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Abstract In this paper, fractional order PID (FOPID) controller was proposed for load frequency

control (LFC) in an interconnected power system. This controller had five parameters to be tuned;

thus, it provided two more degrees of freedom in comparison with the conventional PID. For

proper tuning of the controller parameters, imperialist competitive algorithm (ICA) was used.

ICA is a new evolutionary algorithm with proved efficiency. In this study, simulation investigations

were carried out on a three-area power system with different generating units. These results showed

that FOPID controller was robust to the parameter changes in the power system. Also, the simu-

lation results certified much better performance of FOPID controller for LFC in comparison with

conventional PID controllers.
� 2013 Production and hosting by Elsevier B.V. on behalf of Ain Shams University.
1. Introduction

Controlling large interconnected power systems is one of the

most challenging problems for controller designers [1]. One
of the most important control objectives in power systems is
to control the output power of generating units. Controlling

the output power of generating units in such a way that the
rtment of Electrical Engineer-

17-51167, Iran. Tel./fax: +98

(S.A. Taher).

Shams University.

g by Elsevier

ng by Elsevier B.V. on behalf of A

06
transient deviations of the frequency of each area and the
interchanged power between areas remain within the specified

limits and their steady state error equals zero is known as load
frequency control [2–4]. A number of control strategies for
LFC have been proposed in the literature over past decades.

Using PI controller for LFC has been proposed by some

authors. In [5], genetic algorithm was used for tuning the PI
controller for LFC. An adaptive fuzzy gain scheduling was pro-
posed in [6] for LFC of a two interconnected power system. In

[7], LFC was carried out by a hybrid evolutionary fuzzy PI con-
troller. Bacteria foraging optimization algorithm was used for
tuning the PI controllers of a two-area power system in [8].

Alternatively, PID controller can be used for LFC of the power
system. PID controller provides more damping for power sys-
tem [9], but PI controller is usually preferred in noisy environ-

ments such as power systems. In [10], a new derivative structure
was proposed which resulted in better noise reduction in
in Shams University.
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Nomenclature

fi frequency of area i (Hz)

Ri speed regulation constant (Hz/p.u.)
TGi speed governor time constant (s)
M inertia constant of the generator (p.u. s)
D load damping constant (p.u./Hz)

Ti synchronizing torque coefficient of the tie-line
which is connected to area i (p.u./rad.)

Tch non-reheat turbine time constant (s)

Trh low pressure reheat time constant (s)
Fhp high pressure stage
Tw water starting time (s)

TR reset time of hydraulic unit (s)

Rt temporary droop (Hz/p.u.)
Bi frequency response characteristic for area i (p.u./

Hz)
ACEi area control error

DPLi load demand change in area i
DPCi the change in speed changer position in area i
DPGi change in governor valve position of ith area gen-

erator
DPtie change in tie-line power
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comparison with the conventional differentiator. Afterward,
PID controller has been widely proposed in the literature for

LFC of power systems. In [11], an intelligent PID controller
based on the principle of anthropomorphic intelligence was
suggested. Designing PID controller using particle swarm opti-

mization algorithm is presented in [12] for LFC in an intercon-
nected power system. In [13], Artificial Bee Colony (ABC)
algorithm has been used to tune the automatic generation con-

trollers in an interconnected reheat thermal power system. The
results of this paper show the better performance of ABC in
comparison with PSO. Several novel heuristic stochastic search
techniques are presented in [14] for optimizing PID gains used

in Sugeno fuzzy logic based automatic generation control
(AGC) of multi-area system with thermal generating plants.
In [15], unified tuning of PID was proposed for LFC in power

systems via internal model control. LFC has been carried out
by a new decentralized robust optimal MISO PID controller
based on matrix eigenvalues and Lyapunov method in [16].

Recently, increasing interest in enhancing the performance of
conventional PID has led to considerable attention toward FO-
PID controllers, in which the order of derivative and integral is
not integer. FOPID controllers are applied by researchers in dif-

ferent fields of engineering. FOPID controller is used in [17] for
designing aerospace control systems, in [18] for hypersonic flight
vehicle, in [19] for stabilizing fractional order time delay systems,

in [20] for weapon system, and in [21–23] for automatic voltage
regulator system.Anumber ofmethods have been used in the lit-
erature for tuningFOPID [20–29]. In [20–25], evolutionary algo-

rithms were implemented to tune the FOPID controller.
In this paper, FOPID was used for LFC in a three-area

power system. The performance of FOPID was compared with

that of conventional PID controller. In this article, it was illus-
trated that the FOPID controller had considerably better per-
formance in this case. Imperialist competitive algorithm (ICA)
is a new evolutionary algorithm, which has been widely used

by researchers for solving different optimization problems. In
this study, ICA was implemented for tuning the parameters
of both FOPID and conventional PID controllers of a three-

area power system.
2. Fractional calculus

Fractional order calculus is not a new concept, and as men-
tioned in [30], probably the earliest systematic studies have
been done by Liouville, Riemann, and Holmgren in the 19th
century. Since then, many definitions have been proposed in
the literature for it, from which one is selected to be presented

here. In the following definition of fractional calculus, the
operator aD

q
t ; depending on the sign of q denotes fractional

differentiation or integration. This operator is defined as

follows:

aD
q
t ¼

dq

dtq
q > 0

1 q ¼ 0R t

a
ðdsÞ�q q < 0

8>><
>>:

ð1Þ

where a and t are operational limits and q is the fractional or-
der. There are some definitions for fractional derivation in the

literature. In this paper, Caputo definition, which is referred to
as smooth fractional derivative in the literature [31], was cho-
sen. Its formulation is as follows:

aD
q
t fðtÞ ¼

1
Cðm�qÞ

R t

0

fðmÞðsÞ
ðt�sÞqþ1�m ds m� 1 < q < m

dm

dtm
fðtÞ q ¼ m

8<
: ð2Þ

where m is the smallest integer which is larger than q and C
represents the Gamma function given by:

CðzÞ ¼
Z 1

0

tz�1e�tdt ð3Þ

The Laplace transform of Eq. (2) is given below:

L 0f Dq
t fðtÞg ¼ sqFðsÞ �

Xn�1
k¼0

sq�k�1fðkÞð0Þ n� 1 < q < n;

n 2 N ð4Þ

To implement the fractional order transfer functions in sim-
ulation or practical studies, one way is to approximate them

with integer order transfer functions. For an exact approxima-
tion of a fractional order transfer function with an integer or-
der one, the integer order transfer function has to include an
infinite numbers of zeroes and poles.

Crone is one of the approximations [32], which can be used.
It is a French acronym that means robust fractional order con-
trol. In this approximation method, a recursive distribution of

N poles and N zeros is used. This can be formulated as follows:

sv �
YN
n¼1

1þ s
xzn

1þ s
xpn

; v 2 R ð5Þ
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Figure 1 ICA flowchart for tuning the FOPID controller.
Table 1 ICA parameters.

Parameters Values

Npop 1000

MaxDecades 127

Beta 2

PRevolution 0.1

Zeta 0.1
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The zeroes and poles are to be assigned inside the frequency

range ½xk xg�; within which the approximation is valid, and
for a positive v, they are given by:
a ¼ xh

xl

� �v=N

ð6Þ

g ¼ xh

xl

� �ð1�vÞ=N
ð7Þ

xz;1 ¼ xl

ffiffiffi
g
p ð8Þ

xp;n ¼ xz;n�1a; n ¼ 1; . . . ;N ð9Þ
xz;n ¼ xp;n�1g; n ¼ 2; . . . ;N ð10Þ

These equations can be written for the negative values of v
in a similar way; the only difference is that role of zeroes and
poles is exchanged (i.e. xp;1 ¼ xl

ffiffiffi
g
p

and so on). For |v| > 1, it

is recommended that the fractional orders of s are separated as
follows:

sv ¼ snsd; c ¼ nþ d; n 2 Z; d 2 ½0; 1� ð11Þ

and only sd is approximated. Also, it is required to mention
that electric circuits which can serve as exact fractional integra-
tors and differentiators are reported in [30,33].

3. Imperialist competitive algorithm

In recent years, ICA has gained popularity among researchers
due to its high speed and accuracy in finding solutions of opti-

mization problems [34–39]. Similar to other evolutionary algo-
rithms, this algorithm starts with an initial random population.
Each of the members of this population is called a country.

Some of the best members are considered imperialists and oth-
ers are colonies. Imperialists, regarding their power, attract
colonies in a certain procedure as follows [40]:

3.1. Forming initial empires

In an optimization problem, the goal is to find the optimum

solution in terms of problem variables. For this purpose,
an array of variables which is to be optimized is formed. In
an Nvar-dimensional optimization problem, a country is an
Nvar � 1 array, defined as follows:

Country ¼ ½p1; p2; . . . ; pNvar
� ð12Þ

The value of variables in every country is represented by a
floating point number. From the historical–cultural point of
view, social–political characteristics of the country such as cul-
ture, language, and political structure are considered the com-

ponents of that country.
To start the optimization process, Ncountry country is gener-

ated and Nimp most powerful members of this population are

selected as imperialists (in this problem, the sets of controller
coefficients with smaller cost function). The remaining Ncol

countries are the colonies (in this problem, the sets of control-

ler coefficients with higher cost function), each of which is a
part of one of the above mentioned empires.



Table 2 Controllers’ parameters.

Controller parameters Kp KI KD k l

Area1 PID �0.4130 �0.8284 0.3298 1 1

FOPID 0.6700 �0.4006 �0.9910 1 0.6543

Area2 PID �0.0463 �0.2745 �0.1973 1 1

FOPID �0.3266 �0.2946 �1 1 0.8650

Area3 PID �1 �1 0.9862 1 1

FOPID �1 �1 0.4888 0.6762 0.5686

Table 3 Three-area power systems’ parameters.

Non-reheat Reheat Hydraulic

M1(p.u. s) 10 M2(p.u. s) 10 M3(p.u. s) 6

D1(p.u./Hz) 1 D2(p.u./Hz) 1 D3(p.u./Hz) 1

Tch1(s) 0.3 Tch2 (s) 0.3 TG3(s) 0.2

TG1(s) 0.1 Fhp 0.3 Tr(s) 5

R1(Hz/p.u) 0.05 Trh(s) 7 Rt(Hz/p.u.) 0.38

B1(p.u./Hz) 21 TG2(s) 0.2 R3(Hz/p.u) 0.05

T1(p.u./rad) 22.6 R2(Hz/p.u) 0.05 B3(p.u./Hz) 21

B2(p.u./Hz) 21 Tw(s) 1

T2(p.u./rad) 22.6 T3(p.u./rad) 22.6

Figure 2 Three-area power system with different generating units.
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3.2. The attraction policy

Along with this policy, the colonies move toward imperialists

along x units and are situated in a new position. x is a random
variable with uniform (or any other proper) distribution. Then,
x can be expressed as follows:

x � Uð0; b � dÞ ð13Þ

where b is a number with a value greater than 1 and close to 2.

3.3. Revolution

In this optimization algorithm, revolution prevents the algo-
rithm from stopping in local valleys. In some cases, this
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improves the position of a country and moves it to a better
optimization area.

3.4. Exchanging positions of imperialists and colonies

During the movement of colonies toward the imperialist coun-
try, some of these colonies may achieve a better position in

comparison with the imperialist (and cause a lower cost func-
tion in comparison with the imperialist). This situation will re-
sult in exchanging the position of imperialist and colony, and

after that, the algorithm will be continued with new
imperialists.

3.5. Imperialistic competition

The power of an empire is defined as power of the imperialist
country plus the percentage of power of its colonies. Each
imperialist which is unable to increase its power or, in other

words, loses its competitive power will collapse in the imperi-
alistic competition. When an imperialist collapses, its colonies
are divided among other imperialists.

4. Implementing FOPID for LFC

4.1. FOPID controller

The concept of FOPID controller was first proposed by Pod-

lubny in [41,42]. The difference between FOPID and PID con-
troller is that, in FOPID, the order of derivative and integral is
not integer. This characteristic provides extra degrees of free-

dom in tuning the controller and can lead to better dynamic
performance in comparison with conventional PID [43]. Due
to increasing interest in improving the response of conven-
tional PID, FOPID controller has received considerable atten-

tion in the last few years [17–22].
The formulation of FOPID controller is shown below:
Table 4 Settling time and maximum deviation of system responses to

FOPID controllers.

Max. deviation

Parameters f1 f2 f3 Ptie1 Ptie2

(a) PID

Disturbance

In area 1 0.0038 0.0041 0.0042 0.0810 0.0552

Disturbance

In area 2 0.0046 0.0045 0.0057 0.0815 0.1079

Disturbance

In area 3 0.0047 0.0058 0.0064 0.0856 0.0795

Disturbance

In all areas 0.0107 0.0124 0.0110 0.1401 0.0627

(b) FOPID

Disturbance

In area 1 0.0027 0.0029 0.0029 0.0448 0.0349

Disturbance

In area 2 0.0027 0.0033 0.0039 0.0546 0.0965

Disturbance

In area 3 0.0047 0.0062 0.0068 0.0938 0.0855

Disturbance

In all areas 0.0095 0.0101 0.0108 0.1105 0.0525
KðSÞ ¼ Kp þ
KI

Sk þ KdS
l ð14Þ

where Kp, KI, and Kd are proportional, integral, and derivative
gain, respectively. Also, k and l are orders of integral and
derivative, respectively.

It is shown in Section 5 that implementing FOPID control-
ler for LFC improves the power system response in terms of
settling time, overshoots, and undershoots. Moreover, this

controller is robust to changes in power system parameters.
4.2. Optimal tuning of FOPID controller using ICA

Each FOPID controller has five parameters to be tuned, and
each area of power system has a FOPID controller; therefore,
in the studied three-area power system, there were fifteen

parameters to be optimally tuned. Fig. 1 shows the flowchart
of tuning the parameters using ICA. The values of parameters
of this algorithm are given in Table 1.

For optimal tuning of the controller parameters using evo-

lutionary algorithms, it is necessary to use a proper objective
function. By minimizing the objective function, the optimal
values of parameters are obtained. In this paper, as shown be-

low, integral of time multiply absolute error (ITAE) of devia-
tion of frequency and tie-line power of all areas were defined as
objective functions.

J ¼
Z 1

0

t jDf1j þ jDf2j þ jDf3j þ jDPtie1j þ jDPtie2j þ jDPtie3jð Þdt

ð15Þ

The optimization problem can be stated as minimizing J con-

sidering the following constraints:

Kmin
p < K < Kmax

p ; Kmin
I < K < Kmax

I ; Kmin
D < K < Kmax

D ;

kmin < k < kmax; lmin < l < lmax ð16Þ
different disturbances in the presence of: (a) PID controllers, (b)

Settling time

Ptie3 f1 f2 f3 Ptie1 Ptie2 Ptie3

0.0506 26.15 20.93 25.33 27.34 25.50 32.17

0.0625 25.96 25.52 21.91 25.82 37.67 41.40

0.1639 25.37 18.62 21.60 26.76 39.71 37.46

0.1154 21.03 16.79 20.31 22.58 33.70 20.82

0.0256 19.60 19.50 19.55 16.42 20.33 20.44

0.0437 21.87 20.74 20.15 21.96 29.11 34.62

0.1758 21.78 8.11 15.20 22.48 32.33 30.23

0.1618 13.58 13.66 13.65 22.71 30.17 24.48
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in the frequency of area 2. (c) Change in the frequency of area 3.
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Figure 10 Change in Ptie of all areas for step increase in the demand of area 3. (a) Change in Ptie1. (b) Change in Ptie2. (c) Change in
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Figure 12 Change in the frequency of all areas for step increase in the demand of three area. (a) Change in the frequency of area 1. (b)

Change in the frequency of area 2. (c) Change in the frequency of area 3.
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Figure 11 Change in ACE of all areas for step increase in the demand of area 3. (a) ACE1. (b) ACE2. (c) ACE3.
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Figure 14 Change in ACE of all areas for step increase in the demand of three area. (a) ACE1. (b) ACE2. (c) ACE3.
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Figure 13 Change in Ptie of all areas for step increase in the demand of three area. (a) Change in Ptie1. (b) Change in Ptie2. (c) Change

in Ptie3.
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Figure 15 Control signals. (a) Control signals of area1. (b)

Control signals of area2. (c) Control signals of area3.

Figure 16 Change in the frequency of all areas following

parameter variation. (a) Change in the frequency of area 1. (b)

Change in the frequency of area 2. (c) Change in the frequency of
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The main goal of this optimization is to determine control-
ler parameters in such a way that a high level of damping is
provided for the oscillations which occur in the power system,

and the settling times, undershoots, and overshoots of system
responses are minimized. The values of the designed control-
lers’ parameters are given in Table 2.

5. Simulation results

The investigated system, as shown in Fig. 2, was a three-area

power system with different generating units, including reheat,
non-reheat, and hydraulic units. This power system could be
modeled as a multivariable system in the state space form:

_x ¼ Axþ Buþ Ld ð17Þ
y ¼ Cx ð18Þ

where u= [u1u2u3]
T, y = [y1y2y3]

T = [ACE1ACE2ACE3]
T,

d= [d1d2d3]
T = [PD1PD2PD3]

T, x = [Df1DPT1DPG1 DPc1DPtie1

Df2DPT2DPG2DPc2DPtie2Df3DPT3DPG3DPc3DPtie3]
T.
Parameters of the studied system are given in Table 3.
Simulation studies were performed on a three-area power

system with different generating units. Several different com-
area 3.



Figure 17 Change in Ptie of all areas following parameter

variation. (a) Change in Ptie1. (b) Change in Ptie2. (c) Change in

Ptie3.

Figure 18 Change in ACE of all areas following parameter

variation. (a) ACE1. (b) ACE2. (c) ACE3.
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parative cases were examined to show the effectiveness of FO-
PID controller tuned by ICA for LFC in the power system. To

evaluate the performance of FOPID controller, it was com-
pared with the conventional PID controller designed by the
same method. The settling time and maximum deviation of
responses to disturbances in the presence of PID and FOPID
controllers are given in Table 4a and b, respectively. It is worth
mentioning that the optimized value of the objective function

for the power system with PID and FOPID controllers was
10.6210 and 4.7642, respectively.
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5.1. Step increase in the demand of area 1

In the first case, a 0.1pu step increase in the demand of area 1,
with non-reheat generating unit, was applied at the nominal
operating point. The frequency deviation of all the areas

(Df), the deviation in the power transmitted to areas (DPtie),
and the areas’ control error (ACE) are shown in Figs. 3–5.

It is obvious from the simulation results that FOPID con-
troller improved system responses in terms of overshoots and

settling times when a disturbance occurred in area 1.

5.2. Step increase in the demand of area 2

Due to the importance of reheat generating units in power sys-
tems, in the second case study, a 0.1pu step increase in the de-
mand of area 2 (Pd1 = Pd3 = 0, Pd2 = 0.1pu) with reheat

generating unit was applied at the nominal operating point.
The results shown in Figs. 6–8 demonstrate higher ability of
FOPID controller in compensating for the disturbance which

occurred in area 2.

5.3. Step increase in the demand of area 3

Hydroelectric power generators produce 17.5% of the world’s

electricity [44], which indicates the importance of testing the
effectiveness of FOPID controllers for hydraulic units.

In this section, a 0.1pu step increase in the demand of area 3

(Pd1 = Pd2 = 0, Pd3 = 0.1pu) with hydraulic generating unit
was applied at the nominal operating point. Figs. 9–11 confirm
that FOPID controller led to smoother responses in this case

study. It is clear from the data given in Table 4a and b that,
although PID controllers had a little better performance in
terms of maximum deviations, FOPID controllers improved

system responses in terms of settling times.

5.4. Step increase in the demand of all areas

In order to test the performance of FOPID controllers when

disturbances occur simultaneously in all the areas, in the forth
case study, a 0.1pu step increase in the demand of all areas
(Pd1 = Pd2 = Pd3 = 0.1pu) was applied at the nominal oper-

ating point, and the responses of the system were observed.
The frequency deviation (Df), area control error (ACE), and
tie-line power deviation (DPtie) for all the three areas are

shown in Figs. 12–14. These simulation results confirmed that
FOPID had better performance in reducing settling times and
maximum deviations of frequency of all the three areas of the
power system. For further investigation on performance of

controllers, control signals are shown in Fig. 15. It is clear
from this figure that the amplitude of FOPID control signals
is less than that of PID control signals. So, in case of FOPID

controller, governor valves are subjected to less change.

5.5. Parameter variation

In modeling a complex interconnected power system, parame-
ter approximation cannot be avoided [45]. Therefore, robust-
ness of the proposed controllers to the parameters’ change

should be verified.
In this case study, inertia constant, damping constant, and

synchronizing coefficient were changed as follows:
1/M: ±15%

D: ±15%
Ti: ±10%

In Figs. 16–18, the performance of FOPID controller with
the change in system parameters is compared with that of
nominal ones. From these results, robustness of the proposed
controller to changes in system parameters can be concluded.

6. Conclusion

In this paper, an FOPID controller was proposed for LFC in a

three-area power system. The parameters of controllers were
tuned using ICA. Simulation of comparative cases confirmed
that the proposed controller had better performance in LFC

of the interconnected power system.
Responses of the power system to disturbances were much

smoother and less oscillatory using the proposed controllers.

In most cases, the settling time and maximum deviation of
power system responses diminished when FOPID controllers
were implemented. In some cases, PID controllers led to lower

maximum deviations and settling time; however, the responses
of FOPID controllers were still much smoother and less oscil-
latory. Moreover, robustness of the proposed controller to
changes in power system parameters was verified.
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