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Let X denote a (real or complex) Banach space, and B(X) the 
algebra of all bounded linear operators (real-linear when X is real, 
complex-linear when X is complex). Suppose a semi-inner-product 
(s.i.p.) compatible with the norm of X has been chosen (there always 
exists at least one compatible s.i.p.; see [I, 81, for properties of s.i.p. 
spaces). Denote by W(T) the numerical range of an operator T E B(X), 
and by ( W(T)1 th e “radius” of W(T), or “numerical radius” (again 
see PI, PI h w ere the notation u(T) is used for 1 W( T)j). 

As is well known [l, 3, 81, there exists a constant C, such that for 
every complex X (and independently of the compatible s.i.p. chosen), 

II TII < c I WT)l, VT E B(X). (1) 

One also knows that C = e is the best (smallest admissible) value 
for C, [4]. The estimate (1) is a powerful generalization, with different 
constant, of the well-known fact that if X is a complex Hilbert space 
with inner-product (,), then for every T E B(X) one has 

II T II d 2 I WTI, (1’) 

where 1 W(T)] = sup{l(Tx, x)1 : x E X, (x, x) = 11. On the other 
hand, one sees immediately that no inequality such as (1) can hold 
in general for X real. Simply take X to be the two-dimensional real 
Hilbert space and T “a 90” rotation,” so that 1 W(T)1 = 0, II T 11 = 1; 
of course, in this example 1 W(T2)l = 1, and in [2] Bonsall and 
Duncan showed that, in general, I W( T)I = I W(T2)l = 0 implies 
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T = 0. Bonsall told us privately (Edinburgh, 1968) of his conjecture 
that there should exist constants c i , c2 , such that for any real X, and 
any compatible s.i.p. one has 

II TII d cl I WT)I + ~2 I V”2Y’2, VT E B(X). (2) 

Our first result will be to prove this conjecture. For the proof we 
use complex methods, in particular the numerical ranges “in the 
complexification,” and the resolvent; these methods also play an 
important part in the rest of the paper. What we learn about the 
resolvent in proving the above conjecture, we use next to obtain 
precise estimates for the spectral radius in terms of real numerical 
ranges. From (2) it is clear that one can estimate 1 sp(T)I = spectral 
radius of T, from sup(I W(T)I, 1 l~V’(T~)ll/~), though (2) would not 
lead to a sharp estimate of that type. We obtain below a sharp estimate, 
not only in the above situation, but indeed for 1 sp(T)I in terms of 
SUP(I W”)I, I WT”)I”“), 1z being any positive even integer. These 
are 

I SPWI < 1’3 sup(I W”)I, I W(T2)V2) (3) 

I SPPTI < a, SUP(I W% I WV’“), n = 4, 6, 8 ,..., (3’) 

where uq = 47, and, in general, the CT, are determined as a certain 
root of a polynomial depending on n [see (13) below]. 

For X a Hilbert space, we can answer completely the question of 
best constants for estimates of ]I T II of type (2) as well as for estimates 
in terms of sup(a 1 W(T)I, /3 1 W(T2)11/2), and compare these two 
types of estimates. We also discuss some aspects of the general 
problem of best constants. 

We give applications. In particular we introduce an “invariant” 
6(A) (the “dual diameter”) defined for every unital Banach algebra A, 
i.e., Banach algebra with unit element of norm 1 [see below for the 
definition of 6(A)]; we show that there is a constant 6, , 0 < 6, < 1, 
such that a(A) < 6, implies that A must coincide with either the 
reals, complexes, or quaternions, and 6, is the largest number with 
that property (we note that “unique supporting hyperplane to the 
unit ball at 1 E A” is equivalent to “6(A) = 0”, and for that special 
case we recover a result of Bonsall and Duncan [2]). 

Of course, our results concerning operators on general real Banach 
spaces can be formulated equivalently for arbitrary real unital Banach 
algebras. 

We refer to [5] as a general reference in functional analysis. For 
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details on complexification, spectrum, in real Banach algebras, one 
may consult [9]. (B e ow we recall how the complexification goes, and 1 
do this with a very slight variation relative to the presentation in [9]). 

THEOREM 1. There exist constants cl, c2 such that for any real 
Banach space X, one has 

II Tll G Cl I JJWI + c2 I WT2)P2, VTEB(X). 

Before proceeding with the proof, and since we shall be making 
(throughout the paper) systematic use of the complexification of 
real Banach spaces and algebras, let us recall a few simple facts about 
it. If X is a real Banach space, we can make X’ = (x + iy : x, y E X} 
into a complex Banach space, by defining 

llx+iyII’= sup ~jxcosB+ysin~~j. 
0<8<2n 

(4) 

If A is a real unital Banach algebra, we can first consider it as a Banach 
space and obtain the complexified Banach space A’ in the way just 
described. Next, we can associate to every a’ E A’, the operator 

a’ determines on A’ by left multiplication. Then 
a’ E A’}, normed with the operator norm 

II 5’ II = os,;fA, ‘lg;,! 

is a complex Banach algebra, and A is isomorphic to the subalgebra 
(2 : a E A) of A. We shall refer to A as the standard complexification 
of A. Similarly we shall call X’ defined as above, the standard 
complexification of X. 

Notice that given a real Banach space X and its standard complexi- 
fication X’, we can associate to any T E B(X), T’ E B(X’), defined 
by T’(x + z$) = TX + iTy, and one has [I T 11 = II T’ 11. 

Finally, for lack of a better place, we point out here that we shall 
always use the same symbol 1 to denote the unit element of a Banach 
algebra, the identity operator on a Banach space, and the number one. 

Proof of Theorem 1. Consider the standard complexification X’ 
of X; consider any T E B(X), and the operator T’ E B(X’) defined 
above. Our first step will be to estimate the resolvent of T’ in terms 
of 1 W(T)1 and I W(Ta)j1/2. To begin, notice that 

sup Re lV(T’) = h%+(II 1 + tT’I/ - 1) t-l 

= f+$ (11 1 + tT II - 1) t-l = sup W(T); 
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and a similar relation holds for the infs; i.e., 

(5) 

Denote by A the angular region in the complex plane (A complex : 
1 arg X 1 < n/3 or 1 arg(--h)l < r/3}. Let h E A. W(1 + AT’) = 
1 + hW( 2”) = (1 + hw : w E W(Y)}, and writing 0 = arg A, we 
conclude from (5) that the distance from 0 to the convex hull of 
W(1 + AT’) is not less than cos 6’ - j h 1 j W( r)l. This implies, by 
well-known facts (see [S]), that 

1 
(1 + AT’)-l exists for h E A, 1 h 1 < 2 , W(T)I (6) 

and also that, with X as in (6), 

1 1 
“(l + hT’F’ ” G cos I3 - 1 h 1 ’ W( T)j G Q - 1 h 1 1 W( T)I - (7) 

Now using the relation (1 + XiT’)(l - AiT’) = 1 + h2T’2, and 
applying (6) and (7) with A, T’, replaced by h2, T’2, we conclude that 
whenever Xi E CA = complement of A in the complex plane, and 
1 h I < l/d/z 1 W(T2)11i2, then (1 + hiT’)-l exists, and 

IIU + J=T1 II < 1 2- I /j ,,‘, pyp)/ (1 + I h I II Tll)- 

Now set 

w(T) = inf ( 1 1 
2 ’ W(T)” %o j W(P)ll/2 ) 

attributing (if the situation arises) the meaning co to any expression 
l/O. Combining what we have shown above, we see that 

(1 + XT’)-l exists whenever 1 h 1 < w(a), 

for 1 h 1 < R < w(a). 

Below, we shall write M = M(T, R) for the bound of ]I(1 + AT’)-l I] 
in (8), without expliciting T and R whenever there seems to be no 
danger of confusion. 
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As the next step in our proof, we shall now, loosely speaking, 
estimate (1 + M”)-l from below for h > 0, and use this in turn to 
establish (2). Consider the expansion 

(1 + AT/)-l = 1 - T’A + T’%i2 - . . . . 

which is valid in the largest open disc centered at 0 in which 
(1 + XT’)-l exists. By the usual Cauchy estimates for vector-valued 
holomorphic functions, one has 

II T” II < W”, RP”, 12 = 1) 2, 3 )... . (9) 

For h real, 0 < h < R, and any x E X’, 11 x 11 = 1, we have, denoting 
by [,] a compatible s.i.p. on X’, 

I(1 + W-lx II > I[(1 + AT’)-l x, ~11 

= j 1 - h[T’x, x] + h2[T’%, x] - a.. 1 

> 1 1 - h Re[T’x, x] + X2 Re[T’2x, x] - X3 Re[T’%, x] + a.. I 

3 1 - (A I W(T)1 + A2 I W(T2)l + A3 II PII + .a.). 

Using (9) we see that 

AS// TSjl +X41/ T4// + m-e +4 ’ 
1 -h/R 

Hence, 

Iit1 + XT’)Yxll 3 1 - (A I W(T)1 + A2 / W(T2)l + $4 1 -lAIR) (lo) 

holds for 0 < X < R and all x E X’ of norm one; therefore 
II 1 + AT’ II = II@ + AT’)-l)-l II is bounded by the inverse of the 
second member of (10) p rovided the latter is 20, (and 0 < X < R). 
We now complete the proof. Set Q(T) = l/w(T) for any T E B(X); 
we shall prove that 3K, a constant, such that 11 T (1 < K.Q( T) for any 
T E B(X), X being any real Banach space. It is immediate that it 
suffices to prove that 11 T II < KQ(T) holds, whenever Q(T) > 0. 
Suppose no such K exists. Then we can find spaces X, and operators 
Tn E WG), II Tn II = 1, with w( T,) + + 00 [but each w( T,) finite]. 
We now apply (10) with R, = &J( T,) and h, of the form TR, in 
lieu of R and X. With our choice of R, , we see readily from (8) that 
WT, , R,) < 4( 1 + R,), and can then verify without difficulty 
that the second member of (10) tends to 1 as 7t + + co. This tells us 
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that II 1 + &J, II < 1 + E f or any fixed E > 0 and n large enough. 
But this is impossible, since An = 11 &Tn 11 < 11 1 + h,T, II + 1 and 
A,+ +OO. Q.E.D. 

By the previous result, one has, in particular, 

I sPwI G KSUP(l VW I wT2)11’2) 

for some constant K. Using the techniques of the preceding proof 
we shall give a sharp estimate of that type, and show that a similar 
result holds for each positive even integer n, in terms of sup( I W( T)I, 
1 W( T”)ll/“). 

THEOREM 2. For arbitrary real Banach space X, and T E B(X), 
one has 

I SP(T)l < dSSUP(l JvuI, I WT2W2) (11) 

and the above estimate is sharp (i.e., if 1/3 is replaced by a smaller 
constant, the statement no longer holds in general). Moreover, for each n 
positive even integer, there exists a constant on , such that for X and T as 
above, 

I SP(T)I < *n SUP(I W(T)I> I W(T”p) (14 

and the latter estimate is sharp. oa = fl, and in general, l/u, is the 
smallest root of the equation 

An - (1 - h2)nl2 + (9 (1 - h2)“/2-1 A2 - ..I + (-l)nlz+l A” = 0 (13) 

satisfying 0 < l/u, < 1. 

Remark 3. Trivially, by considering again the operator defined 
by (f -t) on a two-dimensional real Hilbert space, we see that no 
estimate of type (12) can hold for n an odd positive integer. 

Proof of Theorem 2. We prove directly the general case. Let n 
be a positive even integer. For any @, 0 < @ < 7~1.2, define 
A, = {A complex : I arg A I or I arg(--X)1 < @}. Let X be any real 
Banach space, and T E B(X). The same reasoning that leads to (6) 
in the proof of Theorem 1 shows that (T’ being the operator in B(X’) 
corresponding to T, as before) 

(l--XT’)-lexistsforhE~,,IhI <*. (14) 

580/10/4-8 
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Let 01~ , ala ,..., CII, be the n-th roots of unity, i.e., the roots of the 
equation A” - 1 = 0. We then have the algebraic identity 

1 - P’T’” = (1 - hol,T’)(l - h%T’) ..a (1 - ha,T’). (15) 

Now if n = 2m, and m is even, then for the appropriate j, CY~ = i, 
whereas if m is odd then for the appropriate j, i = aje(nln)i. In the 
first case we use (15) with h replaced by x = Xaj , and in the second 
case with X replaced by X = X+e’nl”‘i. In either case, Afi = &An; so 
the first member of (15) reads 1 f PT’“, and one of the factors in 
the second member of (15) is (1 - AiT’). Therefore (1 - hiT’)-l 
exists if (1 f XnT’n)-l exists, and we apply (14) with @ = n#, 
choosing a # such that 0 < n# < 7r/2. This tells us that 

(1 - XiT’)-l exists for h E A, if j h 1 < (cos n#)l’“/[W(Tn)[ll”. (16) 

For any # as above, combining (14) and (16) with @ = (n/2) - $ 
(so that the union of the angular regions A, and (A,)i covers the whole 
plane) we have then 

I WT)I I WW'" 
I sp(T)l ' sup ( sin* ' (~0s 4)1/W )* 

Now, one sees easily that there exists exactly one &, such that 
0 < t& < m/2n and sin Q, = (cos n&J1l”. Set Us = (l/sin &J, then 
we have 

I SPP”)I < un SUP(/ WT)I, I JVV’“) 

and we shall see that this estimate is sharp. For that purpose, let X be 
at present a real two-dimensional Hilbert space, and U the operator 
on X defined by (t -:) 1 t re a ive to an orthonormal basis. Set 
@ = (742) - AZ , and T = (cos @) 1 + ( sin @)U. 1 W(T)\ = sin #, 
since I W( U)l = 0; 1 a so, since T is a “rotation by @ radians,” we have 
1 W(T”)\ = 1 cos n@ 1 = cos n&, and I sp(T)\ = 1. Hence, (12) is 
sharp. 

Finally it follows easily from De Moivre’s formula, that sin #, is 
the smallest of the roots lying between 0 and 1 of Eq. (13). Solving 
that equation for n = 2,4, one finds ua = 43, Us = l/i. Q.E.D. 

Next, we give several applications of Theorem 1 and the corre- 
sponding techniques. First we like to point out that a number of 
known facts concerning real unital Banach algebras follow almost at 
once from the above. For instance, 
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COROLLARY 4. ([2]). If A is a real unital Banach algebra whose 
unit ball is smooth at 1, then A must coincide with the reals, complexes, 
or quaternions. 

Proof. The hypothesis implies that Va E A, W(a) consists of one 
value h, . Using the complexification A, and (5), we have Re sp(a”) = 
{A,}. If 0 E sp(a”), then X, = 0, so 1 W(a)/ = 0; and then also 
0 E sp(Z”), so 1 W(a2)j = 0. Therefore a = 0. Thus, A is a division 
algebra and the statement follows from this, as is well-known. Q.E.D. 

This corollary contains, in particular, the result [6] that any real 
unital Hilbert algebra must be the reals, complexes, or quaternions; 
and in this case the above argument yields a very short and elementary 
proof of that result (since we shall see below that for X a real Hilbert 
space Theorem 1 has an entirely elementary proof). Also most of the 
results on the vertex property obtained by Ingelstam in [7] can be 
derived similarly. As an example, (using the terminology of [7]), 

COROLLARY 5 ([7], Theorem 4). A real Banach algebra of strongly 
real type, with identity, has the vertex property. 

Proof. The given algebra A becomes unital under equivalent 
renorming. We consider A as above. If a E A, 1 IV(a)1 = 0, then 
id = h is a generalized hermitian, and sp(3) = -sp(h2) = -(sp(h))2 
lies on the closed left half of the real axis. Since 1 + t2a2 must be 
invertible for every real t, we must have sp(a”) = {0), hence sp(h) = (O} 
and therefore h = 0, a = 0. But the implication 1 W(a)1 = 0 + a = 0, 
which we have proved, is exactly the vertex property. Q.E.D. 

The result of Bonsall and Duncan stated as Corollary 4 above, tells 
us that if the unit ball of a real unital Banach algebra A has only one 
supporting hyperplane at 1, then A must be the reals, complexes, or 
quaternions. We shall prove below (Theorem 6), that indeed unless 
a real unital Banach algebra is one of the above fields, the set of sup- 
porting hyperplanes at 1 can not be “very thin”. For any real unital 
Banach algebra A, denote by S(A) the set of normalized states, i.e., 
S(A)={f* E A*, the dual of AasaBanachspace: Ilf* ll=f*(l)= l}. 
Denote by 6(A) the diameter of the set S(A)-of course, the equation 
of any supporting hyperplane to the unit ball of A at 1 is of the form 
f*(a) = 1, f * E S(A). We shall call 6(A) the dual diameter of A. 

THEOREM 6. There exists a constant c, 0 < c < 1, such that any 
real unital Banach algebra A for which 6(A) < c, must coincide with 
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either the reals, the complexes, or the quaternions, and no number larger 
than c has the same property. 

Proof. For any a E A, denote by 6( W(a)) the diameter of the 
numerical range W(a) of a, where of course we suppose again that 
a compatible s.i.p. has been chosen on A 

W(a) = {[w ~1 : x E A, 11 x 11 = l}). 

It is easy to check that S(A) = supsfaeA [S( W(a))/11 a 111. Now suppose 
S(A) < K. Consider the standard complexification 2 of A, and use 
Co to denote “closed convex hull of.” If a E A is not invertible, then 
by (5), and the fact that sp(a) C Co W(Z), it follows that 0 E Co W(a). 
If a is not invertible, neither is a2, so that also 0 E Co W(a2). Hence, 
in that case, 1 W(a)1 < S(W(a)) < k 1) a 11, and 1 W(a2)I < S( W(a2)) < 
k II a2 I] < k 11 a 112. By Theorem 1, we conclude 

II a II < (0 + C2k1’2) II a. II 

and if c,k + c2k1i2 < 1, this implies a = 0, i.e., A is a division 
algebra. So, we have proved that for k small enough, S(A) < k implies 
that A is a division algebra. Let c be the sup of all such values of k; 
then c is itself one of these values k. Consider now the case in which 
X is a two-dimensional real Hilbert space, and A is the algebra of 
operators on X represented with respect to an orthonormal basis of X 
by the real matrices of the form 

In that case, one sees immediately that 

sup a( WN ___ = S(A) = 1, 
0fa Iall 

while A is not a division algebra. Hence c < 1. Q.E.D. 

Theorem 7 below, another extension of Corollary 4, further 
illustrates the strong connection between geometry and algebra, in 
normed algebras. 

THEOREM 7. Suppose A is any real unital Banach algebra and 
a E A. Then, if the intersections of the linear spacesgenerated by 1 and a, 
and by 1 and a2, with unit sphere, are smooth at 1, a is algebraic over 
the reals of degree two, and invertible if nonzero. 



REAL NUMERICAL RANGES 491 

Proof. We consider the complexification .J$ as before. By (5) the 
hypothesis on a and a2 implies that Re IV(Z) and Re IV(Z2) consist 
each of one number only, say a and 8, respectively. Hence, 
a” - al = ih, a”2 - 81 = i/z’, where h and h’ are generalized 
hermitians. If r + is E sp(a”), then r = CL, and by the spectral mapping 
theorem r2 - s2 = /3, s2 = ~11~ - ,6. So sp((Z - a1)2) = {/I - a”}, and 
sp(Z2 - 2ora” + 201~ - /3) = (01. But since a”2 - 2cua” + 201~ - fi = 
i(--2olh + h’), we must have 

ii2 - 2& + 2or2 - /I = 0, a2 - 2cia + 2a2 - /3 = 0. 

Also, if a is not invertible, we must have 01 = /3 = 0, so that a” = ih 
and a2 = 0, which implies indeed a = 0. Q.E.D. 

We shall now discuss the question of “best constants” for estimates 
of type (2), as well as for estimates of ]I T ]I in terms of “weighted 
sups of / W(T)], 1 W(T2)j1/2”. W e g ive a complete answer for the case 
in which X is a real Hilbert space, obtain some indications for the 
general Banach space situation, and state several related open 
problems. 

DEFINITION 8. Denote by R+ the nonnegative reals. For X any 
real Banach space, define G(X) as {(ci , c2) E R+ x R+ : 11 T II < 
cl 1 W(T)1 + c2 1 W( T2)1112, VT E B(X)}. Define G = nallx G(X); of 
course, G = {(ci , c2) E Rf x R+ : 11 T )I < cl I W(T)/ + c2 I W(T2)1112, 
VT E B(X), any x>. 

PROPOSITION 9. G(X) f or any X, G, are convex and closed. The 
boundaries BG(X), aG, have vertical and horizontal asymptotes, 
x = x0 , y = y,, (interpreting the cl us x coordinates, and the c2 us y 
coordinates). For the cuse of G, x0 > e, y0 > 1. 

Proof. The convexity is obvious. Since (x, y) E G(X) implies 
that {(x’, y’) : x’ > x, y’ > y} C G(X), BG(X) must have vertical 
and horizontal asymptotes. The same holds for G; and also clearly the 
G(X), G, are closed. Since we can find an X, 0 # T E B(X), such 
that 1 W(T)/ = 0, I W(T2)11/2 = ]I T 11, we must have for G, y,, > 1. 
We know that there is a complex Banach space X and 0 # T E B(x) 
for which T2 = 0, / W(T)/ = (l/e) I] T ]I, [4]. It suffices to consider X 
as a Banach space over the reals and use the analog of (5) to see that 
we have then a real-linear operator T with the same properties. It 
follows that x,, > e. 

Any (cl, c2) on aG(X) not interior to any horizontal or vertical 
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line segment in BG(X), is a pair of “best constants” in the sense that 
if we diminish both of them, or one of them leaving the other fixed, 
the estimate no longer holds. We shall say that (ci , c2) are “absolute 
best constants” for X, if for any (ci’, ca’) E G(X), ci’ > ci , ca’ > ca 
and (ci , ca) E G(X). The latter means exactly that 

‘3-V = NC I’, c2’) : Cl’ > Cl > 0, c2’ > cp > O}. 

THEOREM 10. When X is any real Hilbert space of dimension >l, 
(2, 1) are absolute best constants for X, i.e., we have the sharp estimate 

II TII G 2 I YT)I + I WT2)P2, VT E B(X), (18) 

and G(X) = {(cl, c2) : cl > 2, c2 > l}. 

Proof. Let x, y E X. Then 

2 U”x, Y) + (TY, 6 = NW + r>, x + r> - CT@ - r>, x - r>l 

d I WV (II x + Y II2 + II x -Y II”) 

= 2 I W”) ItI1 3 II2 + II Y II”>. 

Hence, 

I(%Y) + CO, 41 < I WT)I (II * II2 + IIY II”>. (19) 

We may assume T # 0, and apply (19) withy = TX/II T 11, 1) x II < 1, 
to obtain 1 11 TX II2 + ( T2 x,x)\ <211 TII 1 W(T)I~~~~I~~EX,II~II < 1. 
It follows that 11 T /I2 < 2 I W(T)1 II TIJ + I W(T2)l, and therefore 
11 T II is < the largest root of the equation 

--h2 + 2 I W(T)/ h + 1 W(T2)l = 0. 

Hence, 

II Tll < I WT)I + dl WT)12 + I WT2)l (20) 

and since 1/F is a subadditive function of t > 0, (18) follows 
immediately from (20). 

Since the dimension of X is > 1, we can find Tl E B(X) such that 
T,2 = 0, I W( Tl)I = 4, and T, E B(X) such that I W(T,)I = 0, 
1 W(T22)11/2 = 1, and therefore if (ci , c2) E G(X), ci > 2, c2 > 1. 
In view of the above, we see that (2, 1) are absolute best constants, 
and G(X) = {(ci , c2) : ci > 2, c2 > l}. Q.E.D. 
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Now let again X be any real Hilbert space of dimension >l. For 
any given LY, /3 > 0, there exists by the preceding theorem some 
constant c > 0 such that 

Denote by c(01, ,k?) the smallest of such constants c for 01, fl fixed. 

THEOREM 11. For any real Hilbert space X of dimension > 1, 
we have 

c(a,P) = (l/a) + d/(1/a”> + (1/P2). (21) 

The least “maximum deviation” for an estimate of the type under 
consideration (see below) occurs when a: = p, and we have in that case 
the sharp estimate 

II TII < (1 + d$sup(I JV)I, I W”2)11’2). (22) 

Proof. Fix 01, p > 0, and set for simplicity s(T) = i;, = 
sup(a I VU, B I W(T2)P2). Then, I W(T)1 < +, I W(T2)l < ~~/fi~, 
and we have in view of the inequality (20) obtained earlier 

II TII G ((lb) + dUba) + (I/P))i; 

which shows that 

4% 8) =G (lb) + d(1/a2) + (1/b2). 

Next, let X0 be a two-dimensional real Hilbert subspace of X. 
Consider U and S in B(X), defined as projection on X0 followed by 
the operation defined relative to an orthonormal basis of X,, , by 
(T -3 and (g i), respectively, and set T = S - EU, where E is some 
positive constant. Since I W(U)1 = 0, / W(S)1 = 8, S2 = 0, we 
verify immediately that I W( T)I = &, I W(T2)I = ~(1 + E). We shall 
have CII I W(T) 1 = 42 = fl I W( T)j1j2 if e2 + c - CK~/(~P~) = 0. The 
latter occurs when 

E = L-1 + dl + (a2/rS2)1/2, 

and with that choice of E, since 

II T/I = 1 + E = [I + v’i7j33]/2, 
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we have 

II T I~/suP(~ I JW)I, B I WTa)Va) = W + 41 + (43aN/21 Q/4 

and therefore 
= (l/4 + m@? + u/m 

4% B> = (lb) + d(W) + (l//q. 

For fixed 01, p > 0, by “maximum deviation” of the sharp estimate 
II T II < c(01, B) sup(~l I W(T), B I W(T2)V2) VT E B(X), we mean 

;5; [[~(a, B) SUP@ I W% B I ~P“2>11’2)l/ll T Ill. 

It is easy to see that this “maximum deviation” is smallest for 01 = 8, 
in which case the estimate is independent of 01 and takes the form (22). 

Q.E.D. 

One thing one learns from the preceding results by comparing 
best estimates of type (2), additive, with best estimates in terms of 
“weighted sups”-as in the previous theorem-for X a real Hilbert 
space of dimension >l, is that neither kind is overall better than the 
other; but the question of best constants has a simpler and uniquely 
determined answer (at least in the Hilbert space case) for estimates 
of type (2), and by and large the latter estimates deviate less for a 
number of standard types of operators on Hilbert space. Theorem 11 
also shows that with weights of 2 and 1, we need a c > 1.6, and with 
weights of e and 1, we have still c(e, 1) > 1.43. 

Problems 12. Determine G(X) for other real Banach spaces- 
specially the more commonly used ones-different from Hilbert 
space. 

Determine G (or at least determine the asymptotes of G). 
Find C(CY, /3) in the general situation just considered. 

Finally, let us mention, for arbitrary X, one limiting case in which 
one can give a sharp estimate of type (2) for the norm of T, quite 
easily, in view of Sinclair’s result about (generalized) hermitians 
(spectral radius = norm) [lo]. 

PROPOSITION 13. Let X be any real Banach space. If T E B(X) 
and 1 W(T)] = 0, we hawe 

II Tll d I W”2P. (23) 
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Proof. If T’ is the operator corresponding to Tin B(X’) as before, 
then 1 W(T)/ = 0 and (5) imply T’ = iH, where H is a hermitian. 
Hence by [lo], 

11 T 11 = 11 H 11 = ) sp(H)I = 1 sp(H2)1112 = / SP(T’~)/~/~ < I W(T2)11/2 

because s~(T’~) = -sp(H2) = -(s~(H))~ is real. Q.E.D. 
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