MINI REVIEW

Regulation of T cell activation in Sjögren’s syndrome

Naozumi Ishimaru*, Yoshio Hayashi

Department of Oral Molecular Pathology, Institute of Health Biosciences, The University of Tokushima Graduate School, 3-18-15 Kuramotocho, Tokushima 770-8504, Japan

Received 3 September 2008; received in revised form 22 October 2008; accepted 28 October 2008

1. Introduction

Our body is protected by precise immune system consisted of a number of immune cells which play each roles in maintenance for various immune responses. Among them, T cells play a central role in both cellular and humoral immunity [1]. After antigenic stimulation, naïve T cells proliferate and differentiate into various effector subsets characterized by the production of distinct cytokines and by their distinct effector functions [2]. Although almost autoimmune diseases occur through the pathogenesis based on CD4+ T cell dysfunction or failure of differentiation in the thymus or peripheral lymphoid organs, the precise mechanism how autoreactive T cell emerges has been still unclear. In this review, we outline current information as to the association of T cell regulation with autoimmunity, and indicate the molecular mechanism for pathogenesis of SS, an organ-specific autoimmune disease in salivary glands.

2. T cell-dependent autoimmunity

The CD4+ T cells were designated Th1 cells, characterized by the secretion of interleukin (IL)-2 and interferon (IFN)-γ but not IL-4 and IL-5, and Th helper type 2 (Th2) cells, which were characterized by the secretion of IL-4 and IL-5 but not IL-2 or IFN-γ (Fig. 1). Th1 cells elicit delayed-type hypersensitivity responses, activate macrophages and are highly effective in clearing intracellular pathogens [3]. By contrast, Th2 cells are crucial for the production of immunoglobulin E and eosinophilic inflammation such as allergic diseases and may suppress cell-mediated immunity [4]. Besides, several subsets of regulatory T (Treg) cells capable of controlling effector T cells have been well known [5]. Furthermore, recent reports have demonstrated that T helper 17 (Th17) cells as a new subset produce IL-17, and are involved in the various immune responses [6]. Dysregulated or uncontrolled effector T cell responses lead to autoimmune disease, suggesting that breakdown of central or peripheral tolerance induces dysfunction of T cell subsets and then the onset of any autoreactive response.
TH1 cells are highly proinflammatory and have been linked to the induction and progression of a lot of autoimmune diseases in human or animal models [4,7,8]. On the other hand, it has been reported that TH17 cells play an important role in the pathogenesis of autoimmune diseases such as rheumatoid arthritis (RA), multiple sclerosis, systemic lupus erythematosus (SLE) and asthma [6]. Moreover, it is well known that natural CD25+CD4+ Treg cells are one of key subsets for inducing or attenuating immunological tolerance to self or non-self antigens [5]. For instance, depletion or dysfunction of natural CD25+CD4+ Treg cells suffices to cause autoimmune disease in normal mice by administration of neutralizing antibody against CD25 molecule [9]. Also, preventive or therapeutic effects by adoptive transfer of CD25+CD4+ Treg cells into autoimmune models were demonstrated in previous reports [10]. Thus, the T cell-dependent autoimmune diseases are occurred based on the breakdown of proportion or function of T cell subsets in the immune system.

SS is an autoimmune disorder characterized by lymphocytic infiltrates and destruction of salivary and lacrimal glands (Fig. 2), leading to clinical symptoms of dryness of the mouth and eyes (sicca syndrome) which may predispose patients to oral or ocular infections [11]. In the salivary gland tissues from SS patients, predominance of CD4+ T cells in addition to a small number of CD8+ T cells, B cells, or macrophages is observed. It is well known that TH1 cells producing IL-2 and IFN-γ play a central role in the onset of both human SS and the animal models [7,8,12,13].

3. Autoimmune models

Why do self-T cells attack self-tissues, cells or antigens? Analyzing animal models is useful to understand the pathogenesis or mechanism of human autoimmune disease. The three types of animal models for autoimmune diseases are known. The first is the type of autoimmune prone animals that any autoimmune diseases are naturally appeared, including NOD mouse of a model for autoimmune diabetes (type I DM), MRL/lpr mouse of a model for RA and SLE [14,15]. These mice have often been used for analyzing the pathogenic mechanism as the lesions are naturally occurred, and the incidence of disease onset is relatively constant compared with the other models. The second is drug-induced or operation-induced models such as the autoimmune model in multiorgans by injection of neutralizing antibody against CD25 as mentioned above or a murine SS model by neonatal thymectomy for NFS/sld mouse [6,12]. Although the handling or manipulating these models is difficult, it is useful to analyze the autoimmune lesions during short term. The third is a type of gene-manipulated animal including any gene knockout (KO) or transgenic (TG) mice. These models are helpful to define the molecular mechanism of autoimmune diseases.

For instance, a number of murine models showing SS-like autoimmune lesions have been reported as shown in Table 1. The (NZB/NZW)F1 mouse was one of the first models of spontaneous SS [16]. NOD and MRL/lpr mice have been described to be models for the secondary SS besides the lesions of autoimmne diabetes, or RA and SLE [14,15]. The secondary SS in human is also known to accompany with RA, SLE, or the other autoimmune diseases [11]. Additionally, although aly/aly mouse bearing a mutant of NF-κB-inducing kinase (NIK) gene has been reported to be an SS model, autoimmune lesions are observed in multiorgans other than salivary glands [17]. As a model for the primary SS, the NFS/sld mouse thymectomized on 3-day after birth has been established [12]. We have analyzed the model to detect
Table 1 Representative murine models for human SS.

<table>
<thead>
<tr>
<th>Year</th>
<th>Ref. no.</th>
<th>Mouse</th>
<th>Related data</th>
</tr>
</thead>
<tbody>
<tr>
<td>1979</td>
<td>[16]</td>
<td>NZB/NZW F1</td>
<td>Ro60, IFN-γ</td>
</tr>
<tr>
<td>1983</td>
<td>[14]</td>
<td>MRL/lpr</td>
<td>Fas, RA, SLE</td>
</tr>
<tr>
<td>1989</td>
<td>[27]</td>
<td>HTLV-1 tax TG</td>
<td>Human T cell leukemia</td>
</tr>
<tr>
<td>1996</td>
<td>[20]</td>
<td>TGF-β1 KO</td>
<td>IFN-γ</td>
</tr>
<tr>
<td>1996</td>
<td>[17]</td>
<td>aly/aly</td>
<td>NIK</td>
</tr>
<tr>
<td>1999</td>
<td>[21]</td>
<td>IL-10 TG</td>
<td>FasL</td>
</tr>
<tr>
<td>2002</td>
<td>[23]</td>
<td>AIRE KO</td>
<td>autoantigens</td>
</tr>
<tr>
<td>2004</td>
<td>[29]</td>
<td>Aromatase KO</td>
<td>γ-fodrin</td>
</tr>
<tr>
<td>2004</td>
<td>[25]</td>
<td>Iδ3 KO</td>
<td>T cell development</td>
</tr>
<tr>
<td>2006</td>
<td>[26]</td>
<td>ClassIA P13K KO</td>
<td>SSA, IFN-γ, Treg</td>
</tr>
<tr>
<td>2006</td>
<td>[22]</td>
<td>IL-14a TG</td>
<td>Aging, CDS’B cell</td>
</tr>
<tr>
<td>2006</td>
<td>[24]</td>
<td>CCR7 KO</td>
<td>thymic T cell selection</td>
</tr>
<tr>
<td>2006</td>
<td>[28]</td>
<td>NZW2328</td>
<td>MCMV</td>
</tr>
</tbody>
</table>

one of salivary gland-specific autoantigens for SS and the antigen-specific response of T_n1 cells, and define the breakdown of peripheral tolerance by dysfunction of activation-induced cell death (AICD) that is a system to delete auto-reactive T cells in the periphery [18,19]. Besides, several KO mice have been reported that SS-like lesions are observed in salivary or lacrimal glands. Cytokine gene-manipulated mice such as TGF-β1 KO, IL-10 TG, or IL-14a TG mice have been reported to be spontaneous SS models [20—22]. Also, the SS-like lesions have been indicated in some KO mice for auto-immune regulator (AIRE) [23], a transcription factor as known to be important for the expression of autoantigen in thymus, or C-C chemokine receptor 7 (CCR7), a chemokine receptor for CCL19 and CCL21, which plays a crucial role in the T cell selection in thymic medulla [24]. Also, in the KO mice for Iδ3 and class IA phosphoinsitide-3-kinase (PI3K) which are related to differentiation or function of immune cells including T cells, inflammatory lesions of salivary or lacrimal glands were reported [25,26]. On the other hand, SS-like lesions were induced by transgene of virus-related antigen or virus infection [27,28]. As for environmental factor such as hormone, autoimmune lesions of salivary glands from aromatase KO mice are observed [29]. Recently, we have established retinoblastoma-associated protein 48 (RbAp48) TG mouse as one of SS models in which transgenic expression of RbAp48 in the salivary glands resulted in the development of autoimmune exocrinopathy resembling SS [30]. These studies using several SS models raise the new findings as to not only the pathogenesis of SS, but also the molecular mechanisms for central or peripheral T cell tolerance in the immune system.

4. Transcription factors in pathogenesis of autoimmune

What is happening to the inside of T cell in autoimmune response? Several transcription factors controlling target genes essential for cell survival, cytokine production, chemokine production, adhesion molecule expression, organogenesis, and apoptosis play central roles in T cell activation [31]. Among them, nuclear factor (NF)-κB plays a key role in regulating many inflammatory processes of T cells [32,33]. NF-κB has five subunits including NF-κB1 (p50 and its precursor p105), NF-κB2 (p52 and its precursor p100), RelA (p65), RelB, and c-Rel.

Antigenic stimuli from T cell receptor (TCR), co-stimulatory molecules such as CD28, and cytokine receptors leads to NF-κB activation through a lot of signal molecules. Two main pathways of NF-κB are well known. One is the classical pathway (canonical pathway) through complex of NF-κB1 and RelA [34,35]. The other pathway is through complex of NF-κB2 and RelB (non-classical pathway, non-canonical pathway, or alternative pathway) [34,35]. Signals from TCR and CD28 through many adaptor molecules lead to protein kinase C (PKC) activation. Downstream of PKC, there is CARMA1/MALT1/Bcl-10, which activate IκB kinase (IKK). IKK phosphorylates IκB, which binds to NF-κB complex in the cytoplasm to inhibit nuclear translocation. Ubiquitination and degradation of IκB can induce transport of NF-κB complex into the nucleus. As a result, NF-κB complexes control transcription of the target genes essential for T cell activation. Also, signals from TCR/CD28 or cytokine receptors lead to PKC, NIK, and CARMA1/MALT1/Bcl-10. Activation of IKK processes p100 into p52, and complex of p52 and RelB is translocated into the nucleus to regulate transcription of the target genes. It has been reported that the classical pathway of NF-κB is essential for innate immunity [36,37]. Moreover, many data suggest that the alternative pathway plays a central role in the expression of genes involved in development and maintenance of secondary lymphoid organs [35]. Non-classical pathway of NF-κB has been described that is independent of IKKγ and involves the processing of the p100 precursor to p52, which is triggered by the phosphorylation of p100 by the NIK and IκKα [36,37]. In addition, the importance of several signal molecules for NF-κB activation including NIK, IKKs, and IκBs has been highlighted with several mouse models [31]. The most important phenotype for alv/aly, and NIK KO mice is autoimmune disease in multiorgans including lacrimal gland, salivary gland, lung, liver, kidney, and pancreas [17].

Our study demonstrates that proliferative response of naïve CD4⁺ T cells from alv/aly, NIK KO, RelB KO mice, but not memory T cells, is higher than that from control mice, suggesting that NF-κB2 deficiency might result in the hyperproliferation of naïve T cells to respond to any self-proteins to induce autoimmune disease [38].

The processing of NF-κB2/p100 to p52 is controlled by a kinase cascade including activation of IκKα through NIK. Based on our research, the main NF-κB complex p50-RelA for normal naïve CD4⁺ T cell activation might be retained in the cytoplasm to interact with p100 [38]. It is possible that over-activation of naïve CD4⁺ T cells would be regulated by the interaction between NF-κB1 (p50)-p65 and NF-κB2 (p100) to inhibit nuclear translocation of p50-p65 dimmers as shown in Fig. 3. This possibility corresponds to a previous data which accumulated p100 of activated osteoclasts from NIK KO mice would bind NF-κB1-RelA subsets to prevent their nuclear transport and inhibit osteoclastogenesis [39].

When naïve T cells of alv/aly mice were transferred into Rag2 KO mice which have no T and B cells in the periphery, the severe autoimmune lesions in lacrimal glands, lung, and salivary glands were observed [38]. Therefore, it is possible that NF-κB2-deficient T cells may be hyperreactive to any self-antigen through excessive activation of NF-κB1/RelA.
cells stimulated by cytokines which TH1 cells secreted was demonstrated that apoptosis of Fas-expressing salivary gland animal models. Our studies and the other reports have a central role in the pathogenesis for SS in human and the molecules for T cell activation such as NF-κB breakdown of T cell tolerance via disorders of signaling salivary or lacrimal glands are attacked as a target organ. The activated T cells[19,21]. However, it is still unclear why undergone by interaction with Fas ligand (FasL)-expressing cell regulation in autoimmunity.

Based on previous reports as mentioned above, TH1 cells play a central role in the pathogenesis for SS in human and the animal models. Our studies and the other reports have demonstrated that apoptosis of Fas-expressing salivary gland cells stimulated by cytokines which Th1 cells secreted was undergone by interaction with Fas ligand (FasL)-expressing activated T cells [19,21]. However, it is still unclear why salivary or lacrimal glands are attacked as a target organ. The breakdown of T cell tolerance via disorders of signaling molecules for T cell activation such as NF-κB may tend to induce autoimmune lesions in salivary and lacrimal glands resembling human SS, suggesting that salivary or lacrimal gland cells are much more sensitive to any cytokines or stimulation factors from autoreactive and pathogenic T cells. We hypothesize that there may be a unique system “local immune tolerance” in salivary and lacrimal glands [30]. With the loss of local immune tolerance by any change of immune homeostasis, the salivary and lacrimal gland cells might become target cells toward autoreactive T cells. It is possible that there are complex mechanisms including expression of autoantigen, MHC class II, or any molecules related with autoimmunity of the target cells for triggering autoimmune disease.

Considerable progress has been made in elucidating the immunological events surrounding autoimmune disease. Despite such progress, however, a lot of important critical issues remain to be addressed. Additional advances will come from further studies of experimental models or human patients to address specific aspects of the disease.

5. Conclusion

Based on previous reports as mentioned above, Th1 cells play a central role in the pathogenesis for SS in human and the animal models. Our studies and the other reports have demonstrated that apoptosis of Fas-expressing salivary gland cells stimulated by cytokines which Th1 cells secreted was undergone by interaction with Fas ligand (FasL)-expressing activated T cells [19,21]. However, it is still unclear why salivary or lacrimal glands are attacked as a target organ. The breakdown of T cell tolerance via disorders of signaling molecules for T cell activation such as NF-κB may tend to induce autoimmune lesions in salivary and lacrimal glands resembling human SS, suggesting that salivary or lacrimal gland cells are much more sensitive to any cytokines or stimulation factors from autoreactive and pathogenic T cells. We hypothesize that there may be a unique system “local immune tolerance” in salivary and lacrimal glands [30]. With the loss of local immune tolerance by any change of immune homeostasis, the salivary and lacrimal gland cells might become target cells toward autoreactive T cells. It is possible that there are complex mechanisms including expression of autoantigen, MHC class II, or any molecules related with autoimmunity of the target cells for triggering autoimmune disease.

Considerable progress has been made in elucidating the immunological events surrounding autoimmune disease. Despite such progress, however, a lot of important critical issues remain to be addressed. Additional advances will come from further studies of experimental models or human patients to address specific aspects of the disease.

Acknowledgements

This work was supported in part by a Grant-in-Aid for Scientific Research (Nos. 17109016, and 17689049) from the Ministry of Education, Science, Sport, and Culture of Japan.

References

