Lava flow rheology: A comparison of morphological and petrological methods

M.O. Chevrel$^{a, *}$, T. Platzb, E. Hauberc, D. Baratouxd, Y. Lavalléea,e, D.B. Dingwella

a Department of Earth and Environmental Sciences, University of Munich (LMU), Theresienstr. 4/JII, D-80333 Munich, Germany
b Free University Berlin, Institute of Geological Sciences, Planetary Sciences and Remote Sensing, Malteserstr. 74-100, 12249 Berlin, Germany
c German Aerospace Centre (DLR), Institute of Planetary Research, Rutherfordstr. 2, 12489 Berlin, Germany
d University Toulouse III, Institut de Recherche en Astrophysique et Planetologie (IRAP), UMR 5277 CNRS–UPS, 14, Avenue Edouard Belin, 31400 Toulouse, France
e Earth, Ocean and Ecological Sciences, University of Liverpool, Liverpool, L69 3GP, UK

Abstract

In planetary sciences, the emplacement of lava flows is commonly modelled using a single rheological parameter (apparent viscosity or apparent yield strength) calculated from morphological dimensions using Jeffreys’ and Hulme’s equations. The rheological parameter is then typically further interpreted in terms of the nature and chemical composition of the lava (e.g., mafic or felsic). Without the possibility of direct sampling of the erupted material, the validity of this approach has remained largely untested. In modern volcanology, the complex rheological behaviour of lavas is measured and modelled as a function of chemical composition of the liquid phase, fractions of crystals and bubbles, temperature and strain rate. Here, we test the planetary approach using a terrestrial basaltic lava flow from the Western Volcanic Zone in Iceland. The geometric parameters required to employ Jeffreys’ and Hulme’s equations are accurately estimated from high-resolution HRSC-AX Digital Elevation Models. Samples collected along the lava flow are used to constrain a detailed model of the transient rheology as a function of cooling, crystallisation, and compositional evolution of the residual melt during emplacement. We observe that the viscosity derived from the morphology corresponds to the value estimated when significant crystallisation inhibits viscous deformation, causing the flow to halt. As a consequence, the inferred viscosity is highly dependent on the details of the crystallisation sequence and crystal shapes, and as such, is neither uniquely nor simply related to the bulk chemical composition of the erupted material. This conclusion, drawn for a mafic lava flow where crystallisation is the primary process responsible for the increase of the viscosity during emplacement, should apply to most of martian, lunar, or mercurian volcanic landforms, which are dominated by basaltic compositions. However, it may not apply to felsic lavas where vitrification resulting from degassing and cooling may ultimately cause lava flows to halt.

© 2013 The Authors. Published by Elsevier B.V. Open access under CC BY-NC-SA license.

1. Introduction

Morphological dimensions of lava flows are commonly used in planetary sciences to infer the rheological properties (viscosity, yield strength) of the erupted material, which are in turn used to estimate the silica content of the lava. Simple isothermal models of lava flow emplacement have been used to extract these properties, and the assumption has typically been made that lava flows have a single viscosity value. At first, Nichols (1939) proposed the Jeffreys’ equation (Jeffreys, 1925) to calculate the viscosity of a lava flow from its dimensions assuming that it exhibits a Newtonian response. Recognising that lava may no longer behave as a Newtonian fluid as it cools, but may follow a Bingham law, a method was later proposed by Hulme (1974) to estimate the lava yield strength from its morphological dimensions. Experiments with analogue materials having a known rheological behaviour confirm that the morphology of a lava flow may be used to infer the rheology (e.g., Fink and Griffiths, 1992; Gregg and Fink, 1996, 2000; Lyman et al., 2004). Furthermore, according to the studies of Walker et al. (1973), Hulme (1974) and Pinkerton and Wilson (1994), and Moore et al. (1978), some linear relationship can be drawn between the viscosity or the yield strength and the bulk silica content. In recent decades, with the release of high-resolution images and topographic data of planetary surfaces, in particular for Mars, this approach has been largely used (e.g., Zimbelman, 1985, 1998; Wilson and Head, 1994; Baloga et al., 2003; Glaze et al., 2003; Glaze and Baloga, 2006; Hiesinger et al., 2007; Vaucher et al., 2009; Wilson et al., 2009; Hauber et al., 2011;
The approximation of a single viscosity value neglects important physico-chemical processes, which are expected to affect considerably the rheology of lava (e.g., Shaw, 1969; Ryerson et al., 1988; Crisp et al., 1994; Cashman et al., 1999). For example, during emplacement of basaltic lava flow, heat loss induces crystallisation and consequently changes in the residual liquid composition, which both may increase the apparent viscosity of the flow by several orders of magnitude from the vent to the point where the flow halts. Moreover, under some compositional conditions, Giordano et al., 2007 showed that the concept of a rheological cut-off provides a rheological proxy for flow emplacement temperature. During lava flow emplacement, the viscosity of lava is therefore transient, and further evaluation of the validity of interpretations made from morphological methods is imperative.

The understanding of silicate melt rheology has rapidly advanced in the last three decades; a description of the rheology of silicate liquids as a function of temperature and chemical composition is now available (e.g., Hess and Dingwell, 1996; Dingwell, 2006; Giordano et al., 2008; Hui and Zhang, 2007). A reasonable understanding of the rheological contributions of crystals (e.g., Ryerson et al., 1988; Pinkerton and Stevenson, 1992; Lejeune and Richet, 1995; Pinkerton and Norton, 1995; Saar et al., 2001; Sato, 2005; Ishibashi and Sato, 2007; Caricchi et al., 2007; Costa, 2005; Costa et al., 2009; Petford, 2009; Ishibashi, 2009; Mueller et al., 2010; Castruccio et al., 2010; Vona et al., 2011; Cimarelli et al., 2011), bubbles (Bagdassarov and Dingwell, 1992; Lejeune et al., 1999; Stein and Spera, 2002; Manga et al., 1998; Saar and Manga, 1999), and their combined effects (Bagdassarov et al., 1994; Stein and Spera, 1992; Lavallée et al., 2007, 2012; Harris and Allen, 2008; Pistone et al., 2012) is emerging. Yet, it is well accepted that the rheological impact of particles is considerable and cannot be neglected. Their effect on viscosity is described by contributions to the Newtonian behaviour as well as the onset of non-Newtonian effects. The rheology of magmatic suspensions, with its phenomena of strain and strain-rate dependence, thus generally requires a non-Newtonian description. Complexity in describing the non-Newtonian nature has led to the proposal that above a critical crystal fraction, the rheology may be simplified to a Bingham fluid (e.g., Ryerson et al., 1988; Pinkerton and Stevenson, 1992) defined by its yield strength, which is dependent on crystal fraction. Despite recent experiments on multiphase magmas challenged the existence of yield strength (Lavallée et al., 2007; Caricchi et al., 2007), the concept persists in lava flow modelling because it enables computational simplifications.

How robust then, is the description of lava flow morphology in terms of a single rheological parameter (either viscosity or yield strength) reflecting the chemical composition and crystallisation sequence associated with a particular cooling history? To address this question, we focus here on a 4000-year-old basaltic lava flow from the Western Volcanic Zone in Iceland. Our approach combines (1) the determination of the rheological parameters from high-resolution morphological analysis, and (2) the determination of the rheological evolution of the lava according to its crystallisation sequence from eruption until complete crystallisation using petrographic analysis. The applications of our results to planetary data ought to be feasible as volcanic flows on Mars, the Moon and Mercury are dominated by basaltic compositions (BVSP, 1981).

2. Methods

2.1. Morphological analysis

2.1.1. Topographic imaging

In 2006, HRSC-AX, an airborne version of the High Resolution Stereo Camera (HRSC) on board Mars Express, was used for the acquisition of stereo and colour images of the Western Volcanic Zone, Iceland (Fig. 1). The HRSC-AX is a multi-sensor push-broom instrument with 9 CCD line sensors and has a stereo capability, which can systematically produce high-resolution Digital Elevation Models (DEMs). The principles of HRSC-AX data processing are similar to that of Mars Express-HRSC processing (see Scholten et al., 2005; Gwinner et al., 2010). The orientation data of the camera is reconstructed from a GPS/INS (Global Positioning System/Inertial Navigation System). The ortho-images have a map-projected resolution of 25 cm/pixel, and the DEM has a vertical resolution of 10 cm, an absolute accuracy of ∼20 cm, and a horizontal grid spacing of 1 m.

2.1.2. Extracting rheological parameters from morphological dimensions

The following equations apply to the emplacement of cooling-limited lava flows in a laminar fashion with no inflation. All parameters used for the following equations are given in Table 1. The lava flow length (L) is related to its velocity (u) via the dimensionless Grätz number, (G_Z; Knudsen and Katz, 1958; Guest et al.,

Jaeger et al., 2010; Pasckert et al., 2012; and references therein). Estimates of lava viscosities on Mars range from 10^2 to 10^8 Pa s and would appear to be consistent with basaltic to andesitic compositions.

Estimates of lava viscosities on Mars range from 10^2 to 10^8 Pa s and would appear to be consistent with basaltic to andesitic compositions.

Table 1
Notation of all variables.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Unit</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gz</td>
<td></td>
<td>Grätz number</td>
</tr>
<tr>
<td>u</td>
<td>m/s</td>
<td>Mean flow velocity</td>
</tr>
<tr>
<td>L</td>
<td>m</td>
<td>Length of the lava flow</td>
</tr>
<tr>
<td>k</td>
<td>m²/s</td>
<td>Thermal diffusivity</td>
</tr>
<tr>
<td>d_e</td>
<td>m</td>
<td>Equivalent diameter of the flow</td>
</tr>
<tr>
<td>Q</td>
<td>m³/s</td>
<td>Volumetric effusion rate</td>
</tr>
<tr>
<td>H</td>
<td>m</td>
<td>Flow height</td>
</tr>
<tr>
<td>W</td>
<td>m</td>
<td>Flow width</td>
</tr>
<tr>
<td>w</td>
<td>m</td>
<td>Flow width minus widths of the channel's stationary levees</td>
</tr>
<tr>
<td>ρ</td>
<td>kg/m³</td>
<td>Lava density</td>
</tr>
<tr>
<td>g</td>
<td>m/s²</td>
<td>Gravitational acceleration</td>
</tr>
<tr>
<td>α̇</td>
<td>s⁻¹</td>
<td>Strain-rate</td>
</tr>
<tr>
<td>η</td>
<td>Pas</td>
<td>Flow viscosity from Jeffreys' equation</td>
</tr>
<tr>
<td>η̇_flow,1</td>
<td>Pas</td>
<td>Flow viscosity from Warner and Gregg (2003)</td>
</tr>
<tr>
<td>η̇_flow,2</td>
<td>Pas</td>
<td>Flow viscosity from channelised lava flow</td>
</tr>
<tr>
<td>τ₀,flow,1</td>
<td>Pa</td>
<td>Yield strength considering the lateral spreading</td>
</tr>
<tr>
<td>τ₀,flow,2</td>
<td>Pa</td>
<td>Yield strength considering the underlying slope</td>
</tr>
<tr>
<td>τ₀,flow,3</td>
<td>Pa</td>
<td>Yield strength considering channelised lava flow</td>
</tr>
<tr>
<td>η_app</td>
<td>Pas</td>
<td>Apparent viscosity of polydisperse particle mixture</td>
</tr>
<tr>
<td>η_visc</td>
<td>Pas</td>
<td>Viscosity of the interstitial silicate melt</td>
</tr>
<tr>
<td>γ</td>
<td></td>
<td>Relative viscosity (effect of particles)</td>
</tr>
<tr>
<td>φ</td>
<td></td>
<td>Particles' volume fraction</td>
</tr>
<tr>
<td>r</td>
<td></td>
<td>Particles' aspect ratio</td>
</tr>
<tr>
<td>χ</td>
<td>wt.%</td>
<td>Chemical composition</td>
</tr>
<tr>
<td>1/γ</td>
<td></td>
<td>Relative amount of finer particles with regard to coarser particles</td>
</tr>
</tbody>
</table>

1987; Pinkerton and Wilson, 1994), which considers the ratio of heat advection along the flow length to conductive heat losses:

\[G_z = \frac{ud_e^2}{KL} \]

(1)

Several studies have described the relationship between effusion rates and flow lengths (Walker, 1973; Pinkerton, 1987; Pinkerton and Wilson, 1994; Pinkerton and Sparks, 1976) and concluded that cooling-limited flows halt when \(G_z \) falls to a critical value of 300. The volumetric effusion rate, \(Q \), of the extruded lava is related to the velocity by:

\[Q = wWH = \frac{G_zKLW}{H} \]

(2)

Assuming a Newtonian behaviour, the lava flow's geometry on an inclined surface depends on its viscosity, density, effusion rate, and the force that drives the flow (i.e., gravity), and is given by the Jeffreys' equation and later modified by Nichols (1939):

\[\eta_{flow,1} = \frac{\rho g H^2 W \sin \alpha}{nQ} \]

(3)

A simplified equation that omits the effect of lateral extent of the flow and of the slope was later proposed by Warner and Gregg (2003):

\[\eta_{flow,2} = \frac{\rho g H^4}{Q} \]

(4)

Results of Eqs. (3) and (4) generally agree if the flow does not develop levees and if the flow width is considerably larger than the flow height (Moore and Schaber, 1975).

Alternatively, assuming a Bingham behaviour, Hulme (1974) relates the yield strength of the flow to its geometric parameters according to:

\[\tau_{0,flow} = \frac{1}{2} \rho g H \sin \alpha \]

(5)

The yield strength can also be calculated using the lateral spreading of the Bingham fluid, which is independent of the topographic gradient in the flow direction:

\[\tau_{0,flow} = \frac{3 \rho H^2}{W} \]

(6)

In the context of channelised lava flows, Hulme's equations may be written as:

\[\tau_{0,flow} = \frac{\rho (W - w) \sin^2 \alpha}{24Q} \]

(7)

and

\[\eta_{flow,3} = \frac{w^2 \tau_{0,flow} \sin^2 \alpha}{24Q} \]

(8)

2.2. Sampling and analytical methods

One particular lava flow was selected within the area surveyed by the HRSC-AX camera in the Western Volcanic Zone, Iceland (Fig. 1). This lava flow is part of the Thjólfahraun volcanic unit, resulting from the late phase of a fissure eruption event, dated at approximately 4000 yr B.P. (Sinton et al., 2005; Eason and Sinton, 2009). It was chosen because it has a main straight flow suited for evaluating the geometrical parameters. Moreover it is easily accessible for sampling and ground-truthing of remote sensing interpretations. Eight samples were selected at several distances from the vent to the flow front (Fig. 1d). For two sampling sites, pairs of samples were collected from the flow margin and centre (L2B1–L2B2 and L2C1–L2C2). Specimens from the flow top and outer margins were obtained, but the interior and the base of the flow could not be reached due to the lack of crevasses. Bulk rock geochemical analyses of five samples were carried out. Quantitative elemental analysis and back-scattered electron images were collected. Single images acquired with a polarised microscope were merged to portray the entire thin sections. Vesicles and crystals larger than 200 μm were colourised in an area of ~1000 × 1000 pixels. The resulting images were then processed by colour threshold separation for each phase using ImageJ (http://rsb.info.nih.gov/ij/). The proportion of vesicles and crystals are obtained by area pixel counting on binary images (crystal counts are done on a bubble-free area).

2.3. Crystallisation sequence

The crystallisation sequence was determined by petrographic observations. The modal abundance of each phase as a function of temperature was then determined using the thermodynamic calculator MELTS (Ghiorso and Sack, 1995). MELTS calculates via minimisation of the Gibbs free energy the composition and proportions of solids and liquids at thermodynamic equilibrium for prescribed pressure–temperature paths and oxygen fugacity constraints. The crystallisation sequence was run in three steps to simulate the eruptive history of the lava from (i) phenocryst crystallisation in the magma chamber, to (ii) adiabatic ascent, and (iii) cooling and microcrystallisation at the surface. Crystallisation in the magma chamber was simulated by decreasing the temperature from the liquidus to the eruption temperature at a constant
pressure of 1 kbar and 0.4 wt.% H2O as given by Eason and Sinton (2009). The eruption temperature is constrained by the temperature that is modelled by MELTS to achieve the crystallinity of the phenocryst assemblage as observed in the thin sections. Crystallisation induced during magma ascent (due to magma devolatisation) was simulated using isothermal conditions and a pressure gradient from magma chamber conditions to the surface pressure of 1 bar. [Note: The decrease in temperature due to adiabatic decompression was neglected.] Finally, the cooling of the lava flow at the surface was simulated from eruptive temperature to complete crystallisation, using a pressure of 1 bar. The oxygen fugacity was held constant at two log units below the QFM buffer (QFM-2) in all steps (Eason and Sinton, 2009).

2.4. Viscosity modelling from petrographic analysis

The apparent viscosity of a polydisperse particle mixture (crystals and bubbles of various shapes and sizes) in a liquid phase (the silicate melt) may be defined by:

\[\eta_{app} = \eta_{melt} + \eta_{crystals} + \eta_{bubbles} \]

where the viscosity of the melt, \(\eta_{melt} \), is Newtonian and depends on temperature and composition; \(\eta_{crystals} \), the relative viscosity, depends on the volumetric abundance and aspect ratio of the particles as well as on the strain-rate of the flow. Here, the apparent viscosity of the lava is calculated using a combination of thermodynamic and empirical rheological models. A viscosity value is thereby obtained considering the interstitial melt composition and the amount of crystals given by MELTS at every degree from above the liquidus until the solidus (full crystallisation).

The viscosity of the interstitial liquid is estimated via the GRD model (Giordano et al., 2008). This model was chosen over other models (e.g., Shaw, 1969; Bottenga and Weill, 1972; Hui and Zhang, 2007) because it considers a wider range of chemical compositions and includes the non-Arrhenian temperature dependence of silicate melt viscosity following the Vogel–Fulcher–Tammann equation (Vogel, 1921; Fulcher, 1925; Tammann and Hesse, 1926):

\[\log \eta_{melt} = A + \frac{B(\chi)}{T - C(\chi)} \]

where \(A \) is a constant representing the lower limit of silicate melt viscosity at high temperature; and \(B \) and \(C \) are fitting parameters depending on chemical composition (Giordano et al., 2008). The fitting parameters are calculated from the melt composition given by MELTS at every temperature step.

The particle effect is calculated using three rheological models: Shaw (1969), Krieger and Dougherty (1959) and Costa et al. (2009; via Cimarelli et al., 2011), focusing only on the effects of the crystalline phases. Although vesicles are present in our samples, and are used here with fitting parameters given in Cimarelli et al. (2011).

\[\eta_{crystals} = \frac{1}{1 + F(\phi_{melt}, \xi, \gamma)} \]

where \(F \) is given by:

\[F = (1 - \xi) \prod \left(\frac{\sqrt{\pi}}{2(1 - \xi)} \phi_x \left(1 + \frac{\phi_y}{\phi_x} \right) \right) \]

with \(F \) given by:

\[F = \prod \left(\phi_x \right)^{\frac{1}{3} - \frac{3}{2}} + \phi_x(1 - x)^{1.34} \]

\[\gamma_{ef} = \gamma_x x + \gamma_e(1 - x) \]

\[\xi_{ef} = \xi x + \xi_e(1 - x) \]

Both for the Krieger–Dougherty and Costa models, the relative viscosity is calculated considering a bi-modal mixture with the coarse particles being modelled as spheres to mimic the effect of olivine phenocrysts and the fine particles being modelled as needles to mimic the effect of microcrystites, in a bubble-free Newtonian interstitial silicate melt. Ultimately, the relative viscosity and the apparent yield strength are calculated at each temperature increment according to the crystal volume fraction correspondingly obtained via MELTS.
3. Results

3.1. Description of the flow morphology

In proximal 2 km, smooth, flat lava surfaces, ropy textures and multiple collapsed roofs reveals pahoehoe type lava emplaced as tube-fed flow. About 2 km from the vent, the lava advanced through a narrow passage between two hyaloclastite mounds (informally named 'bottleneck') and flows down a steep scarp (Fig. 1d). This slope break appears to have locally enhanced the lava velocity and caused the lava surface to stretch and brecciate into a crumbly to blocky a‘a-type flow. Below the scarp, no evidence of tubes was found but irregular blocks of tens of centimetre forming a clinkery texture typical of a‘a type. Downstream of the bottleneck and the change in slope the flow velocity appears to have abruptly waned, partially causing the formation of pressure ridges and inflation features. About 800 m downstream of the bottleneck the bulk of the flow stops, forming a broad flow lobe from which a breakout yields the extrusion of a narrow flow tongue. Although the whole lava flow is interpreted as volume-limited (as observed by drained lava tubes at proximal reaches), the distal portion of the flow (the last 2 km) is interpreted as a cooling limited flow due to undrained channel and distal breakout (Wilson and Head, 1994). A weakly visible, filled-channel faces with levees is only observed over a short flow length of about 20 m (profile 6, Fig 2). Consequently, the distal portion represents a cooling-limited flow system. Due to the tube-fed regime and the complex emplacement of the proximal to medial flow portions, geometric flow parameters and resulting lava flow viscosity and yield strength were determined for the distal part of the lava flow downstream of the bottleneck (Fig. 2).

3.2. Viscosity estimate from flow morphological dimensions

A total of nine cross-flow profiles were analysed where flow width, height and length were measured (Fig. 2, Table 2). Each profile is an average of ten individual measurements spaced one meter apart. The lava flow segment has a length of 2044.7±0.8 m; its width varies from 124.7 m to 359.7 m with an average width of 218.6±0.3 m and its height ranges from 2.1 m to 7.5 m with an average of 4.73±0.28 m. Propagation of even small errors in

<table>
<thead>
<tr>
<th>Table 2</th>
<th>Geometric flow parameters and resulting lava flow viscosity and yield strength.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical constant</td>
<td></td>
</tr>
<tr>
<td>ρ $[\text{kgm}^{-3}]$</td>
<td>2600±100</td>
</tr>
<tr>
<td>g $[\text{m}s^{-2}]$</td>
<td>9.80665</td>
</tr>
<tr>
<td>G_z $[-]$</td>
<td>300</td>
</tr>
<tr>
<td>κ $[\text{m}^3\text{s}^{-1}]$</td>
<td>7×10^{-7}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Average of all profiles</th>
<th>Mean</th>
<th>Error</th>
<th>% Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>W $[\text{m}]$</td>
<td>218.6</td>
<td>0.3</td>
<td>0.10</td>
</tr>
<tr>
<td>w $[\text{m}]$ (for profile 6)</td>
<td>103.2</td>
<td>1.5</td>
<td>1.50</td>
</tr>
<tr>
<td>L $[\text{m}]$</td>
<td>2044.66</td>
<td>0.82</td>
<td>0.04</td>
</tr>
<tr>
<td>H $[\text{m}]$</td>
<td>4.73</td>
<td>0.28</td>
<td>5.10</td>
</tr>
<tr>
<td>α $[\degree]$</td>
<td>1.66</td>
<td>0.00</td>
<td>0.10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rheological parameter</th>
<th>Mean</th>
<th>Error</th>
<th>% Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q $[\text{m}^3\text{s}^{-1}]$</td>
<td>19.9</td>
<td>0.567</td>
<td>2.86</td>
</tr>
<tr>
<td>$\eta_{\text{flow,1}}$ $[\text{Pas}]$</td>
<td>2.86×10^5</td>
<td>5.12×10^4</td>
<td>17.88</td>
</tr>
<tr>
<td>$\eta_{\text{flow,2}}$ $[\text{Pas}]$</td>
<td>6.41×10^5</td>
<td>1.54×10^5</td>
<td>23.97</td>
</tr>
<tr>
<td>$\eta_{\text{flow,3}}$ $[\text{Pas}]$</td>
<td>5.98×10^3</td>
<td>1.12×10^3</td>
<td>18.70</td>
</tr>
<tr>
<td>$\tau_{0,\text{flow,1}}$ $[\text{Pa}]$</td>
<td>3.49×10^3</td>
<td>2.40×10^2</td>
<td>6.88</td>
</tr>
<tr>
<td>$\tau_{0,\text{flow,2}}$ $[\text{Pa}]$</td>
<td>4.68×10^3</td>
<td>2.72×10^2</td>
<td>5.81</td>
</tr>
<tr>
<td>$\tau_{0,\text{flow,3}}$ $[\text{Pa}]$</td>
<td>2.10×10^3</td>
<td>2.65×10^2</td>
<td>12.60</td>
</tr>
</tbody>
</table>

Fig. 2. (a) Data Elevation Model of the distal section of lava flow with location of the profiles used to estimate the rheological parameters. (b) Topography cross-section of the profiles with vertical exaggeration. Numbers on the left side are the absolute elevation at the bottom of the profiles.
morphometric parameters measurements may cause a large spread in the rheological properties. In particular, the variation in flow height significantly affects the error on viscosity and yield strength calculations, as it is factored by a power of 3 and 4 (see for example Eqs. (3) and (4)). The topographic gradient was determined adjacent to the lava flow where the underlying topography is exposed as well as on the flow surface where the pre-eruption topography is concealed by adjacent flows. The average underlying slope is about 1.66°. Error analysis includes formal statistical errors (see Appendix A.2 for details and Lefler, 2011) for both morphometric variations using repeated measurements and absolute instrumental parameters.

The calculated effusion rate is 19.9 ± 0.56 m^3 s^-1 (Eq. (2)).

The flow viscosities obtained using Eq. (3) and Eq. (4) are on the order of 10^2 Pa s. In contrast, Eq. (8) provides a viscosity value two orders of magnitude lower (5.98 × 10^3 Pa s). The geometrical analysis thus provides a wide range of possible nominal viscosity estimates. On the other hand, the estimates of apparent yield strength of the flow vary slightly between 2.1 and 4.68 × 10^3 Pa (Eqs. (5), (6), (7)) and the errors remain less than 12.6% irrespective of the equation considered.

3.3. Chemistry and petrography

The bulk rock chemistry of the samples shows compositional homogeneity and petrographic analyses reveal no systematic variations in the volume fraction of vesicles and crystals along the flow (Table 3). The lava is basaltic in composition with 48 wt.% SiO2, less than 2.5 wt.% alkali, and a Mg # of 0.63. Like most hot-spot related basaltic material, the total iron content is fairly high with 12 wt.% FeOtot.

The rocks exhibit a glomeroporphyritic texture with clusters of euhedral olivine phenocrysts and some interlocking plagioclase surrounded by a microcrystalline groundmass (Fig. 3). Vesicle diameters range from 50 μm to more than a few millimetres, and the phenocrysts are up to 1 mm in length, sometimes occurring in clusters of up to 5 mm in diameter. Point counting reveals that all samples are comprised of, on average, 12 to 20 vol.% vesicles and 3 to 10 vol.% pre-eruptive phenocrysts (with lengths exceeding 200 μm). The remaining groundmass fraction, as detailed through back-scattered electron images (Fig. 3), exhibits an intergranular texture in which olivine and pyroxene and at a later stage, oxides, fill the interstices of a framework formed by tabular plagioclase microlites of less than 200 μm (representing about 50% of the groundmass). No interstitial glass could be identified (as is often the case for basaltic lava). Within a single sample, however, the vesicle volume fraction locally varied and the bubble shape could occasionally change from spherical to elongate/stretch bubble and microlites locally show a fluidal alignment along a flow direction and around the bubbles, suggesting strain localisation and/or heterogeneity in volatile content and/or temperature (Fig. 3e). Although these local variations may result in a complex flow regime, we neglect their effects with respect to the rheological behaviour of the lava flow as a whole during flow emplacement.

3.4. Crystallisation sequence

3.4.1. Optical observation and thermometry

In our analysis, we follow the common belief that phenocrysts formed in the magma chamber, whereas the microlites crystallised during magma ascent, eruption and subsequent flow emplacement (e.g., Gill, 2010). The temperature of the onset of olivine crystallisation is calculated using the ‘olivine-liquid thermometer’ (Putirka, 2008) in which the core of the olivine is considered to be in equilibrium with a liquid having the bulk rock composition. Using the chemical compositions of the olivine core (given in Appendix A.3) and assuming a pressure of 1 kbar, and presence of 0.4 wt.% H2O in the magma chamber (Eason and Sinton, 2009), the temperature of the liquidus is estimated to be 1215 °C.

Interpretation of the textual analyses suggest that olivine is the first mineral to crystallise in the magma chamber, followed by plagioclase and that eruption has occurred at, or immediately after, the onset of plagioclase crystallisation, because there are less than 1 vol.% plagioclase phenocrysts within the sample. The groundmass (liquid phase prior to eruption) crystallises quickly during magma ascent and lava flow emplacement. During magma ascent and eruption the drop of pressure within the magma drives gas exsolution and nucleation of bubbles that enhance crystallisation. Such forced crystallisation generates abundant microlites of plagioclase and iron-rich olivine, tens of micrometres in size in the groundmass. Subsequently, the residual liquid crystallised as clinopyroxene and oxides.

3.4.2. Thermodynamic calculator

The thermodynamic calculator MELTS is used to describe the abundance of each crystalline and liquid phase during magma ascent, eruption and emplacement at every temperature step (Fig. 4). The starting chemical composition considered here is obtained by averaging the bulk-rock composition of the samples. In the magma chamber, at 1 kbar, 0.4 wt.% H2O and QFM-2 (Eason and Sinton, 2009), the appearance of olivine would occur at 1213 °C (consistent with the estimation from the thermobarometer of Putirka,
Fig. 3. Petrographic analyses of the sample L2A. (a) Photograph in plane-polarised light; and associated binary images used to evaluate the vol.% of: (b) vesicles, (c) olivine phenocrysts and (d) all crystals larger than 200 μm. (e) Closer look at the thin section shows the petrographic assemblage and (f) back scattered electron analyses (using a Cameca SX100 Electron MicroProbe Analyser) evidences the microcrystalline groundmass with pyroxene crystallised in between the plagioclase microlites and the oxides at last in the remaining space; the plagioclase microlite laths are aligned in a flow direction. In this example, plagioclase (in dark grey) represents 50% of the total area of this picture.

Table 4

<table>
<thead>
<tr>
<th>Mueller et al. (2010)</th>
<th>Cimarelli et al. (2011)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sphere</td>
<td>Needle</td>
</tr>
<tr>
<td>φ₀</td>
<td>0.641</td>
</tr>
<tr>
<td>δ</td>
<td>0.61</td>
</tr>
<tr>
<td>γ</td>
<td>1.4609</td>
</tr>
<tr>
<td>φ₁</td>
<td>0.5317</td>
</tr>
<tr>
<td>ξ</td>
<td>3.8 × 10⁻⁵</td>
</tr>
</tbody>
</table>

2008), followed by plagioclase at 1180 °C. The eruptive temperature is suggested to be 1175 ± 5°C, based on the extent of crystallisation required to produce the phenocryst content observed in the rock. The ascent of the magma is modelled by decreasing pressure from 1 kbar to 1 bar while maintaining a constant temperature of 1175 °C and oxygen fugacity at QFM-2. During the pressure drop, MELTS computes a loss of water from 0.4 to 0.06 wt.% and an increase in crystallinity from 7 to 19 vol.%. The late-stage crystallisation is calculated at 1 bar and QFM-2 until the solidus temperature is reached. The onset of Ca-rich pyroxene nucleation occurs at 1170 °C, and oxides crystallise at 1108 °C from the remaining liquid. Complete crystallisation is achieved at 1095 °C (solidus temperature).

3.5. Transient viscosity model of the crystallising lava flow

The transient apparent viscosity of the erupted material is calculated using Eq. (9), based on the viscosity of the residual liquid calculated via the GRD model and the relative viscosity estimated using three different models: Shaw (1969), Krieger and Dougherty
Crystallisation sequence as a function of temperature calculated with MELTS from the magma chamber conditions (1 kbar, 0.4 wt.% H2O, QFM-2) through isothermal eruption and emplacement at the surface (1 bar, QFM-2).

For the Shaw method, all crystals are considered identical with spherical shape. For the Krieger–Dougherty method, the relative viscosity was calculated using fitting parameters from Mueller et al. (2010), considering the product of coarse spherical particle to model the olivine phenocrysts (with a maximum packing of 0.64) and needles-like fine particles to model microlites (with a maximum packing of 0.34) (Table 4). For the calculation using the Costa equation (Eqs.(14), (15), (16)), the relative viscosity was calculated using the fitting parameters given in Table 4 from Cimarelli et al. (2011) for strain rates of 10^{-6}, 10^{-4} and 1 s$^{-1}$, according to the relative proportions, x, of phenocrysts (spheres) and microlites (needles).

The calculated apparent viscosity obtained through all three models is presented as a function of temperature in Fig. 5. The viscosity of the molten bulk rock and of the residual liquid (η_{melt}) calculated at each temperature (using the GRD model) are also shown. These curves can be used to distinguish between the effect of the compositional change in the residual melt and the effect of crystals. [Note: the viscosity of the molten bulk rock was experimentally measured on a melted sample using the concentric cylinder method (Dingwell, 1986). At superliquidus conditions, the apparent viscosity is similar to the viscosity of the remelted whole rock.]

At the onset of olivine crystallisation, the apparent viscosity becomes progressively higher than the bulk liquid’s viscosity. The large increase in plagioclase and the water loss due to magma ascent of the lava at the eruption result in a sharp increase in viscosity. Under post-eruption conditions, during cooling at the Earth’s surface, the apparent viscosity continuously increases with microlite nucleation and growth. The Shaw and Krieger–Dougherty models compute a sharp viscosity increase when approaching the maximum packing values and fail to compute viscosity for lower temperatures at which the crystal content exceeds the maximum packing because they mathematically lead to infinite values. In contrast, the model provided by Costa enables us to quantify the remaining rheological evolution of the crystallising lava above the critical crystal fraction where the mixture behaviour is controlled by the solid network.

3.6. Yield strength of the crystallising lava flow

Pure silicate liquids have no yield strength, so the dependence of the yield strength with temperature is only due to the increas-
ing crystal content (Fig. 6). Depending on the model, the mixture may start to exhibit yield strength as soon as crystals form (Gay et al., 1969; Ryerson et al., 1988; Dragoni, 1989; Mueller et al., 2010), whereas other models consider a minimum crystal content before onset of the yield strength (Zhou et al., 1995; Castruccio et al., 2010). A sharp increase of the yield strength is first observed due to the onset of plagioclase crystallisation and then due to further crystallisation after eruption, and eventually, in some cases it is extrapolated to infinite when crystallinity reaches the maximum packing (Gay et al., 1969; Zhou et al., 1995; Mueller et al., 2010). In contrast, the experimental fit of Ryerson et al. (1988) and Castruccio et al. (2010), which does not consider a maximum packing value, reaches a maximum value of the order of 10^2 to 10^5 Pa.

4. Discussion

Here we use rheological models and thermodynamic calculation to describe the full path of lava rheology during cooling upon eruption until its full crystallisation. The solution is, however, not unique in that a given mineral assemblage (with specific ratios of minerals) can be achieved through crystallisation of a range of parental magmas using diverse initial conditions. Moreover, MELTS is intransigent to disequilibrium crystallisation kinetics typical of volcanic environments. Owing to our ability to sample the studied lava flow, our model revolves around well-constrained geochemical conditions; yet, it certainly does not fully account for crystallisation disequilibrium associated with rapid cooling. Crystallisation is considered in equilibrium, but the crystal shape for microlites was considered to be elongate, which typifies rapid cooling conditions. Future improvement will require the coupling of cooling rate and crystal growth (rate, shape and size) with rheology to measure the change of viscosity as a function of the distance from the source vent and as a function of vertical location within the flow. In that sense, various cooling rates and differences in the degree of crystallisation between base, surface and core of the flow must be accounted for. Thus, the assumption of thermodynamic equilibrium between all the crystal phases and the liquid, and at each temperature step, is a simplification employed here in a volcanic environment.

4.1. Comparison of morphological and petrological methods

Other studies have previously attempted to estimate the apparent viscosity as function of the crystallisation sequence (e.g., Shaw, 1969; Ryerson et al., 1988; Pinkerton and Stevenson, 1992; Harris and Allen, 2008). These studies employed earlier empirical models describing the viscosity of liquids (e.g., Shaw, 1972; Bottinga and Weill, 1970) as well as the Einstein–Roscoe equation to determine the effect of crystals. Although these combined methods provide reasonable approximations at low crystal contents (<20 vol.%), associated with near-liquidus temperatures (e.g., Ishibashi and Sato, 2007; Vona et al., 2011), they fail to map the complete rheological evolution of crystallising lava until solidification (crossing of the solidus temperature). The comparative model analysis introduced in the present study illustrates how each of the three main models (Shaw, 1969; Krieger and Dougherty, 1959; and Costa et al., 2009), given a set of parameters (temperature, chemistry, crystal content and shape, etc.) can provide contrasting apparent viscosity estimates (see Fig. 5). When trying to constrain the rheological evolution of lava undergoing complete crystallisation, the model of Costa (using the fitting parameters for a bi-disperse mixture from Cimarelli et al., 2011) provides, to date, the most complete viscosity description, taking into consideration any crystal fraction, varied crystal shapes, and most importantly, strain rate. The shallowing of the viscosity–crystallinity relationship above the critical crystal fraction (as described by Costa’s model) suggests that in heavily loaded suspensions, deformation is strongly controlled by the crystalline network. Strain may induce crystal alignment and more particles can be accommodated as we may observe in the lava sample (Fig. 3f). The percentage area covered by the of aligned plagioclase amounts to approximately 50% that is higher than the random maximum packing for needle-like particles, a fact which emphasises the need to consider flow at degrees of crystallisation beyond the maximum packing.

The estimated single-value of viscosity and the estimated yield strength from the flow morphological dimensions overlap with the
values estimated from the crystallisation sequence when approaching the maximum packing, or just above the values corresponding to the critical crystal fraction in the case when using the model of Costa. This crystal content corresponds to the rheology of the flow where it is becoming governed by the solid particles, marked by the change of slope in the Costa model. This is the rheological limit at which the lava is too viscous to continue to flow (for this given strain-rate). This suggests that the flow has recorded in its morphology the highest viscosity and yield strength when it is becoming seemingly stagnant. We wish to emphasise that in the case of polycrystalline magmatic suspensions, the crystals with the highest aspect ratio control this critical crystal fraction: higher crystal aspect ratios lead to lower critical crystal fraction. The rheological values estimated from the morphology are therefore highly sensitive to the crystal fraction and importantly the crystal shape (hence the crystalline phases).

In the context of a cooling and crystallising basaltic flow, the yield strength increases until it reaches the value corresponding to the time-scale for which the flow appears to be stagnant. In other words, the yield strength of a lava flow is an “apparent value” that is defined by the lava flow’s final morphological dimensions. Previous attempts to model the relationships between shear strength and crystallinity reflect the time-scale of the experimental procedures. In many investigations, the slower strain rate approaches 10^{-6} s^{-1}, which, in some models, agree on a yield strength around 10^3 to 10^4 Pa (e.g., Gay et al., 1969; Ryerson et al., 1988; Zhou et al., 1995; Mueller et al., 2010)—a range similar to the values obtained from flow morphology characteristics (Fig. 6).

Our results imply that the geometrical approximation of single viscosity and yield strength values (as described by Jeffreys’ and Hulme’s equations) cannot accurately constrain the details of a flow’s rheological evolution. Although it may help to distinguish between extremes (e.g., maﬁc vs. felsic ﬂows), the non-unique rheological/petrological path evolution may prevent our ability to distinguish more subtlety between lava flow compositions. The diﬃculties may be even more signiﬁcant when considering apparent high-viscosity ﬂows. Protracted extrusion of andesitic lava domes at Volcán de Colima, Mexico, for example, have been constrained to ﬂow at viscosities of 10^{10}–10^{12} Pa s (Lavallée et al., 2012)—a viscosity range which, according to Walker (1973) and Pinkerton and Wilson’s (1994) scheme, would suggest a rhyolitic origin. In the latter, the sequence of crystallisation may not be the decisive factor inﬂuencing the rheological evolution of the ﬂow, but rather its general cooling and degassing (e.g., Hess et al., 2005). As lava degasses, its viscosity increases which in turn slows down the rate of structural relaxation of the lava, forced to undergo the glass transition. Such lava will thus be subject to a different rheological evolution, that may not depend so strongly on crystallisation sequence.

4.2. Implications for the rheological mapping of extra-terrestrial lava ﬂows

In the present study, the basaltic, iron-rich, Icelandic lava ﬂow is taken as an analogue for basaltic martian lava ﬂows. One may therefore assume a somewhat similar crystallisation sequence and, thus, similar viscosity evolution during emplacement on Mars although cooling rate, oxygen fugacity, atmospheric pressure and degassing eﬃciency may temperate direct comparison. The range of lava viscosities calculated on Mars may therefore reﬂect diﬀerences in bulk composition together with diﬀerent cooling history and crystallisation sequence. The high viscosity values (10^5–10^6 Pa s) calculated for martian lava ﬂows may be best explained by basaltic compositions, as suggested by remote sensing compositional data, with high crystal content (>50 vol.%) and not necessarily by more silicic composition. Such lava may be expected to behave like an a’a type ﬂow, similar to the distal portion of the studied Icelandic ﬂow. In the case of some martian lava ﬂows with low inferred viscosity values (<10^3 Pas), high effusion rates (>100 m3 s$^{-1}$) or low silica content may favour the extreme long run-out distances of such lava, as previously proposed by Vaucher et al. (2009). Such low viscosities may also be explained by rapid crystallisation of high aspect ratio, needle-like crystals, as observed in Komatiitic spinifex textures that would favour very low maximum packing value. This would in turn eﬃciently slow the lava at high temperature and thus yield a freezing-in at low apparent viscosity. Spinifex textures have been suggested for martian lavas, based on crystallisation experiments of basaltic rocks analysed in-situ by Mars Exploration Rovers (Bost et al., 2012). Lava ﬂows with seemingly low viscosities, associated with recent ultramafic volcanism in Central Elysium Planitia (e.g., Stockstill-Cahill et al., 2008), may preserve such textures. The value for optical description of petrographic textures of igneous rocks imaged by rovers during landing missions is apparent here. In this context, the interpretation of martian ﬂows should combine morphological analysis with the mineralogical observation from high-resolution visible and near-infrared spectroscopy. Using such multidisciplinary approach may signiﬁcantly reduce uncertainties on lava ﬂow compositions and rheological behaviour during ﬂow emplacement.

5. Conclusion

The viscosity of a lava ﬂow of the Western Volcanic Zone in Iceland has been estimated from its morphology via the methodology typically used in planetary sciences. In order to evaluate the physical meaning of such estimates, we have constrained the transient rheology of the erupted lava considering the observed crystallisation sequence, further modelled through MELTS based on chemical composition, crystal content and shape, and geothermobarometric data. The viscosity is shown to depend strongly on the crystallisation sequence. The results demonstrate that the flow viscosity is inevitably transient and increases by more than 6 orders of magnitude during emplacement from the vent to the ﬂow front. The lava viscosity quickly becomes non-Newtonian as the groundmass crystallises. Using combined thermodynamic and empirical models, which consider both, the composition and morphology of crystals, is an important step towards improved viscosity estimates. We show that rheological properties obtained from the morphology of the ﬂow are distinct from the lava behaviour at the eruption onset and during most of its emplacement, corresponding rather to transient values occurring near ﬂow cessation.

The present comparative approach should be applied to a wide range of compositions (andesitic, dacitic) in order to verify the use of such a method in planetary sciences. Complementary analyses (e.g., radar, direct sampling) should be employed to constrain potential geochemical diﬀerences. We recommend that thermodynamic calculations and rheological models be deployed in tandem to better understand the complex behaviour of extra-terrestrial lava ﬂows. In the case of Mars, where volcanic rocks’ chemical and mineralogical compositions are becoming relatively well constrained through the ages (e.g., Baratoux et al., 2011; Grott et al., 2013), such a combined morphological/rheological/petrological approach may prove invaluable to study the surface expression of the planet’s geodynamics.

Acknowledgements

M.O. Chevrel wishes to thank THESIS (Elitenetzwerk Bayern) for financial support. T. Platz and E. Hauber were partially supported by the Helmholtz association through the research alliance “Planetary evolution and life”. The authors wish to thank Elena Leifer for
her work on error propagation during the calculation of rheological parameters presented as B.Sc. thesis (Freie Universität Berlin). D.B. Dingwell acknowledges the research professorship of the Bundesexzellenzinitiative (LMExcellence) and an Advanced Grant of the European Research Council (EVOKE-247076). D. Baratoux acknowledges funding from the Programme National de Planétologie (INSU). Y. Lavallée acknowledges funding from the Deutsche Forschungsgemeinschaft (LA2651/1-1 and LA2651/3-1) as well as the Starter Grant of the European Research Council (SLIM–306488).

Appendix A. Supplementary material

Supplementary material related to this article can be found online at http://dx.doi.org/10.1016/j.epsl.2013.09.022.

References

