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Summary

Magnetic resonance imaging (MRI) provides a sensitive tool for examining all the structures involved in the osteoarthritis (OA) process. While
much of the MRI literature previously focussed on cartilage, there is increasing research on whole-organ evaluation and including features such
as synovitis, bone marrow edema, and meniscal and ligamentous pathology. The aim of this session at the Outcome Measures in Rheumatol-
ogy Clinical Trials (OMERACT)eOsteoarthritis Research Society International (OARSI) Workshop for Consensus in Osteoarthritis Imaging was
to describe the current MRI methods for identifying and quantifying non-cartilaginous structures and review their associations with both OA
symptoms and structural progression. Although there is much experience in measuring synovitis (derived from the rheumatoid arthritis litera-
ture), only one study has reported an association of MRI-detected synovitis and effusions with OA pain. Bone marrow edema lesions, which
may represent areas of trabecular remodelling, have been associated with pain and compartment-specific structural deterioration. MRI studies
have confirmed the frequency and importance of meniscal damage in progressive cartilage loss, but not related such damage to symptoms.
Osteophytes have been associated with cartilage loss and malalignment to the side of the osteophyte. Ligament damage, including anterior
cruciate ligament tears, has been found more commonly than expected in painful OA knees. Improvements in quantitative and semi-quantitative
assessments of non-cartilage features will greatly assist understanding of the OA process and its response to therapy.
ª 2006 OsteoArthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
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Osteoarthritis (OA) is the commonest joint disease and is
strongly associated with aging. It is now accepted that the
OA process involves the whole joint organ including the
synovium, subchondral bone, menisci and ligaments1.
A number of presentations on non-cartilaginous knee
structures in OA were therefore included in the Outcome
Measures in Rheumatology Clinical Trials (OMERACT)e
Osteoarthritis Research Society International (OARSI)
Workshop for Consensus in Osteoarthritis Imaging. This
review will summarize these presentations by focusing on
the magnetic resonance imaging (MRI)-derived information
relevant to each structure in OA and where possible the
available information on quantitating abnormalities of these
structures using MRI.

Much of the data relating to these non-cartilaginous struc-
tures are recent, as prior to MRI most of these structures
were not visualised; furthermore, even the MRI OA studies
have largely focussed on cartilage. Of course, specific
structural abnormalities do not occur in isolation but rather
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as part of a complex inter-related biochemical and biome-
chanical structure. With that complexity in mind, whole-
organ MRI evaluation will also be discussed.

Synovitis and effusions

The importance of inflammation in OA is well recog-
nised2. Although synovitis in OA appears to be secondary,
synovial abnormalities are present in early OA and are seen
with increased frequency with increasing severity of chon-
dropathy3e5. Publications involving MRI measurement of
the synovium in OA are few6e12. However, there is a large
quantity of literature on quantification of rheumatoid arthritis
(RA) synovitis (systematically reviewed in Ref.13) and there
is no reason to believe that using MRI to detect synovitis in
RA will be a different process from detection in OA, except
as histological inflammatory studies would suggest, in
quantitative measure.

Synovitis is probably best assessed with MRI using the
intravenous, paramagnetic-enhancing agent gadolinium
(Fig. 1)9, although modern non-gadolinium sequences for
delineating synovitis (including fat suppression and pulsed
saturation transfer sequences) can be optimised to assess
synovium7,14. Synovial hypertrophy detected by both gado-
linium and non-gadolinium sequences has been correlated
with microscopic synovial inflammation7,9. The decision to
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Fig. 1. T1-weighted coronal images of an osteoarthritic knee before and after gadolinium demonstrating enhancing synovium (image courtesy
of Dr A. Grainger, Leeds UK).
use gadolinium has implications for the subject, duration of
scan and selection of sequences. Preliminary information
from a gadolinium vs no-gadolinium scoring exercise con-
ducted using semi-quantitative scoring of metacarpophalan-
geal and wrist joints in RA, using T1 coronal and axial
sequences with T2 Short Tau Inversion Recovery (STIR)
sequences, demonstrated that moderate to good agree-
ment on synovitis scores could be achieved15. A study
comparing non-gadolinium MR sequences e including pro-
ton-density (PD), T2-weighted spin echo and fast spin echo
(FSE) images with fat saturation e with arthroscopy in the
detection of knee synovitis demonstrated high sensitivity,
specificity and accuracy for the MRI sequences16.

Quantification of synovitis may be achieved using either
estimations of volume or assessing the characteristics of
gadolinium signal using dynamic-enhanced MRI (DEMRI)
techniques. Volume may be assessed semi-quantitatively
and in a recent study of 35 OA knees, semi-quantitative
scores (graded 0e3) at four sites (medial and lateral para-
patellar recesses, intercondylar notch and suprapatella
pouch) correlated well with detailed volumetric assess-
ments17. Hill et al.12 used scoring of presence or absence
of synovial hypertrophy at three sites in the knee (infrapa-
tella fat pad, intercondylar space and anterior horn of lateral
meniscus) of 150 OA subjects; this study demonstrated that
this synovial volume measurement was associated with
pain. Peterfy et al.18 have described a whole-organ semi-
quantitative OA knee scoring system (the WORMS score)
and work is presented elsewhere in these Workshop pro-
ceedings on assessing the psychometric properties of this
score. The relevant WORMS subscale scores global knee
synovitis and effusion (without distinguishing the two) on
a 0e3 scale. Recently Loeuille et al.5 evaluated synovial hy-
pertrophy at five sites in the knee using a 4-point scale and
correlated this with arthroscopic synovial scores.

Using post-gadolinium scans, synovial volume may be
estimated using a somewhat laborious manual outline or
using semi-automated methods that involve subtraction
and enhancement thresholding and require post-gadolinium
images8,9,19,20. Although manual volume studies probably
represent the ‘gold standard’, automated methods have
been correlated with these methods8. A number of different
image analysis software packages are available for per-
forming volume calculations. When doing these synovial
volume studies there are a number of sources of variability
including where to set the threshold above which pixels of
a certain intensity will be analysed8. Reports on the reliabil-
ity of these methods in knee studies are few, but in one
study evaluating the efficacy of intraarticular steroids in
the knee, the measured change was demonstrated to be
greater than the smallest detectable difference (i.e., the dif-
ference beyond measurement error)21.

DEMRI enables the study of pharmacokinetic and phar-
macodynamic parameters, such as initial rate of enhance-
ment and maximum enhancement22e24. The sources of
variability include acquisition (injection dose, rate, route, hy-
dration of patient, cardiac output), and analysis (curved fit-
ting, calculation of parameters and selection of region of
interest). These dynamic studies have been correlated
with histology, although there is better correlation when
large synovial areas such as the whole knee, have been
evaluated22,23.

Joint effusion is best detected on fat-suppressed PD or
T2-weighted FSE sequences. The volume of joint effu-
sions can also be calculated using semi-automated vol-
ume analysis9 and have been demonstrated responsive
to change in inflammatory knee arthritis treated with in-
tra-articular corticosteroids21. A recent study in OA patients
with and without knee pain (referred to above for semi-
quantitative assessment of synovial hypertrophy) also
studied effusions and popliteal cysts, both graded 0e3
on T2-weighted axial and sagittal sequences, and found
both abnormalities common12. Moderate or large effusions
were more common in those subjects with pain than in
those without pain.

Subchondral bone

The subchondral bone has long been recognised as im-
portant in terms of the pain and progression of OA25. MRI
has provided some novel insights into the role of bone in
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OA. The commonest bone abnormality described in OA is
‘bone marrow edema’ (BME), a term uniquely associated
with MRI and initially reported in 198826. As will be dis-
cussed below, edema does not appear to be a major con-
stituent of this abnormality and ‘bone marrow lesion’ may
be a more appropriate term. It refers to ill-defined areas
typically visualised as intermediate to high signal on fat-
suppressed T2W or STIR images (Fig. 2). Bone edema
on MRI has also been described in other conditions includ-
ing inflammatory arthritis, osteomyelitis and enthesitis; it
has also been commonly observed after joint trauma27.

Two studies have looked at validity issues concerning
BME by examining histologic associations in OA knee.
Zanetti et al.28 compared MRI tibial plateau abnormalities
in 16 OA knees with appropriately co-ordinated histologic
specimens at joint replacement (a cohort with severe OA).
True edema was seen in only a very small percentage of bi-
opsies, and indeed abnormal tissue was only demonstrated
in approximately half of the MRI BME areas. The commonest
abnormalities were bone marrow necrosis, fibrosis and ab-
normal remodelled trabeculae; such findings are similar to
those found in avascular necrosis and after bone trauma.
Similarly Bergman et al.29 demonstrated that bone marrow
fibrosis was the commonest finding in areas corresponding
to subchondral BME in nine subjects with OA.

Information about BME in OA is slowly accumulating. In
a study of 47 subjects with chronic knee pain, some with ra-
diographic OA, an increase and decease in size of lesions
over 2 years was reported30. In a 377 OA painful OA knee
cohort (mean age 63, 76% women), 82% of patients had
BME (30a). In 71% of patients these lesions did not change
in size over 3 months, with 19% having increased lesions.
The same study demonstrated that reduced BME size
was associated with a reduction in cartilage degradation
as measured by urinary excretion of crosslinking telopep-
tide of type II collagen31. In another large OA knee study,

Fig. 2. Coronal STIR knee image demonstrating bone marrow
edema (white arrow) of the medial tibial plateau involving osteo-

phyte (image courtesy of Dr A. Grainger, Leeds, UK).
medial BME lesions were associated with higher medial
bone mineral density, and similar findings were demon-
strated for the lateral compartment, supporting the concept
that these lesions reflect increased loading of the joint32.

There are a number of MRI publications evaluating symp-
toms and BME. Lotke et al.33 described three types of sub-
chondral bone lesions in 41 painful subjects with painful
knee OA and found that persistence of pain was predomi-
nantly associated with the largest lesions. Felson et al.34 im-
aged a cohort of 401 subjects with radiographic OA knee,
including 50 subjects without pain. They reported that
BME was present in 77.5% and 30% of the painful and pain-
less groups, respectively, but more impressively demon-
strated that large lesions (graded semi-quantitatively on
a 0e3 scale) were largely predominant in the painful knees
(35.9% painful group vs 2% painless group, P< 0.001).
There was no association with pain severity. Sowers
et al.35 have presented data on 120 women aged 30e55,
with and without radiographic OA or pain. They found that
BME frequency was similar in both painful and painless
OA, but that BME lesions greater than 1 cm (found more
commonly in knees with advanced cartilage loss) were
more frequent in the painful OA group. Link et al.36 in
a smaller cohort of 50 OA knees again demonstrated an as-
sociation of BME with cartilage loss, but did not demon-
strate an association with pain; however, this cohort did
not include a comparator group without pain.

With respect to structural progression, normal (or nega-
tive) bone scintigraphy is predictive of little if any change
in joint space width in OA knee at follow-up37. Studies
have also demonstrated correlations between ‘positive’
scintigraphic findings and the MRI findings of BME38,39.
With these data in mind, Felson et al.40 reported data
from a cohort of 256 subjects and comparing MRI-detected
BME and OA progression as assessed by fluoroscopically
positioned X-rays. They found strong associations of BME
with progression in the same compartment (medial odds
ratio (OR) 6.5, lateral OR 6.1), with some reduction in risk
when alignment was considered (medial OR 5.6, lateral
OR 2.8). The site-specific nature of this BME risk should
be emphasised. This is also reflected in another study com-
paring medial compartment chondroscopic progression with
MRI in 20 OA knees; this study demonstrated that lack of
MR-detected subchondral bone abnormalities predicted
no worsening of chondropathy41.

The ever improving technology continues to offer new
measurement possibilities. In a novel application using
high resolution MR images and comparing normal and OA
knees (with spatial resolution of 195� 195 mm2), Beuf
et al.42 demonstrated reduced trabecular bone volume frac-
tion and increased trabecular spacing in the distal femur,
consistent with loss of trabecular bone. Novel techniques
for quantitative analysis of joint surface size, incongruity
and curvature have also recently been described43. Prelim-
inary data were presented at the Workshop demonstrating
semi-automated image analysis techniques that can mea-
sure BME and record its location using PD and T2-weighted
or PD and intermediate-weighted fat suppressed SE
images.

Menisci

Evaluation of the menisci has been one of the major uses
of MRI in the knee over many years. It is seen as the best
non-invasive test for assessing meniscal pathology and has
demonstrated high sensitivity and specificity for both medial
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Fig. 3. Horizontal posterior horn medial meniscus tear (image courtesy of Dr G. Gold, USA).
(89% and 84%, respectively) and lateral (72% and 93%, re-
spectively) tears44. Currently, sagittal PD (TE< 20) FSE se-
quences are the standard for evaluating the menisci
(Fig. 3), although 2e4% of tears may only be visualised in
the coronal plane.

One of the common systems used for grading meniscal
damage is based on the distribution of MRI signal intensity
and its relation to the articular surface45,46. It employs a 0e3
scale where 0 is normal, 1 represents punctate signal inten-
sity, 2 represents linear intrameniscal signal and 3 repre-
sents signal intensity extending to an articular surface.
This system has been correlated with histological find-
ings46. The WORMS score referred to above scores ante-
rior, body and posterior horn segments of both menisci
using sagittal and coronal sequences and a 0e4 scale
where 0 is normal, 1 represents a minor radial or parrot-
beak tear, 2 represents a non-displaced tear, 3 represents
a displaced tear or partial resection and 4 represents com-
plete maceration or resection18.

Meniscal abnormalities are found commonly in OA. In
a large cohort of 245 elderly subjects (aged 70e79) with
277 unilateral or bilateral OA knees, the prevalence of menis-
cal lesions was 83% in men and 73% in women47. The me-
niscal abnormalities were strongly associated with cartilage
defects. Another large cohort from the same study and se-
lected for normal knee radiographs again demonstrated
a high prevalence of meniscal lesions (44% of males and
20% of females)48. The relevance of meniscal tears to patient
symptoms was investigated in an MRI-based study that ex-
amined medial or lateral definite meniscal tears in 154 symp-
tomatic OA patients49. Pain was not greater in those OA
knees with a meniscal tear compared to those without.

Meniscectomy has long been associated with increased
rates of symptomatic and radiographic OA50. Recent longi-
tudinal studies employing MRI have confirmed that both
meniscal tears and partial meniscectomy lead to increased
rate of cartilage loss51,52. Using sagittal MRI of the knee
positioned in extension and 45( of flexion, one study sug-
gested that abnormal movement of the meniscus may
also contribute to greater cartilage loss53. Meniscal extru-
sion is known to contribute, along with cartilage loss, to ra-
diographic joint space narrowing54 and increasing degree of
subluxation has been correlated with the severity of joint
space loss55. Meniscal damage and extrusion have also
been identified as a factor (together with cartilage loss
and bone attrition) associated with knee alignment56.

Ligaments

The importance of the knee ligaments in the development
of OA has been appreciated through studies of anterior cru-
ciate ligament (ACL) ruptures and subsequent radiographic
OA57. These risks seem increased with combined ligamen-
tous injuries58. Furthermore, recent literature emphasising
the influence of joint laxity and alignment on the risk of ra-
diographic OA progression1,59 heightens the importance
of ligament evaluation.

PD and T2-weighted FSE or turbo spin echo sequences
are commonly used for evaluating knee ligaments on MRI
(Fig. 4), with sensitivity and specificity of 96% and 98%, re-
spectively, for detecting ACL damage when compared with
arthroscopy60. Sagittal sequences are most useful for ACL
and posterior cruciate ligament evaluation, while coronal
views are best for collateral ligaments. There are few MRI
scoring methods published for evaluating ligaments in OA
knee. One report of 10 OA patients used a notional grid
to evaluate superficial and deep capsulo-ligamentous
planes as well as the medial collateral ligament (MCL), all
scored for no, weak and high signal intensity on coronal
and axial sections61. Another study used a classification
system based on ligamentous injury grading of 0e3 where
1 represents edema on one side of the ligament fibres, 2
represents edema on both sides and 3 represents edema
with ligamentous disruption62. In this study of 30 patients
with moderately severe radiographic OA knee compared
with controls, MCL abnormalities were found in most pa-
tients but few controls. The WORMS method scores cruci-
ate ligaments as normal or torn (0/1) and collateral
ligaments as normal, thickened or torn (0, 1 or 2)18. In the
large elderly OA knee cohort described above47 the preva-
lence of any ligament tears was surprisingly high (27% in
men and 30% in women) but again strongly associated
with cartilage damage. In another large cohort of painful
knee OA (mean age 67), complete ACL rupture was seen
in 23% compared with 3% of age-matched, non-painful
knees63, suggesting that ACL rupture (for which subjects
had poor recall) is more common in symptomatic OA knee.
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Fig. 4. Complete MCL tear (white arrow) (image courtesy of Dr G. Gold, CA, USA).
Osteophytes

Osteophytes are part of classic OA classifications and
have been strongly associated with radiographic joint space
narrowing and subchondral sclerosis64; they have also been
associated with pain65,66. Recent studies have improved un-
derstanding of OA pathogenesis by demonstrating in tibio-
femoral and patello-femoral joints that osteophytes are as-
sociated with cartilage defects in the affected joints67,68.
The WORMS score grades osteophytes at multiple sites ac-
cording to an 8-point scale18. The tomographic nature of
MRI means that it is highly sensitive to the detection of os-
teophytes (Fig. 5) e in 445 knees with normal radiographs,
osteophytes were detected (using the WORMS method) in
72% of men and 67% of women48. Recent data from a nat-
ural history study of painful OA knee have shown that
large osteophytes do not increase the risk of radiographic

Fig. 5. Axial knee sequence demonstrating large femoral condyle
osteophyte (white arrow) (image courtesy of Dr D. Louille, Nancy

France).
OA progression, but are associated with malalignment to
the side of the osteophyte69.

Whole-organ evaluation

It seems appropriate, after reviewing the above, to have
whole-organ evaluation as a desirable goal to understand
more fully the pathogenesis of OA. There are a number
of semi-quantitative whole-organ scoring systems currently
under development18,70,71 and these will require further
data on their performance before interpretation of their
application to clinical cohorts. Automated whole-organ
assessment is achievable with recent MRI advances. Tech-
nology has been described that separates individual tissues
using multispectral image analysis and information from dif-
ferent sequences that are co-registered, fused72 and then
segmented using a hierarchical statistical region growing al-
gorithm based on local mean and variance73. Such algo-
rithms have been evaluated for their ability to distinguish
soft tissues and bone in animals and humans73,74. Further
data from human OA studies are awaited.

Conclusion

The MRI evaluation of non-cartilage components of the
OA joint is just starting to impact on our understanding of
the OA process and importantly its relationship to both
pain and structural progression. Work on the synovium
can build on previous work in inflammatory arthritides and
the utility of other dynamic perfusion parameters that have
been used in cancer studies has not yet been tested.
Semi-automated quantification of key features such as
BME seems likely. Whole-organ evaluation is now possible,
currently with semi-quantitative scoring systems. However,
much more work is required on these imaging biomarkers
to establish their validity, reliability, responsiveness and fea-
sibility. This is a hugely exciting and rapidly moving field that
must lead to improved patient therapies.
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