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Reductions in brain volumes represent a neurobiological signature of fetal alcohol spectrum disorders (FASD).
Less clear is how regional brain tissue reductions differ after normalizing for brain size differences linked with
FASD andwhether these profiles can predict the degree of prenatal exposure to alcohol. To examine associations
of regional brain tissue excesses/deficits with degree of prenatal alcohol exposure and diagnosis with and with-
out correction for overall brain volume, tensor-based morphometry (TBM) methods were applied to structural
imaging data from a well-characterized, demographically homogeneous sample of children diagnosed with
FASD (n = 39, 9.6–11.0 years) and controls (n = 16, 9.5–11.0 years). Degree of prenatal alcohol exposure was
significantly associatedwith regionally pervasive brain tissue reductions in: (1) the thalamus,midbrain, and ven-
tromedial frontal lobe, (2) the superior cerebellum and inferior occipital lobe, (3) the dorsolateral frontal cortex,
and (4) the precuneus and superior parietal lobule.When overall brain size was factored out of the analysis on a
subject-by-subject basis, no regions showed significant associations with alcohol exposure. FASD diagnosis was
associated with a similar deformation pattern, but few of the regions survived FDR correction. In data-driven in-
dependent component analyses (ICA) regional brain tissue deformations successfully distinguished individuals
based on extent of prenatal alcohol exposure and to a lesser degree, diagnosis. The greater sensitivity of the con-
tinuousmeasure of alcohol exposure comparedwith the categorical diagnosis across diverse brain regionsunder-
scores the dose dependence of these effects. The ICA results illustrate that profiles of brain tissue alterationsmay
be a useful indicator of prenatal alcohol exposure when reliable historical data are not available and facial fea-
tures are not apparent.

© 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-SA license
(http://creativecommons.org/licenses/by-nc-sa/3.0/).
1. Introduction

Prenatal alcohol exposure causes physical and behavioral impair-
ments (Kodituwakku, 2009; Mattson et al., 2011) that range in severity
and occur through the disruption of normal neurodevelopmental
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processes (Ismail et al., 2010; Jacobson et al., 2011; Thompson et al.,
2009), impacting both the size and the structural organization of the
brain (Guerri et al., 2009; Norman et al., 2009; Roebuck et al., 1998).

While the severity of physical and behavioral symptoms is related to
exposure dose and frequency (e.g., Streissguth et al., 1989, 1994;
Jacobson et al., 1998; Jacobson et al., 2008), these associations are diffi-
cult to characterize as the amount of alcohol use during pregnancy is
often poorly recalled in retrospective case–control studies (Jacobson
et al., 2002). Instead, growth deficiencies, facial dysmorphology, and
central nervous system dysfunctions are typically used to diagnose
and categorize severity of exposure. Diagnosis is challenging as facial
anomalies may be subtle or absent (Suttie et al., 2013). Understanding
the links between extent of fetal alcohol exposure and disruptions in
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the structural development of the brain may thus be helpful for
distinguishing individuals with fetal alcohol spectrum disorders
(FASD) and elucidating vulnerable functional systems.

Few studies examining the impact of fetal alcohol exposure on brain
development (for review see Lebel et al., 2011; Norman et al., 2009)
have employed advanced computational image analysis methods to si-
multaneously determine global and local changes in brain tissue archi-
tecture. Tensor-based morphometry (TBM) uses Jacobian determinant
values obtained from the linear and non-linear deformation fields re-
quired to match structures with similar intensity patterns of individual
subjects to a population specific atlas. Since TBM matches structures
with similar intensity patterns, it can detect local volumetric excesses
and deficits in brain tissue at the voxel level (e.g., Chiang et al., 2007;
Gogtay et al., 2008; Ho et al., 2010; Hua et al., 2008; Leow et al., 2006;
Lepore et al., 2010; Yanovsky et al., 2009).

Only one prior investigation has applied TBM to compare children
with heavy prenatal exposure to alcohol ormethamphetamine and con-
trols (Sowell et al., 2010). Although this study, which examined local
changes after removing global scaling differences from the imaging
data, found volumetric deficits in several regions, prenatal alcohol expo-
sure was also associated with expansions in several regions. The latter
effects, which are not consistent with findings from other neuroimaging
and autopsy studies, may be due to over-compensatory expansions in
local volumes occurring as a function of normalization for brain size.

Here we characterize the nature and extent of cerebral abnormali-
ties in FASD in a prospectively recruited, demographically homoge-
neous sample of FASD subjects and controls using TBM methods to
quantitatively map volumetric differences throughout the brain. We
compared voxel-level variations in brain tissue volume in relation to
both a continuous measure of oz of absolute alcohol consumed per
day during pregnancy and diagnosis based on discrete classifications
of FASD severity, both with and without taking global brain size differ-
ences into account. In addition, using objective, data-driven indepen-
dent component analyses (ICA), we addressed whether patterns of
volumetric deviation can separately predict the presence and extent of
prenatal alcohol exposure.

2. Materials and methods

2.1. Participants

Participants were 55 9- to 11-year-old children (28males, mean age
10.4 ± 0.4 years) from Cape Town, South Africa, who are enrolled in a
prospective, longitudinal study of FASD (Jacobson et al., 2008, 2011).
Of these, 39 were heavily exposed to alcohol and 16 were demographi-
cally similar controls. All children were from the Cape Coloured (mixed
ancestry) community, which is composed mainly of descendants of
white European settlers, Malaysian slaves, Khoi-San aboriginals, and
black African ancestors. The incidence of fetal alcohol syndrome (FAS)
in this community, situated in a geographical region supporting a
wine-producing industry, is estimated to be 18–141 times greater
than that in the United States (May et al., 2000, 2007). Poor socioeco-
nomic circumstances and historical practices of compensating farm
labor with wine have contributed to a tradition of heavy recreational
weekend binge drinking in a portion of this population, leading to the
increased incidence of FAS.

During 1998–2002, mothers initiating antenatal care at a clinic serv-
ing a predominantly Cape Coloured community were interviewed re-
garding their alcohol consumption using a timeline follow-back
approach (Jacobson et al., 2002). At recruitment the mother was
interviewed regarding incidence and amount of her drinking on a day-
by-day basis during a typical 2-week period at time of conception. Vol-
ume was recorded for each type of beverage consumed each day and
converted to oz absolute alcohol (AA) (Jacobson et al., 2008). Themoth-
er was then asked whether her drinking had changed since conception;
if so, when the change occurred and howmuch she drank on a day-by-
day basis during the last 2weeks. Two groups ofwomenwere recruited:
(1) heavy drinkers, who consumed 14 or more standard drinks/week
(≈1.0 oz AA/day) and/or engaged in binge drinking (5 or more
drinks/occasion) and (2) controls, 14 of whom abstained from drinking
and 2 who drank only minimally during pregnancy (one averaged
3 drinks/occasion twice monthly, and the other drank 2 drinks on 4 oc-
casions). The timeline follow-back interview was repeated in mid-
pregnancy and again at 1 month postpartum to provide information
about drinking during the latter part of pregnancy. Data from the
three alcohol consumption interviews were tabulated to provide three
continuousmeasures of drinking during pregnancy: average oz AA con-
sumed/day (AA/day), AA/drinking day (dose/occasion), and frequency
(days/week). Smoking during pregnancywas reported in terms of ciga-
rettes smoked per day; one outlier with cigarettes/day N 3SD above the
mean for this sample was recoded to 1 unit above the next highest ob-
served value as recommended by Winer (1971). Exclusionary criteria
included age b 18 years, diabetes, epilepsy, cardiac problems requiring
treatment, and observantMuslimswhose religious practice prohibits al-
cohol consumption.

In 2005 we organized a clinic, in which each child was examined for
growth and FAS anomalies by two expert dysmorphologists using a
standard protocol (see Jacobson et al., 2008). Based on the revised Insti-
tute of Medicine guidelines, FAS is characterized by microcephaly,
growth retardation, and a distinctive craniofacial dysmorphology, in-
cluding short palpebral fissures, a flat philtrum, and a thin vermilion
(upper lip) (Hoyme et al., 2005). A partial FAS (PFAS) diagnosis requires
the presence of at least two of these facial features, as well as micro-
cephaly, retarded growth, or neurobehavioral deficits. Children with
alcohol-related neurodevelopmental disorder exhibit neurobehavioral
deficits without the characteristic facial features. Of the 39 children
born to heavy drinking mothers, 7 met the criteria for full FAS, 18 for
PFAS, and 14 for neither syndrome. Approval for human research was
obtained from the Wayne State University Institutional Review Board
and University of Cape Town Faculty of Health Sciences Human Re-
search Ethics Committee. All mothers provided informed written con-
sent; the children provided oral assent.

2.2. Neuropsychological assessment

Intellectual ability (IQ) for each child was assessed at our University
of Cape Town Child Development Research Laboratory using the
Wechsler Intelligence Scale for Children, Fourth Edition (WISC-IV) in
English or Afrikaans, depending on the language used in the child's ele-
mentary school classroom (see Diwadkar et al., 2013).

2.3. Image acquisition

High-resolution T1-weighted structural MR images were acquired
on a 3 T Allegra MRI scanner (Siemens, Erlangen, Germany) using a
3D EPI-navigated (Tisdall et al., 2009) multiecho magnetization pre-
pared rapid gradient echo (MEMPRAGE) (van der Kouwe et al., 2008)
sequence optimized for morphometric analyses using FreeSurfer soft-
ware. Imaging parameters were as follows: FOV: 256 × 256 mm; 128
sagittal slices; TR: 2530 ms; TE: 1.53/3.21/4.89/6.57 ms; TI: 1100 ms;
flip angle: 7°; voxel size: 1.3 × 1.0 × 1.3 mm3; and acquisition time:
8:07 min. The 3D EPI navigator provided real-time motion tracking
and correction, substantially reducing motion artifacts in the images,
even in the presence of frequent subject motion.

2.4. Image processing

TBM is an advanced, relatively unbiased and mostly automated
image analysis approach that allows variations in brain tissue structure
(gray andwhitematter and cerebrospinal fluid (CSF)) to be determined
and compared between subjects throughout the entire brain. In brief,
TBM identifies brain structural differences from the gradients of linear
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and/or non-linear deformation fields required to align or warp individ-
ual target brains to an anatomical reference (Ashburner et al., 2003).
Comparisons of three-dimensional Jacobian determinant maps derived
from the deformation fields made at the voxel level then determine
both local and global changes in brain tissue volume in association
with individual differences such as the extent/severity of prenatal alco-
hol exposure investigated here.

Prior to applying TBM, non-brain tissue (scalp and meninges) was
removed from each image volume using brain masks created with
FreeSurfer software (http://surfer.nmr.mgh.harvard.edu/). Any brain seg-
mentation errors were corrected on a slice-by-slice basis. Image vol-
umes were corrected for signal intensity and magnetic field
inhomogeneity artifacts (Sled and Pike, 1998). TBM workflows includ-
ing procedures similar to those detailed in prior studies (Chiang et al.,
2007; Gogtay et al., 2008; Ho et al., 2010; Hua et al., 2008; Leow et al.,
2006; Lepore et al., 2010) were implemented in the LONI Pipeline envi-
ronment (Dinov et al., 2009; Dinov et al., 2010). First, each preprocessed
image volumewas registered to a single template image using an affine
9-parameter registration to adjust for global brain scale and alignment.
Transformationmatrices were retained for subsequent processing steps
allowing the data to be assessed without global scaling. Next, images
from the control group were used to create a minimal deformation tar-
get (MDT) or average anatomical template. For this processing step,
each individual volumewas aligned to all other volumes using amutual
information (MI)-based inverse-consistent algorithm, followed by ap-
plying the inverse of the mean displacement field from all subjects to
theMDT. Finally, image volumes from all subjects were each separately
and similarly aligned to theMDTby nonlinearly deforming the anatomy
of each individual image to the anatomical template while optimizing
the regularity of the deformation by quantifying the inverse consistent
symmetric Kullback–Leibler (KL)-distance between the MDT and the
resulting deformation to allow for unbiased registration (Hua et al.,
2011).

The Jacobian operator was then applied to the deformation fields re-
quired to non-linearly match each subject's anatomy to the MDT to pro-
duce univariate Jacobian determinants (i.e., Jacobian maps). These 3D
Jacobian maps represent relative tissue volume differences between
each individual and the MDT after factoring out global scaling differences
and may be compared voxel-wise across the entire brain to reveal local
changes in tissue structure between subjects. To determine tissue-
specific differences without factoring out global scaling differences, the
scaling factors obtained from the affine transformations in earlier process-
ing stepswere applied to the Jacobians at each voxel. Thus, we couldmap
changes in brain tissue structure both with and without normalizing for
overall brain size differences. This is beneficial, as children with prenatal
alcohol exposure tend to have smaller brain volume and small head cir-
cumference is one of the diagnostic criteria for FAS and PFAS.

In addition, to provide independent verification of TBM findings,
FreeSurfer (Fischl et al., 2002, 2004), an automated brain segmentation
program, was used to measure the volumes of 22 discrete subcortical
structures and 34 cortical regions.

2.5. Statistical analyses

Regression analyses, employing computational tools provided by the
Statistics Online Computational Resource (http://www.SOCR.ucla.edu)
(Chu et al., 2009), were used to relate local variations in brain structure
to the continuousmeasure of prenatal alcohol exposure (AA/day) for all
subjects both with and without normalizing for brain size. The AA/day
measure was log transformed to reduce skewness. Jacobian determi-
nants indexing both affine and non-linear deformations (i.e.,
representing changes in unscaled/native space) and Jacobians indexing
non-linear deformations only (i.e., representing changes in scaled/nor-
malized space) were each assessed in relation to AA/day. The General
LinearModel was used to compare groups based on discrete categoriza-
tions of FASD (FAS and PFAS compared to controls), again with and
without normalizing for brain size; that is, in scaled and unscaled data.
Children with heavy prenatal exposure not meeting the criteria for
FAS or PFAS were excluded from the diagnostic group comparisons.

Probability values for regions surviving an uncorrected threshold of
p b 0.05were color coded in red andmapped onto theMDT. Since com-
parisons were made at thousands of voxels, uncorrected probability
maps were then thresholded using a False Discovery Rate (FDR) of 5%
(q-value = 0.05) according to the implementation by Storey et al.
(2002, 2004). Regional effects surviving FDR thresholding were color
coded in yellow and superimposed onto the uncorrected probability
maps. Color-coded r- and betamaps were used to indicate the direction
and magnitude of effects for AA/day and diagnosis, respectively.

Log transformed Jacobian maps of the unscaled data were used in
ICA to determinewhether the pattern of volumetric variations through-
out the brain predicted the degree of prenatal alcohol exposure and/or
diagnostic status. The dimensionality of the data was reduced using a
principal components analysis, planned a priori to retain 10 dimensions,
whichwere deemed to be sufficient to cover the candidate sources (e.g.,
sex, age, alcohol exposure, smoking), while also allowing for the possi-
bility of some unquantified sources (e.g., genetic variation, infectious
disease exposure).

An ICA component that showed significant correlations with both
degree of prenatal alcohol exposure and diagnosis was mapped to
show FDR-thresholded results superimposed on the uncorrected prob-
ability maps in yellow and red, respectively.
3. Results

3.1. Sample characteristics

Sample demographics are summarized in Table 1. All children were
scanned within a narrow 1.5-year age range (9.5–11.0 years). There
were no significant differences in sex distribution across the four diag-
nostic groups (χ2(3) = 2.69, p N 0.20). However, sex was included as
a covariate in the analyses of the effects of degree of prenatal alcohol ex-
posure and diagnosis because males have larger brain volumes than fe-
males and the groups were not matched on a per subject basis for this
variable. Alcohol consumption among the drinking mothers was very
heavy. Mothers of children with FAS averaged 8.4 drinks/occasion dur-
ing pregnancy; PFAS, 7.6; heavily exposed nonsyndromal, 5.6.
Reflecting the high degree of socioeconomic disadvantage in this com-
munity, IQ scores were very low even among the controls. IQ in the
alcohol-exposed children was even lower than that in the controls,
F(1,53) = 7.32, p = 0.009, and inversely correlated with prenatal alco-
hol exposure, r = −0.50, p b 0.01. However, IQ was not modeled as a
confounder in the TBM analyses because effects of prenatal alcohol ex-
posure on IQ are presumably mediated by alcohol effects on regional
brain volumes. As expected, total intracranial volume as measured by
FreeSurfer also decreased in relation to degree of prenatal alcohol expo-
sure, r = −0.31, p = 0.02.
3.2. Effects of brain normalization

Regression analysis was used to examine the effects of brain size
normalization on scaled (i.e., Jacobians representing non-linear defor-
mations only) as compared to unscaled (i.e., Jacobians representing
both affine and non-linear deformations) data across subjects. As ex-
pected, in the unscaled data, total brain volume was highly correlated
with Jacobian determinants averaged throughout the brain, r = 0.98,
p b 0.0001 (Fig. 1). By contrast, total brain volume was not significantly
related to Jacobian determinants after global scaling differences were
removed from the data by linear spatial normalization, r = −0.23,
p = 0.08. Kolmogorov–Smirnov statistics showed that mean Jacobian
values were normally distributed in both the normalized and unscaled
data, both ps N 0.20.



Table 1
Sample characteristics by diagnostic group (N = 55).

FAS PFAS HE Control F or χ2

(7) (18) (14) (16)

Maternal/primary caregiver characteristics
Age at delivery 30.6 (9.1) 26.5 (6.9) 24.7 (5.4) 27.1 (4.2) 1.70
Years of educationa 9.3 (2.4) 6.5 (2.4) 9.2 (2.2) 10.1 (1.4) 9.41⁎⁎⁎

Married (%)a 42.9 27.8 42.9 62.5 4.16

Parity 3.1 (1.4) 2.6 (1.9) 1.9 (0.8) 1.8 (0.9) 2.50†

Alcohol during pregnancy
oz AA/day 1.9 (2.6) 1.0 (0.7) 0.5 (0.5) 0.01 (0.03) 6.38⁎⁎⁎

oz AA/occasion 4.2 (2.6) 3.8 (1.8) 2.8 (1.6) 0.2 (0.5) 17.82⁎⁎⁎

Frequency (days/week) 2.1 (2.2) 2.0 (1.0) 1.1 (0.9) 0.04 (0.1) 11.12⁎⁎⁎

Cigarettes/day during pregnancy
9.5 (5.1) 8.2 (5.9) 8.4 (7.3) 3.7 (9.9) 1.57

Child characteristics
Child gender (% male) 28.6 61.1 57.1 43.8 2.69
Age

Neurobehavioral assessment (years) 9.1 (0.3) 9.4 (0.4) 9.6 (0.5) 9.3 (0.4) 2.85⁎

Neuroimaging scan (years) 10.0 (0.5) 10.6 (0.4) 10.6 (0.2) 10.3 (0.4) 4.84⁎⁎

Weight (kg) 21.3 (2.7) 25.9 (2.8) 37.6 (16.1) 29.5 (6.8) 6.43⁎⁎⁎

Height (cm) 120.8 (3.9) 128.4 (5.0) 136.4 (10.0) 129.7 (5.8) 8.89⁎⁎⁎

Head circumference (cm) 49.6 (2.0) 50.7 (1.6) 52.6 (1.7) 52.6 (1.0) 9.89⁎⁎⁎

WISC-IV IQ 65.0 (8.7) 63.6 (10.3) 72.8 (8.2) 74.8 (8.1) 5.65⁎⁎

Volumetric measures (cm3)
Total intracranial volume 1223 (127) 1340 (122) 1435 (126) 1359 (86) 5.50⁎⁎

Values are mean (SD) or %. FAS = fetal alcohol syndrome, PFAS = partial FAS, HE = heavily exposed nonsyndromal.
a Obtained from mother or primary caregiver at 9-year follow-up assessment visits.
† p b 0.10.
⁎ p b 0.05.
⁎⁎ p b 0.01.
⁎⁎⁎ p b 0.001.
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3.3. TBM effects of the extent of prenatal alcohol exposure

Statistical maps showing relations between prenatal exposure and
variations in regional brain tissue volume in unscaled data (without
normalizing for brain volume) are shown in Fig. 2. Probability values
are mapped in the lower panel of the figure where p-values surviving
FDR thresholding at 5% are encoded in yellow and superimposed on
the uncorrected probability values (p b .05) represented in red. Color-
coded r-maps at the top of Fig. 2 indicate the strength and direction of
the relations at each voxel. For descriptive purposes, the relation be-
tween AA/day and Jacobian values averaged within regions exhibiting
significant effects (p b .05) is plotted on the right. Slice views showing
r-values across the entire brain are shown in Supplementary Fig. 1. As
can be seen from the statistical maps in Fig. 2, greater AA/day was asso-
ciatedwith significant reductions in brain tissue volume in four regions:
(1) a bilateral region encompassing the thalamus, midbrain, and the
ventromedial portion of the frontal lobe, (2) a medial bilateral region
encompassing the upper surface of the cerebellum and inferior surfaces
of the occipital lobe, (3) the bilateral dorsolateral frontal lobe, and
(4) the precuneus extending bilaterally into superior parietal lobule
and parietal central white matter. No regions showed significant posi-
tive relations (expansions) between degree of exposure and local
brain tissue changes.

Statistical analysis of relations between AA/day and regional brain
volume in scaled data, where the Jacobians represent only local non-
linear deformations, did not survive FDR thresholding at any brain loca-
tion. Uncorrected probability maps and corresponding r-maps for these
results, as well as slice views showing r-values across the entire brain,
are shown in Fig. 3 and Supplementary Fig. 2, respectively. Although
the results did not survive FDR correction, the pattern of regional effects
differed markedly from that seen in the unscaled data, with alcohol ex-
posure relating to localized volumetric expansions in spatially distinct
mesial prefrontal, insula, lingual and cerebellar regions, which are all lo-
cated adjacent to extra-cortical CSF and showedminimal effects prior to
normalizing for brain size. The relation between AA/day and Jacobian
values averaged in areas showing significant effects (p b .05) is plotted
in Fig. 3 on the right.

3.4. TBM effects of diagnosis

Statistical maps of the effects of diagnosis (FAS and PFAS compared
to controls) on regional brain tissue volumes in unscaled data are
shown in Fig. 4. In contrast to the effects observed for the continuous
measure of prenatal alcohol exposure in Fig. 2, only a few regions sur-
vived FDR correction at 5%, although sub-threshold effects were ob-
served in similar regions and in the same direction. Fig. 4 shows p-
values surviving FDR-thresholding in yellow superimposed onto the un-
corrected p-values indicated in red (lower panel) and corresponding
beta-values encoded in color in the top panel. For descriptive purposes,
Jacobians averaged in brain areas showing significant effects have been



Fig. 2. Statisticalmaps relating the degree of prenatal alcohol exposure to local brain tissue
differences in unscaled data, adjusted for child sex. Top: color encoded r -values showing
the relations between oz absolute alcohol (AA) / day and regional brain tis- sue reductions
(hot colors) and expansions (cool colors). 1 oz AA≈2 standard drinks. Bottom: significant
effects of oz AA / day shown in corresponding slice views in red (uncorrected p b .05), and
effects surviving an FDR threshold of q= .05 super- imposed in yellow. Right: mean Jaco-
bian values from each subject, masked to include only regions where the uncorrected p
value for AA / day was b .05, plotted as a function of oz AA / day during pregnancy.

Fig. 1. Relation of total brain volume to Jacobian values averaged across the entire brain in
unscaled / native (left) andnormalized / scaled (right) space for each subject. FASD= fetal
alcohol spectrum disorders.

Fig. 3. Statisticalmaps relating the degree of prenatal alcohol exposure to local brain tissue
differences in scaled data, adjusted for child sex. Top: color encoded r -values showing the
relation between oz absolute alcohol (AA) / day and regional brain tissue reductions (hot
colors) and expansions (cool colors). Bottom: significant effects of oz AA / day shown in
corresponding slice views in red (uncorrected p b .05). Effects did not survive FDR
thresholding at q = .05 at any brain location. Right: mean Jacobian values from each sub-
ject, masked to include only regions where the uncorrected p value for AA / day was b .05,
plotted as a function of oz AA / day during pregnancy.

Fig. 4. Statistical maps showing the effects of diagnosis (fetal alcohol syndrome (FAS) and
partial FAS (pFAS) compared to controls) on regional brain tissue volumes in un- scaled
data, adjusted for child sex. Top: color encoded beta -values showing the effects of diagno-
sis on FASD-related regional brain tissue reductions (hot colors) and expan- sions (cool
colors). Bottom: significant effects of diagnosis are shown in corresponding slice views
in red (uncorrected p b .05), and p -values surviving FDR correction ( q = .05) are
superimposed in yellow. Right: mean Jacobian values from each subject, masked to in-
clude only regions where the uncorrected p value for an effect of diagnosis was b .05, plot-
ted by diagnostic status.
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plotted by diagnosis on the right of Fig. 4 (p b .05). Slice views showing
beta-values across the entire brain are provided in Supplementary Fig. 3.

Statistical analysis of the effects of diagnosis in scaled data did not
survive FDR thresholding at any brain location. Uncorrected probability
and beta-maps, as well as slice views showing beta-values across the
entire brain, are shown in Supplementary Figs. 4 and 5, respectively. Ja-
cobians averaged within regions showing significant effects are plotted
by diagnosis on the right in Supplementary Fig. 4 (p b .05). Notably, as
for the analysis of the continuous measures of alcohol exposure in rela-
tion to the scaled data, regional expansions in brain tissue volumewere
observed in the FAS/PFAS group in localized mesial prefrontal,
perisylvian and cerebellar regions adjacent to CSF.
3.5. ICA

To determine whether regional variations in brain tissue volume
might independently predict the degree of prenatal exposure to alcohol
and/or diagnostic group membership, the log transformed Jacobian
maps obtained from each childwere subjected to ICA. Since the regional
deformations did not relate significantly to FASD after normalization for
total brain volume, ICAwere performed only on the TBManalyses incor-
porating both linear and non-linear deformations (i.e., the unscaled
data). The dimensionality of the data was reduced using principal com-
ponents analysis, retaining the 10 dimensions explaining the greatest
variance. These sources were examined to determine which most
strongly related to AA/day or diagnostic group. A subgaussian source
explaining 11.7% of the variance significantly predicted the degree of al-
cohol exposure, r= −0.366, p b 0.006 and, to a lesser extent, the diag-
nostic group, F(1,54) = 4.11, p = 0.048.
Fig. 5 shows significant relations of the ICA source associated with
degree of alcohol exposure and diagnosis to regional changes in brain
tissue structure. p-Values surviving FDR-thresholding shown in yellow
are superimposed onto the uncorrected p-values indicated in red
(lower panel), and the corresponding r-values in the top panel indicate
themagnitude and direction of the effects. Slice views showing the cor-
relations across the entire brain are provided in Supplementary Fig. 6.
The graph shown in the right panel of Fig. 5 indicates the relation be-
tween AA/day and the ICA source averaged over voxels where the un-
corrected p value for an effect of the ICA source was p b .05. Three of
the four regions weighted most heavily in this ICA source – the thala-
mus/midbrain, the supero-medial cerebellum/inferior surface of the oc-
cipital lobe, and the precuneus – were regions that also showed
significant fetal alcohol-related reductions in brain tissue volume in
the TBM analysis (see Fig. 2). The fourth TBM region, the dorsolateral
frontal lobe, was not heavily weighted in the ICA source, which instead
included a frontal region extending bilaterally through the anterior cin-
gulate gyrus and anterior portions of the corpus callosum. None of the
other ICA sources showed significant associations with degree of expo-
sure or diagnosis.

3.6. TBM effects of prenatal exposure to maternal smoking

Regression analysis performed to examine the relation of number of
cigarettes smoked/day by mothers during pregnancy to regional brain
volumes did not survive FDR thresholding (q = .05) at any brain loca-
tion in either the scaled or unscaled data.
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Fig. 5. Group differences on corrected putamen (p = .005) and hippocampus (p b .001)
volumes between participants with spina bifida myelomeningocele (SBM; n = 48) and
typically developing controls (TD; n = 18). Values reflect averages between left and
right hemispheres. Note: bars represent standard error.
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3.7. FreeSurfer segmentation results

For comparative purposes, volumes of the discrete structures and re-
gions that correspond most closely to the regions where we saw signif-
icant deformations in the TBM analysis were examined in relation to
degree of alcohol exposure (Supplementary Table 1). Correlations of
these regions with total intracranial volume ranged from r =
0.14–0.75, median = 0.55, with particularly strong correlations for the
midline structures, such as the thalamus, midbrain, and precuneus.
Moderate negative correlations with prenatal alcohol exposure were
seen for the thalamus, midbrain, lingual gyrus, precuneus, and superior
parietal lobule, many of which continued to be significant even after
controlling for total intracranial volume; correlations were somewhat
lower for the cerebellum, which FreeSurfer does not segment into sub-
regions, and the frontal lobe. By contrast, prenatal alcohol exposure was
not associatedwith volumetric increases in any of the 34 cortical and 22
subcortical regions measured by FreeSurfer.
4. Discussion

TBM analysis of regional differences in brain tissue volume in chil-
dren with FASD demonstrated that (i) regional reductions in brain vol-
ume are more strongly predicted by a continuous measure of prenatal
alcohol exposure obtained during pregnancy than by FASD diagnosis;
(ii) normalizing for overall brain size may not be appropriate for disor-
ders in which smaller head circumference forms part of the diagnostic
criteria and may generate spurious expansions in regions that are rela-
tively unaffected by prenatal alcohol exposure; (iii) volumetric reduc-
tions are not seen in discrete brain structures but rather in several
broad regions, most of which involve medial structures; and (iv) identi-
fication of the patterns of local changes in brain tissue volume using a
data driven ICA approach can identify a latent source in anatomical
data that produces a spatial pattern of regional volume changes similar
to that associatedwithprenatal alcohol exposure. The latterfinding sug-
gests that ICA may be useful in identifying children exposed to alcohol
prenatally and degree of prenatal exposure if no other diagnostic infor-
mation is available.

A growing number of in vivo neuroimaging studies have reported
FASD-related changes in brain structure that extend beyond early re-
ports of microencephaly, callosal agenesis, and ventriculomegaly seen
in severe cases at autopsy (Roebuck et al., 1998). These reports indicate
that reductions in cerebral volume in FASD are highly reproducible
(Lebel et al., 2011; Norman et al., 2009) even at low- to moderate expo-
sure levels (Eckstrand et al., 2012). Smaller than normal gray and white
matter tissue compartments and cerebellar volumes are also widely re-
ported, but are often not dissociable from overall brain volume
reductions.

Reports of more focal changes in cerebral structure have been less
consistent. Brain tissue reductions have been reported in almost every
brain region and structure measured (Lebel et al., 2011), but findings
are less regionally reproducible across groups, and paradoxical in-
creases in cortical thickness and density have also been reported
(Sowell et al., 2002; Sowell et al., 2008). Some structures have been re-
ported to be disproportionately smaller after statistical adjustment for
total brain volume; for example, the caudate nucleus (Archibald et al.,
2001; Astley et al., 2009; Chen et al., 2012) and the hippocampus
(Nardelli et al., 2011; Willoughby et al., 2008). However, other studies
find that these same structures are not disproportionately smaller
after adjusting for total brain size (for caudate nucleus—Roussotte
et al., 2012; Riikonen et al., 2005; for hippocampus—Astley et al.,
2009; Coles et al., 2011).

Because severity of impact depends on the degree of exposure
(Astley et al., 2009; Guerri et al., 2009), exposure differences within
and across study samplesmay contribute to inconsistencies, particularly
if group comparisons are based solely on diagnosis. Additional factors
that may contribute to discrepancies regarding regional susceptibility
to the teratogenic effects of alcohol include developmental stage, sex,
race/ethnicity, and other sample-specific characteristics. For example,
in a recent longitudinal study investigating change in cortical volumes
over time, Lebel et al. (2012) found different developmental trajectories
in alcohol-exposed children than control subjects, particularly in poste-
rior parietal association regions of the brain. That study also found that
maturational changes in some cortical regions were related to the
amount of alcohol exposure measured by trimester, indicating that pat-
terns of regional abnormalities may be influenced by timing of expo-
sure. Since effects of prenatal alcohol exposure continue to manifest
during brain maturation, genetic factors and additional environmental
risks may also act as moderating factors (Jacobson et al., 2004;
Jacobson et al., 2006; Jones, 2011; May et al., 2008; Thompson et al.,
2009; Warren and Li, 2005).

To date, most prior studies have focused on discrete neuroanatomi-
cal regions; few examined regional volumetric variation in a single,
comprehensive analysis. Our study is among the first to use TBM to si-
multaneously determine global and local differences in brain tissue ar-
chitecture. Further, our homogeneous sample assessed across a
narrow age range ensures that observed effects are not confounded by
interactions with age.

What emerged from our TBM analysis was not evidence of deforma-
tion in certain discrete brain structures but rather volumetric reductions
in several broad regions, including the parietal lobe (precuneus extend-
ing into the superior parietal lobule), the supero-medial cerebellum ex-
tending to the inferior surfaces of the occipital lobe, and a large
subcortical region encompassing the thalamus andmidbrain, extending
into the ventromedial portion of the frontal lobe. One notable feature of
these deformation patterns is that most involve medial brain regions.
This finding of volumetric reductions in medial brain regions is consis-
tentwith extensive animalmodel evidence that neural tubemidline tis-
sue is particularly vulnerable to alcohol exposure during embryogenesis
(Zhou et al., 2003). Heavy alcohol exposure during gestational day 7 in
mice leads to a spectrum of dysmorphology affecting the median as-
pects of the developing face (e.g., palpebral fissures, philtrum, and ver-
milion) and brain (including thalamic nuclei and corpus callosum)
(Sulik et al., 1981). Evenmoderate levels of embryonic alcohol exposure
cause subtle neural tube midline defects that can influence later brain
development (Zhou et al., 2003).

Although the pattern of regional effects associated with AA/day and
diagnosis was similar in the uncorrected data (color-coded in red in
Figs. 2 and 4, respectively), after FDR adjustment, degree of alcohol ex-
posure was a better predictor of regional brain structural deformations
than diagnosis. The greater sensitivity of the quantitative measure of
prenatal exposure in detecting regional brain contractions is impressive
given that diagnosis was performed by internationally-respected
dysmorphologists and that reduced head circumference is a critical ele-
ment in that diagnosis. The predictive validity of our prospectively
ascertained maternal self-reports of alcohol consumption during
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pregnancy for subtle brain deformations is particularly encouraging
since self-reports can be problematic due to difficulties in recalling spe-
cific quantities of alcohol consumed and the frequency of binge epi-
sodes. By contrast to cigarette smoking, which tends to be relatively
stable over time (Jacobson and Jacobson, 1992) and that was not
shown to associate with regional variations in volume after FDR correc-
tion, alcohol consumption is typically episodic. That is, heavy binging
may occur on some weekends, abstention on others, particularly in an
economically-disadvantaged population in which funds for alcohol are
not always available. Amajor advantage of the timeline follow-back ap-
proach used in this study is that it aids recall by encouraging the respon-
dent to focus on what activities she engaged in on a daily basis during a
recent 2-week period, where she spent each evening andweekend, and
withwhom.Wehave previously shown thatmaternal reports of alcohol
consumption using this approach obtained contemporaneously during
pregnancy are more predictive of alcohol-related infant growth and
neurobehavioral deficitswhen comparedwith retrospective reports ob-
tained at 1-year postpartum (Jacobson et al., 2002).

Studies that have examined the effects of prenatal alcohol exposure
on discrete structures or regions have typically adjusted for total brain
volume to determine whether a given region is smaller relative to
total brain size. An important advantage of TBM is that it examines de-
formations simultaneously in every voxel of the brain, making clear
which regions are most affected without having to control for total
brain volume. The finding by Sowell et al. (2010) that FASDwas associ-
ated with expansions in certain regions after adjustment for total brain
volume, which we also observed in our own scaled data, suggests that
removal of the variance associated with overall brain volume can
cause the volume of some regions that are less severely affected by pre-
natal alcohol to become artificially inflated. The TBM findings in the
Sowell et al. studywere supported by a finding that the pattern of struc-
tural deformation seen in that study predicted group membership with
72% accuracy in follow-up jackknife analyses. However, the discrimi-
nant function analysis performed was conducted using Jacobian values
only from regions already shown to differ significantly between groups,
thus biasing results towards positive outcomes.

Prenatal alcohol exposurewas associatedwith reductions in the vol-
umes of most of the FreeSurfer regions corresponding to those identi-
fied in the unscaled TBM analysis. Conversely, prenatal alcohol was
not related to volumetric increases in any of the FreeSurfer regions, pro-
viding additional support for the inference that the volumetric increases
seen in the scaled data are spurious. The moderate-to-strong correla-
tions of the FreeSurfer regional volumes with total brain volume are
compatible with the suggestion that statistical adjustment for total
brain volume is likely to remove much of the variance shared by AA/
day and a given region, thereby potentially obscuring the associations
revealed in the unscaled TBM analysis.

Notably, ICA provided independent confirmation of the regions of
structural deformation linked to prenatal alcohol exposure in the TBM
analysis. Among the 10 ICA generated sets of deformation patterns,
one was significantly correlated with both maternal report of alcohol
consumption during pregnancy and FASD diagnosis. Brain regions re-
ceiving the greatest weights in that set were strikingly similar to the
brain regions found to be most strongly affected by prenatal alcohol ex-
posure in the TBM analysis, providing independent evidence for the
FASD-related deformation patterns that emerged in the TBM analysis.
These findings suggest that a data-driven ICA approach to analyze MRI
scans might provide an indicator of prenatal alcohol exposure in cases
for which the facial features are not apparent.

5. Conclusions

This study applied sensitive TBMmethods to quantitatively map re-
lations between a continuousmeasure of prenatal alcohol exposure and
morphometric change throughout the brain in a sample of children for
whom detailed prenatal exposure information was available. This new
evidence supports a dose-dependent relation between prenatal alcohol
exposure and the structural organization of the brain in childhood. Our
continuous measure of alcohol exposure during pregnancy was mark-
edlymore sensitive for detecting alcohol-related changes in brain tissue
structure than FASD diagnosis. The data suggest that adjusting for brain
size is not ideal and can hide important regional volumetric differences
in disorders such as FASD,where reduced overall brain size is among the
diagnostic criteria. ICA showed that the pattern of local brain tissue re-
ductions found in this TBM analysis predicted extent of prenatal alcohol
exposure as well as diagnosis, providing confirmation of the alcohol
exposure-related deformation patterns reported here.
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