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We visualize the fundamental property of pQCD: the smaller is the size of the colorless quark–
gluon configuration, more rapid is the increase of its interaction with energy. Within the frame of
the dipole model we use the kt factorization theorem to generalize the DGLAP approximation and/or
leading ln(x0/x) approximation and evaluate the interaction of the quark dipole with a target. In
the limit of fixed Q 2 and x → 0 we find the increase with energy of transverse momenta of quark
(antiquark) within the qq̄ pair produced by the strongly virtual photon. The average p2

t is evaluated
analytically within the double logarithmic approximation. We demonstrate that the invariant mass2

of the qq̄ pair increases with the energy as 0.7Q 2(10−2/x)0.4αs Nc/π , for transverse photons, and
∼ 0.7Q 2 exp 0.36[(αs Nc/π) log(10−2/x)]1/2 for longitudinal photons. We found similar pattern of the
energy dependence of M2 in the LO DGLAP approximation generalized to account for the kt factorization.
We discuss the impact of the found phenomenon on the dependence of the coherence length on the
collision energy and demonstrate that in the regime of complete absorption effective shape of the
sufficiently energetic hadron (nucleus) has the biconcave form instead of the pancake. We explain that
the different representations of chiral symmetry for the central and peripheral collisions would be
characteristic property of hadron (nucleus) nucleus collisions at large energies. Some implications of the
found phenomena for pp collisions are discussed.

© 2009 Elsevier B.V. Open access under CC BY license. 
1. Introduction

A dipole model developed in Ref. [1], cf. also [2–6] is the gener-
alization of the of QCD evolution equations to the target rest frame
description. It accounts for the effects of the Q 2 and ln(x0/x) evo-
lutions. It also provides the solution of the equations of QCD in the
kinematics of fixed and not too small x = Q 2/ν but Q 2 → ∞. The
characteristic feature of this solution is the approximate Bjorken
scaling for the structure functions of DIS, i.e. the two-dimensional
conformal invariance for the moments of the structure functions.
In this approximation as well as within the leading ln(x0/x) ap-
proximation, the transverse momenta of quarks within the dipole
produced by the local electroweak current are restricted by the vir-
tuality of the external field:

λ2
QCD � p2

t �
(

Q 2)/4. (1.1)

The aim of the present Letter is to demonstrate that the transverse
momenta of (anti)quark of the qq̄ pair produced by a local current
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increase with energy and become larger than Q 2 at sufficiently
large energies. Technically this effect follows from the more rapid
increase with the energy of the pQCD interaction for smaller dipole
size and kt factorization theorems.

It is worth noting that this effect is very different from the
seemingly similar effect found in the leading αs log(x0/x) BFKL ap-
proximation [7]: for the central rapidity kinematics log2(p2

t /p2
t0) ∝

log(s/s0). The latter is the property of the radiation within a lad-
der, of a diffusion in the space of the transverse momenta [7].
Indeed, it has been known for some time already that if we look
at characteristic transverse momenta in a ring with a fixed number
N in BFKL ladder, than in the multiregge kinematics the transverse
momenta do not depend on energy. This fact follows from the
derivation of Lipatov diffusion equation, where log(p2

t /p2
t0) ∝ N—

the number of the ring under study. The Lipatov diffusion arises
since a number of rings N in the ladder increases with the rapid-
ity Y. An alternative proof that the transverse momenta do not rise
in multiregge kinematics with a fixed number of rings has been
given in Ref. [9]. On the other hand the property we are deal-
ing here with is the value of the transverse momenta in the wave
function of the projectile.

Within the double logarithmic approximation we evaluate ana-
lytically both the maximum in the distribution over the invariant
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masses of the qq̄ pair which contribute to the transverse and lon-
gitudinal total cross section of DIS, and the corresponding average
transverse momenta squared.

Consider first the case of the longitudinal photons. Then the
position of the maximum increases with energy as

M2 = M2
1L(s/s0)

αs(Nc/π)/9. (1.2)

Eq. (1.2) is derived in the approximation Q 2 � M2 � s which is
self-consistent at sufficiently high energies. One can see from this
expression that transverse momenta of quarks increase with the
energy since M2 = p2

t /z(1−z), and the configurations with z = 1/2
dominate at sufficiently high energies.

The dependence of the average quark transverse momenta on
energy is calculated below numerically within the double logarith-
mic approximation and/or within the LO DGLAP and BFKL approxi-
mations. For certainty we define average transverse momentum of
quark as corresponding to the median of integral for the total cross
section. Within the double logarithmic approximation to the cross
section initiated by longitudinal photon we obtain:

M2
L ∼ 4p2

t ∼ 0.7Q 2 exp
(
0.36

(
(αs Nc/π) log(x0/x)

)0.55)
. (1.3)

Here x0 ∼ 0.01. The analysis was done in the interval s = 104 to
s = 1011 GeV2. Note that the derived rate of the increase with
the energy of the characteristic scale does not depend on the ex-
ternal virtuality Q 2. However, M2

0 depends on the normalisation
point in x0 and Q 2

0 . It is worth emphasizing that since we are
interested here in the proof of the rise of the transverse mo-
menta in the current fragmentation region, we carry for the il-
lustration, the calculations over a very wide spectrum of energies
s ∼ 104–1011 GeV2. The detailed calculations for the realistic ener-
gies have been carried in the LO approximation using the CTEQ5L
gluon pdfs [10,11]. Qualitatively they produce similar results al-
though depended on chosen extrapolation to small x. In particular
the CTEQ6L parametrization leads to a significant suppression of
the effects discussed in the Letter.

Similar results were obtained for the transverse photons. In this
case we were able to carry out an analytical calculation for the
invariant mass distribution maximum for the symmetric configu-
rations and found that it rapidly increases with energy:

M2
1T ∼ (

M2
0(s/s0)

)αs(Nc/π)/4
. (1.4)

The analytical results has been obtained in the kinematics: Q 2 �
M2 � s. It is well known however that in the case of the trans-
verse photons a major role in a wide kinematical region is played
by qq̄ configurations where one of the partons carries most of
the plus component of the photon momentum. With increase of
the energy the role of asymmetric configurations is reduced since
their contribution grows with energy more slowly. In order to take
into account the asymmetric configurations we have made a nu-
merical calculation of a transverse cross section in the interval
s = 104–1011 GeV2, and obtained:

M2
T ∼ 0.7Q 2(x0/x)0.4αs Nc/π , (1.5)

x0 ∼ 0.01.
Taking into account the increase of the transverse momenta of

the dipole p2
t with energy within the framework of the dipole

model and the kt factorization theorem lead to the generalization
of the DGLAP [8] and BFKL [7] approximations which is done in
the paper within the LO approximation.

The rapid increase of the characteristic transverse scales in the
fragmentation region has been found first in Refs. [12–15], within
the black disk (BD) regime. Our new result is the prediction of the
increase with energy of the jet transverse momenta in the frag-
mentation region, in the kinematical domain where methods of
pQCD are still applicable. This effect could be considered as a pre-
cursor of BD regime indicating the possibility of smooth matching
between two regimes.

As the application of obtained results we obtain that in pQCD

σL
(
x, Q 2)/σT

(
x, Q 2) ∝ (

Q 2/4p2
t

) ∝ (
Q 2/s

)λ
, (1.6)

i.e. this ratio should decrease as the power of energy instead of
being O (αs).

The increase of the parton momenta in the DIS in the current
fragmentation region leads to the change of many characteristics
of high energy processes. In particular, the coherence length of the
DIS processes increases with energy within pQCD as

∝ (1/2mN)
(
s/Q 2)1−λ

, (1.7)

i.e. slower than in the parton model (1/2mN x—the Ioffe length).
This is the because the coherence length for a given process fol-
lows from uncertainty principle:

lc = (s/2mN )/
(
M2(s) + Q 2), (1.8)

where M2(s) ∝ p2
t (s) is the typical M2 important in the wave

function of photon in the target rest frame and pt is the trans-
verse momentum of constituents in the wave function of photon.
This result has the implication for the space structure of the wave
packet describing a rapid hadron. In the classical multiperipheral
picture of Gribov a hadron has a shape of a pancake of the longitu-
dinal size 1/μ (where μ is the soft scale) which does not depend
on the incident energy [16]. On the contrary, we find the biconcave
shape for the rapid hadron (nucleus) with the minimal longitudi-
nal and transverse lengths for small impact parameter b decreasing
with increase of energy and being smaller for nuclei than for the
nucleons.

The Letter is organized in the following way. In Section 2 using
the technique first introduced in QED by Gribov [17], we rewrite
the formulae of the dipole model for the inelastic cross section
of DIS in the form of the spectral representation over invariant
masses for both longitudinal and transverse photons. kt factoriza-
tion [18,19] is explicitly fulfilled in this representation.

The analysis of these formulae predicts increase with energy
of transverse quark momenta in the current fragmentation region.
In Section 3 we use the double logarithmic approximation for the
amplitude for the interaction of quark dipole with the target, to
evaluate the increase with the energy of the quark transverse mo-
menta in the current fragmentation region. In Section 4 we study
the dependence of coherence length on the collision energy. In
Section 5 we explain that in pQCD rapid hadrons and nuclei look
like bi-concave lenses. Finally, in Section 6 we discuss the possible
applications of our results to pp, p A collisions at the LHC.

2. The target rest frame description

Within the LO approximation the QCD factorization theorem
allows to calculate the total cross section of the longitudinally
polarized strongly virtual photon scattering off a hadron target
through the convolution of the virtual photon wave function cal-
culated in the dipole approximation and the cross section of the
dipole scattering off a hadron. In the target rest frame the cross
section for the scattering of longitudinally polarized photon has
the form [1,20,21]:

σ(γ ∗
L + T → X)

= e2

2
αs

∫
d2 pt dz

〈
ψγ ∗

L
(pt, z)

∣∣σ (
s, p2

t

)∣∣ψγ ∗
L
(pt, z)

〉
. (2.1)
12π
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Here σ is the dipole cross section operator:

σ = (
4π2/3

)
αs

(
p2

t

)
(−	) · xG

(
x̃ = (

M2 + Q 2)/s, M2), (2.2)

	 is the two-dimensional Laplace operator in the space of the
transverse momenta, and

M2 = (
p2

t + m2
q

)
/z(1 − z), (2.3)

is the invariant mass squared of the dipole. In the coordinate rep-
resentation σ is just a multiplication, but not a differential op-
erator. In the leading ln(x0/x) approximation a similar equation
arises where the cross section is expressed in terms of convolution
of impact factor and unintegrated gluon density. In practice, both
equations should give close results. Using an integration over parts
over pt it is easy to rewrite Eq. (2.1) within the LO accuracy in the
form where integrand will be explicitly positive:

σ(γ ∗
L + T → X)

= e2

12π2

∫
αs d2 pt dz

〈∇ψγ ∗
L
(pt, z)

∣∣ f
(
s, z, p2

t

)∣∣∇ψγ ∗
L
(pt , z)

〉
,

(2.4)

where

f = (
4π2/3

)
αs

(
p2

t

)
xG

(
x̃, M2). (2.5)

In the derivation we use boundary conditions that photon wave
function is negligible at p2

t → ∞ and that the contribution of small
pt is the higher twist effect.

The cross section of the interaction of the longitudinal photon
can be rewritten in the form of spectral representation by explicitly
differentiating the photon wave function:

σL = 6π
παe.m.

∑
e2

q F 2 Q 2

12

×
∫

dM2 αs
(
M2) M2

(M2 + Q 2)4
· g

(
x̃, M2). (2.6)

Here F 2 = 4/3 for the colorless dipoles build of color triplet con-
stituents, and F 2 = 9/4 for the gluonic dipoles.

The spectral representation of the electro-production ampli-
tude over M2 is a general property of a quantum field theory at
large energies where the coherence length significantly exceeds
the radius of the target T [22,23]. The pQCD guarantees additional
general property: the smaller size of the configuration in the wave
function of projectile photon leads to the smaller interaction with
the target but this interaction more rapidly increases with the en-
ergy. In the NLO approximation the structure of formulae should
be the same except the appearance of the additional qq̄g, . . . com-
ponents in the wave function of photon due to the necessity to
take into account the QCD evolution of the photon wave func-
tion [20].

The similar derivation can be made for the scattering of the
spatially small transverse photon. In this case the contribution of
small pt region (Aligned Jet Model contribution) is comparable to
the pQCD one. To suppress AJM contribution we restrict ourselves
in the Letter by the region of large p2

t and sufficiently small x̃
where pQCD contribution dominates because of the rapid increase
of the gluon distribution with the decrease of x.

The pQCD contribution into the total cross section initiated by
the transverse photon has the form:

σT = 6π
παe.m.

∑
e2

q F 2

12

×
1∫

dz

∫
dM2 αs

(
4M2z(1 − z)

)

0

× z2 + (1 − z)2

z(1 − z)

(M4 + Q 4)

(M2 + Q 2)4
· g

(
x̃,4M2z(1 − z)

)
. (2.7)

Here while doing the actual calculations we introduced a cut-off
in the space of transverse momenta M2z(1 − z) � u, u ∼ 0.3 GeV2.

3. The double logarithmic approximation

In this section we analyze the new properties of the pQCD
regime within the double log approximation. The advantage of this
approximation is that it will allow us to perform some of the cal-
culations analytically. Other calculations will be made numerically
but using the expressions that are known analytically.

In the double logarithmic approximation the structure functions
are given by [24]

xG
(
x, Q 2) =

∫
dj/(2π i)(x/x0)

j−1(Q 2/Q 2
0

)γ ( j)
, (3.1)

where the anomalous dimension is

γ ( j) = αs Nc

π( j − 1)
.

To simplify the calculation we assume, the initial condition for the
evolution with Q 2:

g
(
x, Q 2

0

) = δ(x − 1). (3.2)

In the saddle point approximation one finds [24]:

xG
(
x, Q 2) = log(Q 2/Q 2

0 )1/4

log(x0/x)3/4

× exp
√

4αs
(

Q 2
0

)
(Nc/π) log

(
Q 2/Q 2

0

)
log(x0/x).

(3.3)

Structure function of a hadron is given by the convolution of this
kernel with the nonperturbative structure function of a hadron
in the normalization point Q 2 = Q 2

0 . Note that g is increasing
with Q 2. This is the pQCD contribution where virtualities of ex-
changed gluons are large.

In the analysis of energy dependence of parton momenta it
is legitimate to neglect the pre-exponential factor, since absolute
value of g as well as the pre-exponential factor weakly influence
the transverse scale, and its evolution with energy:

xG
(
x, Q 2) = exp

√
4αs

(
Q 2

0

)
Nc/π log

(
Q 2/Q 2

0

)
log(x0/x). (3.4)

3.1. Energy dependence of the quark transverse momenta
for fragmentation processes initiated by longitudinal photon

We shall find analytically the scale of the transverse momenta
in the limit where s 	 M2 	 Q 2. For certainty we restrict our-
selves to the contribution of light quarks.

At large Q 2 the cross section for the scattering of the longitudi-
nal photon is dominated by the contribution of the spatially small
dipoles, so it is legitimate to neglect the quark masses. In this limit
the cross section is proportional to

σL ∝ Q 2
∫

dM2 n
(
M2, s, Q 2), (3.5)

where the function n(M2, s, Q 2) is given by Eqs. (2.6), (2.7):

n
(
M2, s, Q 2)
= αs

(
M2/4

) M2

2 2 4
(M + Q )
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× exp
√

4αs
(

Q 2
0

)
(Nc/π) log

(
M2/Q 2

0

)
log

(
x0s/

(
M2 + Q 2

))
,

(3.6)

where x0 = Q 2/s0. Here we keep only large terms depending on
M2 (we ignore the M2 independent normalization factor irrelevant
for the calculations below).

Let us show that the maximum of n(M2, s, Q 2) increases with
the energy. At very high energies n is proportional to

n ∼ exp
(
logαs

(
M2/4

) + log
(
M2/Q 2) − 4 log

((
Q 2 + M2)/Q 2)

+ [
4αs(Nc/π)

(
log(s/s0)

− log
((

Q 2 + M2)/Q 2
0

))
log

(
M2/Q 2

0

)]1/2)
. (3.7)

In the limit of fixed Q 2 but very large energies, log(s/s0) 	
log((Q 2 + M2)/Q 2

0 ). Let us assume that for the maximum:
M2 	 Q 2. We will find the maximum of the expression (3.7) un-
der this assumption analytically, and then check that this assump-
tion is indeed self-consistent. Indeed, differentiating the argument
of the exponent over log(M2/Q 2

0 ) we obtain the equation for the
maximum:

1/ log
(
M2/4Q 2

0

) + 3

= (1/2)
(
1/ log

(
M2/Q 2

0

)
×

√
4αs

(
Q 2

0

)
(Nc/π) log(s/s0)/ log

(
M2/Q 2

0

) )
. (3.8)

Neglecting the small first term we find:

M2 = M2
0(s/s0)

αs(Nc/π)/9. (3.9)

Here Q 2
0 ∼ Q 2 and s0 ∼ Q 2. We will refer to this extremum

value of M2 as M2
1.

At the extremum n ∝ (αs(M2
1/4)/M6

1 exp(Nc/π)(αs/3) log(s/s0)).
Therefore

dσL

dM2

∣∣∣∣
M2=M2

1

≈ αs
(
M2

1/4
)(

Q 2/M6
1

)
× (

exp(Nc/π)
(
αs

(
Q 2

0

)
/3

)
log(s/s0)

)
. (3.10)

However, the position of the maximum of the integrand is
not sufficient to characterize the relevant transverse scales as a
large range of M2 is important in the integrand. In particular, cal-
culation of second derivative shows that dispersion over M2 =
M2

1 is large. The width of the distribution over log(M2/M2
0) is√

2/3 log(M2
1/M2

0).

Hence we need to determine M2 range which gives most of the
integrand support. For certainty, we define the range of M2 � M2

t
which provides a fixed, say, 50% fraction of the total perturbative
cross section. Let us estimate how this scale increases with the
energy in the double log approximation. First, let us consider the
total cross section. The upper limit u of integration over M2 is
determined by the kinematic condition through tmin, giving that
the allowed invariant masses M2 � s.

For certainty we choose upper limit of integration as

M2 � M2
max = 0.2s, (3.11)

from the cross section of diffraction although the result of numeri-
cal calculations is insensitive to the upper bound because essential
M2 are significantly smaller. In fact the integral for the cross sec-
tion converges long before the upper limit of integration (3.11) is
reached (see the discussion below).

Let us first calculate the median scale semi-analytically. Within
the double logarithmic approximation, and assuming that the con-
ditions log(s/s0) 	 log(Q 2 + M2)/(Q 2 + M2), is still valid for the
0
relevant M2, the integral for the cross section can be written sim-
ilar as:

σ(u) = (
Q 2/Q 4

0

) log(u/M2
0)∫

0

d log
(
M2/Q 2

0

)

× αs
(
M2/4

)
exp

(−2 ln
(
M2/Q 2

0

)
+

√
(4αs Nc/π) log

(
M2/Q 2

0

)
log(s/s0)

)
. (3.12)

Here u is the upper cut-off in the invariant masses. Introducing
the new variable t = log(M2/Q 2

0 ), we obtain:

σ(u) = (
Q 2/M4

0

) κ(u)∫
0

dt αs
(
tM2

0/4
)

× exp
(−2t + √

(4αs Nc/π) log(s/s0)t
)
, (3.13)

where κ(u) = log(u/s0). The integral for the total cross section is
given by the equation similar to Eq. (3.13), with the upper integra-
tion limit being replaced by κ(s) = √

log(0.2s/s0). Note that the
essential scale of integration is determined by exponent, and is
very weakly influenced by the exact value of a upper cut-off. The
integral (3.13) is actually the error function [25], which can be eas-
ily evaluated numerically. Requiring that it gives one half of the
cross section we find

M2
t ∼ Q 2

0 (s/s0)
0.28αs Nc/π . (3.14)

Evidently, for sufficiently large s our initial assumption
log(M2/Q 2

0 ) 	 log(Q 2/Q 2
0 ) is fully self-consistent. This is because

the decrease of n with M2 due to 1/M6 terms in the integrand of
Eq. (2.6) is partially compensated by the rising exponential, giving
a relatively slow decrease of n to the right of the maximum of the
integrand.

Note that the rate of the increase of M2
t with s is much higher

than for M2
1 due to the slow decrease of the integrand with M2.

The cross section of jet production with M2 at this interval also
increases with the energy as

dσ

dM2

∣∣∣∣
M2=M2

T

∼ (s/s0)
0.24αs Nc/π . (3.15)

The analytical calculations supply the pattern for the behavior
of the transverse momenta in double log approximation. In order
to understand the dependence of the median scale on both the en-
ergy and Q 2 quantitatively in the double logarithmic approxima-
tion we made numerical calculation of the characteristic transverse
momenta using the DGLAP double log structure function. We find
that the increase rate of the transverse momenta indeed does not
depend on the external virtuality Q 2. Considering the wide inter-
val of energies and s = 104–1011 GeV2, and 20 < Q 2 < 200 GeV2

we obtain the approximate formulae:

M2
t (x) ∼ 0.7Q 2 exp

(
0.17

(
(4αs Nc/π) log(x0/x)

)0.55)
. (3.16)

Here x0 = 0.01.
The cross section of the jet production at this scale also in-

creases with the energy as

dσ

dM2

∣∣∣∣
M2=M2

t

∼ (
G
(
x, Q 2)/Q 6)(M2

t (x)
)

(3.17)

where M2
t (x) is given by Eq. (3.16).

The median transverse momenta k2
t ∼ M2

t /4, due to the domi-
nance of symmetric configurations.
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3.2. Transverse photon: The characteristic transverse scale
in the photon fragmentation region

The main difference between the longitudinal and transverse
structure functions in the DIS is the presence of the strongly asym-
metrical in z configurations due to the presence of the (z(1− z))−1

factor in the spectral density. As a result there is a competition be-
tween two effects. One is a slower decrease of the spectral function
with M2 (by the factor M2/Q 2), leading to the more rapid increase
of the characteristic transverse momenta for the symmetric config-
urations. Another effect is the presence of the asymmetric (z → 0)
configurations which are characterized by the small transverse mo-
menta k2

t for a given invariant mass M2. For such configurations
the rate of increase of the gluon structure function with energy
is small. Let us first show that the transverse momenta increase
rapidly for symmetric configurations. The spectral representation
for the transverse photon for symmetric configurations is propor-
tional to

n
(
M2, Q 2, s

)
∼ M4 + Q 4

(M2 + Q 2)4
exp

[
4αs(Nc/π)

(
log(s/s0)

− log
((

Q 2 + M2)/(Q 2
0

))
log

(
M2/Q 2

0

))]1/2
. (3.18)

In the high energy limit, when M2
1 	 Q 2, we find for the depen-

dence of the maximum of n on energy:

M2
1 ∼ Q 2

0 (s/s0)
αs(Nc/π)/4. (3.19)

This is twice as fast increase as for the case of longitudinal photon.
M2

1 increases with s at high energies and thus the condition M2 	
Q 2 is perfectly self-consistent at very high energies.

In addition we can calculate the total cross section in the same
approximation semi-analytically getting the error function and ob-
tain the rate of increase (s/s0)

0.14(4αs Nc/π) , which is twice that for
the longitudinal case.

These two results are applicable to the symmetric configura-
tions only. On the other hand, at least at achievable energies,
the dominant contributions for transverse photon cross section are
asymmetric, with z close to 0 or 1. In order to take these config-
urations into account we performed a numerical calculation using
the gluon distribution function within the double log approxima-
tion. The result is that the characteristic median scale M2

t increases
as

M2
0 ∼ M2(Q 2)(s/s0)

0.1(4αs Nc/π). (3.20)

The value of the exponent is 0.12 for the beginning of the studied
energy range s ∼ 104–1011 GeV2, and decreases to 0.09 at the up-
per end (for typical αs = 0.25). Thus the rate of the increase with
the energy is approximately the same as for longitudinal photons
for not very high energies. For very high energies the symmetric
configurations win over asymmetric ones, leading to the increase
of the average transverse momentum squared which is twice as
large as in the longitudinal case.

The precise determination of the scale M2
0(Q 2) is beyond the

accuracy of this approximation. Effectively we obtain the depen-
dence M2

t ∼ 0.7Q 2(x0/x)0.1(4αs Nc/π) .
One can also estimate the rate of the increase of the jet pro-

duction cross section:

dσT /dM2
M2

t
∼ (

xG
(
x, Q 2)/Q 4)(1/3)

(
1 + 0.5(x0/x)0.24). (3.21)

We found a rapid increase of the jets multiplicity with energy.
Thus the rate of the increase with energy of the transverse mo-
menta of quarks in the current fragmentation region for trans-
versely polarized photon is significantly more rapid. Consequently
we find that σL/σT ≈ αs Q 2/M2 being numerically small should
slowly decrease with energy at sufficiently high energies.

We conclude that it is possible to show analytically that for
very high (asymptotic) energies the relevant invariant masses ex-
tend well beyond Q 2 and increase with the energy.

The direct numerical calculation of the M2
t scale shows that

the rate of increase is independent of external virtuality. Note
that due to the significant contribution of the asymmetric con-
figurations the median transverse momenta is much smaller than
M2

t /4. The simple numerical calculations using k2
t = M2z(1 − z),

shows that the average transverse momenta (including nonsym-
metric configurations) rapidly increases like a(Q 2)/(x/0.01)0.12,
with the exponent once again is independent of external virtual-
ity, and a(Q 2) ∼ 0.6 GeV2 + 0.02Q 2, i.e. k2

t is much smaller that
M2/4, especially for small virtualities.

3.3. The running coupling constant

In the previous subsections we considered the case of the dou-
ble logarithmic approximation with fixed coupling constant. Allow-
ing for the running coupling constant in the saddle point approxi-
mation leads qualitatively to the same results. Indeed, the structure
function is given by [24]

xG
(
x, Q 2) = exp

√
(4Nc/πb) log

log(Q 2/λ2)

log(Q 2
0 /Λ2)

log(x0/x) (3.22)

(up to slow pre exponential factor that is irrelevant for the dis-
cussion below). Here b = Nc − 2N f /3 is the coefficient in the β

function depended on the number of flavors. Eq. (3.22) allows to
find the dependence of the maximum of the integrand for the
cross section over M2 as a function of energy. We obtain for the
maximum of cross section initiated by longitudinal photons (for
symmetric configurations initiated by transverse photon) with the
logarithmic accuracy:

M2 = Q 2 exp
1

3

√
Nc

πb
log(s/s0). (3.23)

The maximum shifts to the right with the energy increase. The
same analysis can be made for the symmetric configurations for
the processes initiated by transverse photons.

Numerical analysis shows that the median of transverse mo-
menta continues to rise both for transverse and longitudinal pho-
tons.

3.4. The leading logarithmic approximation

The above results were obtained in the double logarithmic ap-
proximation. It is also possible to carry out the numerical calcu-
lation in LO approximation using the CTEQ5L gluon distribution
functions [10]. In this approximation M2

t ∼ 0.7Q 2(x0/x)λ , where
x0 ∼ 10−2, and λ ∼ 0.06 for longitudinal and λ ∼ 0.1 for transverse
photons. The rise of momenta is not negligible: for energy increase
from 104 to 107 GeV2 the scale increases by a factor ∼ 1.5. The use
of CTEQ6L will somewhat decrease the considered effects.

4. The coherence length in DIS

It was understood already in the sixties by Ioffe [27] that the
essential longitudinal distances in DIS = coherence length are lc ∼
1/2mN xB i.e. lc increases linearly with collision energies within the
parton model approximation. This important behavior follows nat-
urally from the multiperipheral Gribov picture for hadron–hadron
collisions [16] where the longitudinal size of the hadron is deter-
mined by the ee parton cloud and energy independent Lz ∼ 1/μ.
Here μ ∼ 0.3–0.4 GeV/c is the scale of soft QCD interactions.



B. Blok et al. / Physics Letters B 679 (2009) 122–129 127
Numerical analysis of coordinate space representation of tar-
get structure functions in the target rest frame (similar to that
in [26]) found that coherence length significantly less rapidly in-
creases with energy in QCD as compared to the parton model as
result of Q 2 evolution [33,34]:

lc = (1/2mN x)(s0/s)λ. (4.1)

Here λ coresponds to the rate of increase of transverse momenta
for relevant gluon configurations in the nucleon. This pattern of
the energy dependence of the coherence length follows from the
different dependence on energy of life-time of different configu-
rations in the wave function of the rapid dipole. In the previous
sections we found that the effective transverse scale of domi-
nant processes in DIS increases with energy which further slowed
down increase with energy of coherence length as compared to the
above formulae.

On the other hand more rapid increase with energy of cross
sections of hard processes than soft ones and a slower than
(1/2mN x) rate of the increase of the coherent length with energy
for hard processes should have significant impact on the space–
time evolution of hadron collisions. In the next section we evaluate
change of the shape of rapid hadron (nucleus) because of slowing
down of increase with energy of coherence length in the hard pro-
cesses.

5. The shape of energetic nucleon, nucleus

Increase with the energy of the parton momenta in the wave
function of virtual photon and slowing down of increase with en-
ergy of coherence length are valid beyond the region of applica-
bility of pQCD, in the regime of complete absorption—the black
disc regime (BDR) [12]. The focus of our discussion in this sec-
tion is the impact of this property of QCD combined with the
rapid increase with energy of hard interactions found in QCD and
in deep inelastic processes on the shape of wave function (w.f.)
of sufficiently energetic hadron (nucleus). This is vast subject so
we restrict ourselves by the analysis of the transverse structure
of sufficiently energetic hadrons and nuclei. Our interest is in the
kinematics where BDR is achieved for hard interactions since in
this kinematics calculations are especially simple.

Let us consider the longitudinal distribution of the partons in
an energetic hadron. As it was already mentioned in the previous
section, in the parton model the longitudinal spread of the gluonic
cloud is Lz ∼ 1/μ for the wee partons (where μ is the soft scale)
and it is much larger than for harder partons, with Lz ∼ 1/xPh
for partons carrying a finite x fraction of the hadron momen-
tum [16]. The picture is changed qualitatively in the limit of very
high energies when dipole–hadron interactions at central impact
parameters reach BD regime for kt 	 μ. In this case the small-
est possible characteristic momenta of partons interacting with a
quark of dipole are of the order kt(BDR) which is a function of
both initial energy and transverse coordinate, impact parameter b
of the hadron. Correspondingly, the longitudinal size of this hadron
is ∼ 1/kt(BDR) � 1/μ. Note here that we are discussing longi-
tudinal distribution for typical partons. There is always a tail to
the momenta much smaller than typical one all the way down to
kt ∼ μ which corresponds to the partons with much larger longitu-
dinal size (a pancake of soft gluons corresponding to the Gribov’s
picture). However at large energies at the proximity of the BDR
the contribution of the gluons with kt < ktb is strongly suppressed
[28]. In the BDR this tail is suppressed by a factor k2

t /kt(BDR)2

in addition to the phase factor [12]. In the color glass condensate
model the suppression is exponential [29].

Since the gluon parton density decreases with the increase of b
the longitudinal size of the hadron is larger for large b, so a hadron
has a shape of biconcave lens, see Figs. 1, 2. It is of interest also
that for the zero impact parameter the longitudinal size of a rapid
nucleus is smaller than of a nucleon. This property follows from
the fact that at central impact parameters kt(BDR A) 	 kt(BDR N).

In the numerical calculation we took

|lz| = 1/kt(BDR), (5.1)

neglecting all factors of the order of one (typically in the Fourier
transform one finds 〈z〉 ∼ π

〈pz〉 ). We calculated kt(BDR) for fixed

external virtuality Q 2 ∼ 40 GeV2. Our results are not sensitive to
the value of Q 2, as the value of Q 2 only enters in the combi-
nation x′ = (Q 2 + M2)/s, and the k2

t we found were comparable
or larger than Q 2/4. Indeed, the direct calculation shows that for
small b the change of 1/kt between external virtualities of 60 and
5 GeV2 is less than 5%. Such weak dependence continues almost
to the boundary of Fig. 1 where kt ∼ 1 GeV. Near the boundary
the uncertainty increase to ∼ 25%, meaning that for large b (be-
yond those presented at Fig. 1) the nucleon once again becomes
a pancake and there is a smooth transition between two pictures
(biconcave lens and pancake). We want to emphasize here that
the discussed above weak dependence of kt(BDR) on the resolu-
tion scale indicates that the shape of the wave function for small
x is almost insensitive to the scale of the probe.

We present our calculations of the typical transverse quark dis-
tributions within the energetic nucleon in Fig. 1. It is drastically
different from the naive picture of a fast moving nucleon as a
flat narrow disk with small constant thickness. (Similar plot for
the gluon distribution is even more narrow.) Note also that for
the discussed small x range kt � 1 GeV/c for b � 1 fm. Since the
spontaneous chiral symmetry breaking corresponds to quark vir-
tuality μ2 � 1 GeV2, probably ∼ 0.7 GeV2 [32], corresponding to

kt ∼
√

2
3 μ2 ∼ 0.7 GeV/c the chiral symmetry should be restored

for a large range of central impact parameters b in the proton wave
function for sufficiently small x.

Let us discuss the case of the DIS off a nucleus.
First, we consider the case of external virtualities of the order

of several GeV. In this case the shadowing effects to the large ex-
tent cancel the factor A1/3 in the gluon density of a nucleus for
a central impact parameters, b [30], and the gluon density in the
nuclei is comparable to that in a single nucleon for b ∼ 0. Conse-
quently over the large range of the impact parameters the hadron
longitudinal size is approximately the same for the scattering off
nuclear and nucleon targets.

However for very small x 4k2
t (BDR) � 40 GeV2. This is a self

consistent value as indeed for such Q 2 the leading twist shadow-
ing is small.

Accordingly we calculated the shape of the nucleus for the ex-
ternal virtuality Q 2 � 40 GeV2. We should emphasize here that
taking a smaller virtuality would not significantly change our re-
sult for kt(BDR) (at the same time LT nuclear shadowing reduces a
low momentum tail of the kt distribution).

In the discussed limit of the small leading twist shadowing,
the corresponding gluon density unintegrated over b is given by
a product of a nucleon gluon density and the nuclear profile func-
tion:

T (b) =
∫

dz ρ(b, z), (5.2)

where the nuclear three-dimensional density is normalized to A.
We use standard Fermi step parametrization [31]

ρ(r) = C(A)
A

1 + exp((r − R A)/a)
,

R A = 1.1A1/3 fm, a = 0.56 fm. (5.3)
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Fig. 1. 3D image of the fast nucleon at s = 107 GeV2 and Q 2 = 40 GeV2.

Here r = √
z2 + b2, and A is the atomic number. C(A) is a normal-

ization factor, that can be calculated numerically from the condi-
tion

∫
d3r ρ(r) = A. At the zero impact parameter T (b) ≈ 0.5A1/3

for large A.
The dependence of the thickness of energetic nucleus as a func-

tion of the transverse size is described in Fig. 2 for the typical
high energy s = 107 GeV2, Q 2 = 40 GeV2. We see that the nuclei
also has a form of a biconcave lens instead of a flat disk. The de-
pendence on the external virtuality for the nuclei is qualitatively
very similar to the case of the nucleon. For small b the depen-
dence is very weak (of order 5%) and increases only close to the
boundary of the biconcave lens region where it is of order 20%
(and kt ∼ 1 GeV). For larger b the nucleus wave function smoothly
returns to the pancake picture.

Note that this picture is very counterintuitive: the thickness of
a nucleus is smaller than of a nucleon in spite of ∼ A1/3 nucle-
ons at the same impact parameter. The resolution of the paradox
in the BD regime is quite simple: the soft fields of individual nu-
cleons destructively interfere cancelling each other. Besides for a
given impact parameter b, the longitudinal size of a heavy nucleus
1/k(A)

t (BDR) < 1/k(p)
t (BDR) since the gluon distribution function in

the nuclei G A(x,b) > G N (x,b). So a naive classical picture of a
system build of the constituents being larger than each of the con-
stituents is grossly violated. The higher density of partons leads
to the restoration of the chiral symmetry in a broad b range and
much larger x range than in the nucleon case.

6. Experimental consequences

The current calculations of cross sections of hard processes at
the LHC are based on the use of the DGLAP parton distributions
and the application of the factorization theorem. Our results imply
that the further analysis is needed to define the kinematic regions
where one can use DGLAP distributions. We showed in the Letter
that for DIS at high energies there are kinematic regions where one
is forced to use a kt factorization and the dipole model instead
of the direct use of DGLAP. A similar analysis must be made for
the pp collisions at LHC. The expected effect is the increase with
Fig. 2. 3D image of the fast heavy nucleus (gold) at s = 107 GeV2 and Q 2 =
40 GeV2.

energy of the probability of the small dipoles in the wave function
of proton.1 Quantitative analysis of this problem will be presented
elsewhere.

The hard processes initiated by the real photon can be di-
rectly observed in the ultrapheripheral collisions [35]. The pro-
cesses where a real photon scatters on a target, and creates two
jets with an invariant mass M2, can be analyzed in the dipole
model by formally putting Q 2 = 0, while M2 is an invariant mass
of the jets. In this case with a good accuracy the spectral density
discussed above will give the spectrum of jets in the fragmentation
region. Our results show that the jet distribution over the trans-
verse momenta will be broad with the maximum moving towards
larger transverse momenta with increase of the energy and cen-
trality of the γ A collision.

Theoretical analysis of wave function of sufficiently energetic
hadron (nucleus) found in the Letter that different phases of chi-
ral symmetry should dominate at different impact parameters. This
property leads to two phase structure of hadron–nucleus, nucleus–
nucleus collisions. Central and peripheral collisions correspond to
different representations of chiral symmetry-resemblance to sec-
ond order phase transition.

Finally, our results can be checked directly, if and when the
LHeC facility will be built at CERN.
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