The metabolic effects of glutamine in the heart beyond anaplerosis: role of the hexosamine biosynthetic pathway

Benjamin Lauzier (1), Bertrand Bouchard (1), Fanny Vaillant (1), François Labarthe (2), Caroline Dancault (1), Isabelle Robillard-Frayne (1), Julie Thompson-Legault (1), Roselle Gélinas (1), John Chatham (3), Christine Des Roux (1)

(1) Institut de Cardiologie de Montréal, Laboratoire de Métabolisme Intermédiaire, Montréal, Canada - (2) CHRU de Tours, Université François Rabelais, INSERM U921, Tours, France - (3) Division of Cardiovascular Disease, Department of Medicine, Birmingham, Etats-Unis

Aim: Glutamine is the most abundant amino acid in the plasma, and has been shown to exert cardioprotective effects. However, the underlying mechanisms remained unclear, but may include an anaplerotic effect via its metabolic conversion to citric acid cycle (CAC) intermediates or activation of the hexosamine biosynthetic pathway (HBP).

Methods: To assess the potential roles of these mechanisms, we evaluated the metabolic effects of a physiologically relevant concentration of glutamine (0.5mM) in isolated working rat hearts perfused with 13C-labeled substrates with or without 20 M asazemine (an HBP inhibitor) and under restricted supply of carbohydrate (CHO, i.e. without pyruvate/insulin).

Results: When perfused with a mixture of CHO, a fatty acid oleate and insulin (controls), the addition of glutamine had no effect on functional parameters except for a 17% (p<0.05) decrease in relaxation. However it resulted in an increase in the percent contribution of 13C-oleate to acetyl-CoA production (51%) and triglyceride formation (2.8 folds). This was accompanied by a significant reduction (p<0.05) tissue levels of the CAC intermediates (in nmol/gww): citrate: 260±10 vs. 222±6 and malate 128±5 vs. 103±3. Inhibition of HBP with asazemine restored oleate oxidation and tissue CAC levels, but not triglyceride formation. When perfused under restricted supply of CHO, hearts displays significantly decreased cardiac output (65%), a greater percent contribution of glucose to pyruvate formation (60%), and lower tissue citrate and malate levels (45%). Addition of glutamine restored cardiac output and glucose contribution to pyruvate formation but not tissue CAC levels.

Conclusion: Collectively, these results demonstrate the capacity of glutamine to modulate energy substrate selection and function in the perfused heart. Furthermore, the potential mechanisms underlying these effects appear to be mediated via the HBP rather than anaplerosis.

Prevalence of aspirin resistance in stable coronary heart disease patients and correlation with platelet turn-over.

Thibaut Petroni (1), Sebastian Voicu (2), Bernadette Boval (3), Georges Sideris (2), Jean-Guillaume Dillinger (2), Claire Bal D'ot Sollier (3), Ludovic Drovat (3), Patrick Hennion (2)

(1) CHU Pitié Salpêtrière, Institut de cardiologie, Service de Réanimation Médicale, Paris, France - (2) CHU Lariboisière, Département de Cardiologie, Paris, France - (3) CHU Lariboisière, Service d'Hématologie-Hémostase, Paris, France

Background: Aspirin resistance has been widely reported but the underlying mechanisms remain unclear. Previous studies have suggested a relationship between accelerated platelet turnover and aspirin resistance in patients with coronary artery disease. The purpose of this study was to determine whether aspirin resistance could be linked to accelerated platelet turn-over.

Methods: We performed a prospective monocentric study including 50 consecutive patients with stable coronary artery disease treated by aspirin (75 to 250 mg/day) without any antiaggregant treatment. Aspirin resistance was characterized 24 hours after aspirin intake by light transmission aggregometry using 0.5 mg/ml arachidonic acid. Aspirin resistance was defined as >20% residual aggregation. Platelet turn-over was estimated at the same time by measurement of mean platelet volume, % of reticulated platelets, serum P-selectin, platelet P-selectin and serum thrombopoietin.

Results: Among 50 patients (70±11 y.o. mean±1, 5, 76% male, 52% type 2 diabetes mellitus, 16% active smokers), 18 (36%) were identified as aspirin resistant. Table 1 shows the mean value of markers currently linked to platelet turn-over depending on the presence of aspirin resistance. Serum thrombopoietin was significantly increased in patients with aspirin resistance compared to patients with no aspirin resistance. No statistical difference was demonstrated for mean platelet volume, reticulated platelets, platelet P-selectin and serum P-selectin. Serum thrombopoietin values were not correlated with other platelet turn-over parameters. There was no significant correlation between serum thrombopoietin and inflammatory markers.

Conclusion: Serum thrombopoietin is associated with aspirin resistance, but no other parameters currently linked to platelet turn-over. Further studies are needed to determine whether serum thrombopoietin can predict aspirin resistance in a larger cohort.