \rangle = \langle \rho, \nu, \upsilon, \mu, \omega \rangle. \end{split}$$

Further,  $\omega^{\nu} = \omega^{12}$ ,  $\omega^{\rho} = \omega^{-1}$ ,  $v^{\rho} = v$ ,  $\mu^{\rho} = \mu^{-1}$  and  $v^{\rho} = \mu^{9}v(\mu^{2}v^{2})^{2}\mu v\mu$ . Set  $L = \langle \omega, v \rangle$  and  $N = \langle \mu, v \rangle$ . Then  $L\langle \rho \rangle \cong \mathbb{Z}_{23} \rtimes \mathbb{Z}_{22}$  and  $LN = L \times N \triangleleft G_{5,3}$ . Note that LN has exactly two orbits on  $\Omega \setminus \{1\}$  given as in the proof of Lemma 4.4.2, say  $\Delta_{1}$  and  $\Theta$ . Considering the restrictions of  $\rho$ , L and N on  $\Delta_{1}$  and  $\Theta$ , we have  $\rho \notin LN$ . Thus  $G_{5,3} = (L \times N) \rtimes \langle \rho \rangle$ . Let  $\pi = (\mu v)^{2}v^{4}\mu^{4}$  and  $\varpi = \mu^{8}v^{2}\mu^{4}v^{4}\mu^{2}$ . Then  $\mu = \pi^{17}\varpi\pi^{7}\varpi\pi^{2}\varpi\pi^{3}\varpi$  and  $v = \pi^{20}\varpi\pi^{9}\varpi\pi$ , and hence  $N = \langle \pi, \varpi \rangle$ . Further, calculation shows that  $\pi^{23} = (\pi^{4}\varpi\pi^{12}\varpi)^{2} = (\pi \varpi)^{3} = \varpi^{2} = 1$ . Then  $N \cong PSL(2, 23)$  and  $N\langle \rho \rangle \cong PGL(2, 23)$ . Thus  $G_{5,3} \cong (\mathbb{Z}_{23} \rtimes \mathbb{Z}_{11} \times PSL(2, 23)) \rtimes \mathbb{Z}_{2}$ .

Let  $M = \langle N, N^{\delta} \rangle$ . Then  $\delta \notin M$  and  $M = N \times N^{\delta}$  has index 4 in  $X_{5,3}$ , and then  $M \triangleleft X_{5,3}$ . Consider the restrictions of M on  $\Delta = \Delta_1 \cup \{1\}$  and on  $\Theta$ . We conclude that all elements of  $M^{\Delta}$  and  $M^{\Theta}$  are even permutations. It implies that  $\rho \notin M$ . Note that  $\langle \rho, \delta \rangle \cong D_{92}$  and  $|M \cap \langle \rho, \delta \rangle| = 23$ . It follows that  $X_{5,3} = M \langle \rho, \delta \rangle = M \rtimes \langle (\rho \delta)^{23}, \delta \rangle \cong (\text{PSL}(2, 23) \times \text{PSL}(2, 23)) \rtimes \mathbb{Z}_2^2$ .

**Lemma 4.4.4.**  $G_{5,4} \cong (\mathbb{Z}_3^6 \rtimes (\mathbb{Z}_7 \rtimes \mathbb{Z}_3) \times \mathbb{Z}_3^7 \rtimes \text{PSL}(2,7)) \rtimes \mathbb{Z}_2 \text{ and } X_{5,4} \cong (\mathbb{Z}_3^7 \rtimes \text{PSL}(2,7) \times \mathbb{Z}_3^7 \rtimes \text{PSL}(2,7)) \rtimes \mathbb{Z}_2^2.$ 

**Proof.** Let  $\zeta = \tau_{5,4}\sigma_{5,4}$  and  $\xi = \tau_{5,4}\tau_{5,4}^{\sigma_{5,4}}$ . Then, by calculation, we have

$$\begin{split} \zeta &= (2\,24\,5\,37\,3\,34\,23\,38\,20)(6\,19\,18\,17\,33\,36\,35\,8\,7)\\ &\quad (9\,45\,44\,28\,30\,10\,15\,42\,48\,31\,26\,13)(11\,14\,12\,27\,46\,43\,47\,16\,32\,25\,29\,41),\\ \xi &= (2\,24\,39\,33\,35\,5\,7)(3\,21\,19\,17\,34\,36\,37)(4\,8\,6\,20\,18\,23\,38)(9\,30\,48)\\ &\quad (10\,43\,44\,31\,14\,15\,45\,25\,26)(11\,32\,46)(12\,42\,27)(13\,41\,29)(16\,47\,28). \end{split}$$

Then  $G_{5,4} = \langle \tau_{5,4}, \sigma_{5,4} \rangle = \langle \tau_{5,4}, \tau_{5,4}\sigma_{5,4}, \tau_{5,4}\tau_{5,4}^{\sigma_{5,4}} \rangle = \langle \tau_{5,4}, \zeta, \xi \rangle$ . Further,  $\xi^{\tau_{5,4}} = \xi^{-1}$  and  $\zeta^{\tau_{5,4}} = \zeta\xi^{-1}$ . Set  $L = \langle \zeta, \xi \rangle$ . Then  $L \triangleleft G_{5,4}$ . Since both  $\zeta$  and  $\xi$  fix 22 and 40, we have  $\tau_{5,4} \notin L$ . Thus  $G_{5,4} = L \rtimes \langle \tau_{5,4}, \rangle$ . Let  $\upsilon = (\xi^2 \zeta\xi)^4$ ,  $\omega = \xi^9$ ,  $\mu = (\xi^2 \zeta\xi)^9$ ,  $\nu = \xi^7$ ,  $K = \langle \upsilon, \omega \rangle$  and  $N = \langle \mu, \nu \rangle$ . Then

$$\begin{split} L &= \langle \zeta, \xi \rangle = \langle \xi^2 \zeta \xi, \xi \rangle = \langle \upsilon, \omega, \mu, \nu \rangle = \langle \upsilon, \omega \rangle \times \langle \mu, \nu \rangle = K \times N, \\ \upsilon &= (2\,8\,38\,23\,19\,3\,37\,33\,24)(4\,6\,20\,39\,35\,5\,21\,17\,34), \\ \omega &= (2\,39\,35\,7\,24\,33\,5)(3\,19\,34\,37\,21\,17\,36)(4\,6\,18\,38\,8\,20\,23), \\ \mu &= (9\,14\,31\,27)(10\,16\,48\,43)(11\,44\,42\,12)(13\,29\,32\,15)(25\,45\,41\,30)(26\,28\,47\,46), \\ \upsilon &= (9\,30\,48)(10\,25\,15\,31\,43\,26\,45\,14\,44)(11\,32\,46)(12\,42\,27)(13\,41\,29)(16\,47\,28). \end{split}$$

Let  $\eta = \upsilon^7 \omega^{-1} \upsilon^3 \omega^2 \upsilon^3 \omega$  and  $\epsilon = \upsilon^3$ . Then  $\epsilon^\eta = \epsilon^{\omega^2}$ ,  $\omega^\eta = \omega^4$  and  $\epsilon \epsilon^\omega \epsilon^{\omega^2} \epsilon^{\omega^3} \epsilon^{\omega^4} \epsilon^{\omega^5} \epsilon^{\omega^6} = 1$ . It follows that  $B := \langle \epsilon^\sigma | \sigma \in L \rangle \cong \mathbb{Z}_3^6$ ,  $Q := \langle \omega, \eta \rangle \cong \mathbb{Z}_7 \rtimes \mathbb{Z}_3$ . Noting that Q has no normal subgroups of order 3, we have  $B \cap Q = 1$ . Thus  $K = \langle \upsilon, \omega \rangle = \langle \upsilon^7, \upsilon^3, \omega \rangle = \langle \upsilon^7 \omega^{-1} \upsilon^3 \omega^2 \upsilon^3 \omega, \upsilon^3, \omega \rangle = \langle \epsilon, \eta, \omega \rangle = B \rtimes Q \cong \mathbb{Z}_3^6 \rtimes (\mathbb{Z}_7 \rtimes \mathbb{Z}_3)$ . Let  $\epsilon = \upsilon^3$ ,  $\pi = (\upsilon^{-1} \upsilon^\mu)^3$  and  $\rho = (\epsilon^2)^\mu \pi \epsilon^2 \pi^{-1} \upsilon \pi^{-1}$ . Then

$$\begin{split} \varepsilon &= (10\,31\,45)(14\,25\,43)(15\,26\,44), \\ \pi &= (9\,31\,13\,47\,25\,32\,15)(10\,42\,29\,14\,11\,44\,48)(12\,43\,46\,26\,30\,45\,28), \\ o &= (9\,15)(10\,29)(11\,14)(12\,45)(13\,27)(16\,42)(25\,32)(26\,30)(28\,41)(31\,47)(43\,46)(44\,48). \end{split}$$

Then  $\pi^7 = o^2 = (\pi^4 o)^4 = (\pi o)^3 = 1$ ,  $\mu = (\pi^{-1} \varepsilon)^2 \varepsilon \pi^5 (\varepsilon \pi^{-1})^2 \varepsilon \pi^2 o \pi^4 o$  and  $\nu = \varepsilon^{\pi^{-1}} \varepsilon^{\mu} o \pi$ . It follows that  $\langle \pi, o \rangle \cong \text{PSL}(2, 7)$  and  $N = \langle \varepsilon^{\sigma} | \sigma \in N \rangle \langle \pi, o \rangle = \langle \varepsilon, \varepsilon^{\pi}, \varepsilon^{\pi^2}, \varepsilon^{\pi^3}, \varepsilon^{\pi^4}, \varepsilon^{\pi^5}, \varepsilon^{\mu} \rangle \rtimes \langle \pi, o \rangle \cong \mathbb{Z}_3^7 \rtimes \text{PSL}(2, 7)$ .

The above argument yields  $G_{5,4} \cong (\mathbb{Z}_3^6 \rtimes (\mathbb{Z}_7 \rtimes \mathbb{Z}_3) \times \mathbb{Z}_3^7 \rtimes \text{PSL}(2,7)) \rtimes \mathbb{Z}_2$ . Set  $M = \langle N, N^\delta \rangle$ . Then  $\delta \notin M, M = N \times N^\delta$ and  $|X_{5,4} : M| = 4$ . Considering the transitive permutation representation of  $X_{5,4}$  on the right cosets of M, we have  $X_{5,4}/\text{Core}_{X_{5,4}}(M) \leq S_4$ . It is easily shown that  $M = \text{Core}_{X_{5,4}}(M) \triangleleft X_{5,4}$ . Let  $\rho = \sigma_{5,4}\delta\sigma_{5,4}^{-1}$ . Then  $\rho\delta = \delta\rho$ , and  $\rho \notin M$ by considering the restrictions of M on its orbits on  $\Omega$ . Thus  $X_{5,4} = M \rtimes \langle \rho, \delta \rangle \cong (\mathbb{Z}_3^7 \rtimes \text{PSL}(2,7) \times \mathbb{Z}_3^7 \rtimes \text{PSL}(2,7)) \rtimes \mathbb{Z}_2^2$ .

**Lemma 4.4.5.**  $G_{5,5} = G_{5,6} \cong A_{47}$  and  $X_{5,5} = X_{5,6} = A_{48}$ .

**Proof.** Let  $\iota = 5$  or 6. Consider the actions of  $G_{5,\iota}$  and of  $\langle \sigma_{5,\iota}^{-1} \sigma_{5,\iota}^{\tau_{5,\iota}}, (\sigma_{5,\iota}^2 \tau_{5,\iota})^2 \rangle$  on  $\Omega \setminus \{1\}$ . Then  $G_{5,\iota}$  is a 2-transitive permutation group of degree 47. Since all generators of  $G_{5,\iota}$  are even permutations (on  $\Omega \setminus \{1\}$ ), we have  $G_{5,\iota} \leq \operatorname{Alt}(\Omega \setminus \{1\})$ . Note that  $(\tau_{5,5}\sigma_{5,5}^7)^{36}$  is a 5-cycle and  $(\tau_{5,6}\sigma_{5,6}^9)^{32}$  is a 7-cycle. It follows from [8, Theorem 3.3E] that  $G_{5,\iota} = \operatorname{Alt}(\Omega \setminus \{1\}) \cong A_{47}$ , and hence  $X_{5,5} = X_{5,6} = A_{48}$ .

### 4.5. Conclusions

Now we prove Theorems 1.1 and 1.2.

**Proof of Theorem 1.1.** Let  $\Gamma$  be a connected core-free cubic (*X*, *s*)-transitive Cayley graph. Then  $s \ge 2$  by Corollary 2.2. The argument in Sections 4.1–4.4 says that  $\Gamma$  is isomorphic to one of  $\Gamma_{s,\iota}$  and  $\Gamma_{t,J_1} \ncong \Gamma_{t,J_2}$ , where  $2 \le s, t \le 5, t \ne 5, 1 \le \iota \le \ell_s$ ,  $1 \le J_1, J_2 \le \ell_t, J_1 \ne J_2, \ell_2 = 2, \ell_3 = 3, \ell_4 = 4$  and  $\ell_5 = 6$ .

We claim that  $\Gamma_{s,j}$  is not *t*-transitive for s < t. Suppose to the contrary that  $\Gamma_{s,j}$  is  $(X_j, t)$ -transitive for some  $G_{s,j} \le X_j \le \operatorname{Aut}(\Gamma_{s,j})$ . By Corollary 2.2, the quotient  $(\Gamma_{s,j})_N$  induced by  $N = \operatorname{Core}_{X_j}(G_{s,j})$  is isomorphic to some  $\Gamma_{t,i}$ , in particular,  $G_{t,i} \cong G_{s,j}/N$ , which is impossible. It follows that  $\operatorname{Aut}(\Gamma_{s,j}) = X_{s,j}$  for  $2 \le s \le 5$  and  $1 \le j \le \ell_s$ , and  $\Gamma_{s,j} \ncong \Gamma_{t,i}$  for possible s < t, j and *i*. Thus it suffices to show that  $\Gamma_{5,5} \ncong \Gamma_{5,6}$  in the following.

Recall that  $\Gamma_{5,1} = \text{Cos}(X_{5,1}, H, \tau_{5,1})$  and  $\text{Aut}(\Gamma_{5,1}) = X_{5,1} = A_{48}$ , where  $H \cong S_4 \times \mathbb{Z}_2$  is a regular subgroup of  $A_{48}$  under the natural action. Suppose that  $\Gamma_{5,5} \cong \Gamma_{5,6}$ . Then, by [19, Lemma 2.3], there is some  $\sigma \in \text{Aut}(A_{48}) = S_{48}$  with  $H\tau_{5,5}^{\sigma}H = H\tau_{5,6}H$  such that  $H\tau \mapsto H\tau^{\sigma}$  gives an isomorphism from  $\Gamma_{5,5}$  to  $\Gamma_{5,6}$ . Consider the neighborhood of H (as a vertex) in  $\Gamma_{5,1}$ . Then  $\{H\tau_{5,5}^{\sigma}, H\sigma_{5,5}^{-}, H\sigma_{5,5}^{-}, H\sigma_{5,6}^{-1}, H\sigma_{5,6}^{-1}\}$ . In particular, one of cosets  $H\tau_{5,5}H\sigma_{5,5}$  and  $H\sigma_{5,5}^{-1}$  must contain a permutation with the same order 84 of  $\sigma_{5,6}$ , which is impossible by calculation. Thus  $\Gamma_{5,5} \cong \Gamma_{5,6}$ .

Theorem 1.2 is a direct consequence of Corollary 2.2 and Theorem 1.1.

Finally, since a Cayley graph of a finite non-abelian simple group is either normal or core-free, our argument leads to the following well-known result which can be derived from [15,27,28].

**Theorem 4.1.** Let  $\Gamma$  be a connected cubic arc-transitive Cayley graph of a finite non-abelian simple group T. Then either  $\Gamma$  is normal with respect to T, or  $\Gamma$  is isomorphic to one of  $\Gamma_{5,5}$  and  $\Gamma_{5,6}$ .

Note: All calculation results in this paper were also confirmed by GAP.

## Acknowledgements

The second author supported partially by the NSF and the 973 program of China.

#### References

- [1] M. Aschbacher, Finite Group Theory, Cambridge University Press, New York, 1994.
- [2] N. Biggs, A new 5-arc-transitive cubic graph, J. Graph Theory 6 (1982) 447–451.

[3] M. Conder, An infinite family of 5-arc-transitive cubic graphs, in: Eleventh British Combinatorial Conference (London, 1987), Ars Combin. 25A (1988) 95–108.

[4] M. Conder, M. Mortona, A note on groups associated with 4-arc-transitive cubic graphs, Bull. London Math. Soc. 22 (1990) 553–560.

- [5] M. Conder, C.G. Walker, The infinitude of 7-arc-transitive graphs, J. Algebra 208 (1998) 619–629.
- [6] M. Conder, On symmetries of Cayley graphs and the graphs underlying regular maps, J. Algebra 321 (2009) 3112–3127.
   [7] J.H. Conway, R.T. Curtis, S.P. Noton, R.A. Parker, R.A. Wilson, Atlas of Finite Groups, Clarendon Press, Oxford, 1985.
- [8] J.D. Dixon, B. Mortimer, Permutation Groups, Springer-Verlag, New York, Berlin, Heidelberg, 1996.
- [9] D.Ž. Djoković, G.L. Miller, Regular groups of automorphisms of cubic graphs, J. Combin. Theory Ser. B 29 (1980) 195–230.
- [10] X.G. Fang, C.E. Praeger, Finite two-arc transitive graphs admitting a Suzuki simple group, Comm. Algebra 27 (1999) 3727-3754.
- [11] A. Gardiner, Doubly-primitive vertex stabilisers in graphs, Math. Z. 135 (1974) 257–266.
- [12] A. Gardiner, Arc-transitivity in graphs.II, Quart. J. Math. Oxford Ser. 25 (1974) 163-167.
- [13] A. Gardiner, Arc-transitivity in graphs.III, Quart. J. Math. Oxford Ser. 27 (1976) 313-323.
- [14] B. Huppert, N. Blackburn, Finite Groups III, Springer-Verlag, Berlin, Heidelberg, New York, 1982.
- [15] C.H. Li, Isomorphisms of finite Grayby graphs, Ph.D. Thesis, The University of Western Australia, 1996. [16] C.H. Li, The finite vertex-primitive and vertex-biprimitive s-transitive graphs for  $s \ge 4$ , Trans. Amer. Math. Soc. 353 (2001) 3511–3529.
- [17] C.H. Li, On finite s-transitive graphs of odd order, J. Combin. Theory Ser. B 81 (2001) 307-317.
- [18] C.H. Li, Finite s-arc transitive Cayley graphs and flag-transitive projective planes, Proc. Amer. Math. Soc, 133 (2005) 31–40.
- [19] C.H. Li, Z.P. Lu, D. Marušič, On primitive permutation groups with small suborbits and their orbital graphs. J. Algebra 279 (2004) 749–770.
- [20] Z.P. Lu, On the automorphism groups of biCayley graphs, Acta Sci. Nat. Univ. Pekin. 39 (2003) 1-5.
- [21] D. Marušič, P. Potočnik, Classifying 2-arc-transitive graphs of order a product of two primes, Discrete Math. 244 (2002) 331–338.
- [22] C.E. Praeger, An O'Nan-Scott theorem for finite quasiprimitive permutation groups and an application to 2-arc transitive graphs, J. London Math. Soc. 47 (1992) 227-239.
- [23] W.T. Tutte, A family of cubical graphs, Proc. Cambridge Philos. Soc. 43 (1947) 459–474.
- [24] W.T. Tutte, On the symmetry of cubic graphs, Canad. J. Math. 11 (1959) 621-624.
- [25] R. Weiss, The non-existence of 8-transitive grsphs, Combinatorica 1 (1981) 309-311.
- [26] M.Y. Xu, Automorphism groups and isomorphisms of Cayley digraphs, Discrete Math. 182 (1998) 309-320.
- [27] S.J. Xu, X.G. Fang, J. Wang, M.Y. Xu, On cubic s-arc-transitive Cayley graphs of finite simple groups, European J. Combin. 26 (2005) 133–143.
- [28] S.J. Xu, X.G. Fang, J. Wang, M.Y. Xu, 5-arc transitive cubic Cayley graphs on finite simple groups, European J. Combin. 28 (2007) 1023–1036.