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Abstract
Diop, S., Differential-algebraic decision methods and some applications to system theory, Theoret-
ical Computer Science 98 (1992) 137-161.

This paper provides a general view of differential-algebraic decision methods and their applications
to system theory. It includes the basic properties of differential polynomials, reduction procedures
and culminates in the concept of characteristic set and its computation. Such topics are well known
from the works by Ritt (1950). A characteristic set of a differential ideal is a finite subset from which
many properties of the differential ideal are often readily obtainable merely by inspecting its
elements. This is the main point of decision methods in differential algebra. We show through some
theorems that basic tests in system theory are thus performable by means of a characteristic set of the
differential ideal defining a system. Such tests are, say, invertibility, observability, universal external
trajectories computation, etc. As far as computation of characteristic sets is constructive, these tests
are now available for algebraic systems. Computation of characteristic sets is actually constructive in
principle, but a general algorithm which is fit for use is wanting. Interesting partial results are
proposed. Reduce programs of the algorithms described in this paper are written.

0. Introduction

The aim of this report is to make available to system theory community differential-
algebraic decision methods which should be of some interest. The main ideas of
decision methods are very old in mathematics; they are often named after Kronecker,
Hilbert, Hermann, Tarski, etc. When founding differential algebra, Ritt [12] intro-
duced many of them, providing this new discipline with these powerful tools. The
pioneering work by Ritt is now considered standard, thanks to Seidenberg [14],
Rosenfeld [13], Kolchin [10], and Sit [15, 16]. This paper hardly contains some
novelty in the field of differential-algebraic decision methods, except for its systematic
and elementary expository aspect, and some partial results. Our goal is rather to lay
down the main lines of applications of these techniques to system theory problems.
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We shall report many things from the book by Kolchin [11], merely because we
believe that it will be of some interest for system theorists to have a self-contained
expository text which is general enough to embrace the main system theory problems
and which excludes the generalities in Kolchin’s work which are unnecessary for
standard applications. This part includes differential polynomial algebras, character-
istic sets, differential polynomial dimensions, and some basic decision problems. This
text is incomplete in the sense that a general procedure for construction of character-
istic sets is not laid down in detail, whereas almost all our results assume the
availability of such a construction. However, we may console ourselves with the idea
that this construction is possible in principle; what is really lacking is merely a fit-
for-use algorithm, which certainly will be derived in further studies. Nevertheless, we
give an interesting particular case where easy computations lead to characteristic sets
of differential ideals.

The last section aims to show some applications of the previous results to system
theory problems. The general problem of computing invariants such as dimension,
transcendence degrees, etc. is readily solved as soon as we may compute a character-
istic set. The problem of realization of ordinary systems (i.e., those defined by algebraic
ordinary differential equations) is considered, too. Observability test as well as
computation of universal external trajectories are shown to be readily performable on
the basis of characteristic sets. Invertibility test is also discussed.

Recall that differential algebra has been introduced in system theory since 1985 by
Fliess [6].

Throughout this paper, the word ring will stand for commutative ring with unit
element, the word field for commutative field, and the word algebra for associative and
commutative algebra with unit element, we assume the characteristic of rings, fields, and
algebras to be zero, i.e., the latter contain the field Q of rational numbers as a subfield.

1. Differential polynomial algebras

Let R be a differential ring with set of derivations 4. Let d be the cardinal number of
A. Let © denote the free commutative monoid (denoted multiplicatively) generated by
the elements of 4, with unit element 1. The elements of @ are called the derivative
operators of R. For every derivative operator 6, there exists one, and only one, é-tuple
(e(0))sc4 Of natural integers such that 0=[]sc, *?; @ is thus isomorphic to the
additive monoid N°. The integer ¥ ;. 4 () is denoted by «(6), and called the order of 6.
A proper derivative operator is one with ¢(6)= 1. When 6 =0, @ consists solely of 1,
and there is no proper derivative operator.

Recall that the polynomial R-algebra in the family of indeterminates (7}),, is
denoted by R[(T)),.(]. Its monomials are the following objects:

Tuzn TH#,

iel
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where p=(y,);,;¢N®'. The elements of R[(T)),] are the ( finite) linear combinations
of monomials in (7)),.; with coefficients in R:
P= Y a,T*
ueND
where (a#)ﬂeNa;eR(Nm).
The polynomial R-algebra in the family of indeterminates indexed by the set of 0T;
(iel, 0eO) is denoted by R[(0T;),.; y.o]- Its monomials are

= ] ©Tye

(i,elx @

where (vi.0); ge1x 0 = vEN!* ). Tts elements are

Y a,T,

where (a,),e RN ) R [(OT)); gye1x 0] is made into a differential R-algebra by assum-
ing, for any de4, that

oT™)= Z vi,gTV'~(807}),
(i, el x &
where, if v=(vi0); gerx o> then V=i o) gic1x 0> with v} g =v;. 4 for (i’, 6")#(i, 0)
and v; g=max(v; — 1,0) (note that v’ should be indexed by (i, 8) since it depends on
this object), and

6<Z avTV>=Z a,)T"+Y a,0(T).

The differential R-algebra thus defined is denoted by R{(7),}, and called the
differential polynomial R-algebra in the differential indeterminates (T)),;. If I is a finite
set with cardinality y, then R{(T)),.;} is denoted by R{T}, T3, ..., T,}, or by R{T} if
I consists of one single element. We note that if § =0, i.e., if the set of derivations of R is
empty, then R{(j:)zel} zR[(YE)iel]'

The integer ¢(7T") defined as

2(6)
(i, elx @
v'_'s;&()

is called the order of the differential monomial

=[] (6T
i,0)elx @

! We agree that if E is a commutative monoid with e as unit element, and if I is an arbitrary set, then ED
denotes the set of families of elements of E indexed by I whose members are all equal to e but are finite in
number. When no precision is given on the structure of the monoid E, the obvious one is assumed to be
attached to E.
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The order of a differential polynomial P is the maximum «(P) of the orders of its
monomials which have nonzero coefficients.

R{(T),.} is a differential integral domain if and only if R is such.

R{(T),.} is easily seen as the free differential R-algebra generated by the set
consisting of the 7; (icl). Hence, any map f of the set T; (iel) into a differential
R-algebra A extends, in a unique way, to a differential R-algebra morphism f of
R{(T),.;} into A such that

f(ZavT”>=Z a, f(T),

where, for v =(vi‘0)(i‘0)El <O

f(ry= 1 @I
(i, elx O
In particular, if R and A are two 4-differential rings, and if f:R—A is a differential
ring morphism and (t,),; a family of elements of A, then there is one, and only one,
differential ring morphism f- :R{(T),.,;}—A such that the restriction to R of f co-
incides with f, and f(T))=t; (iel). The image through f of P is usually denoted by
P((t,);.1)> and called the value of P at (t;), ;. This allows one to indistinguishably write
P or P((T)),,). as these symbols denote the same object.

2. Characteristic sets

Calculations on a ring usually invoke a basic procedure known as the reduction
procedure. In order to provide differential polynomial algebras with such a procedure,
it is necessary to define the notion of a differential polynomial reduced with respect to
another one as is done for usual polynomials by means of their degrees. The concept of
ranking is the first step towards that goal. Given a differential ideal by means of one of
its sets of generators, does there exist some subset of that ideal the computations on
which will make easier the answers to questions on the ideal? A characteristic set of
a differential ideal aims to play that role. It is not a set of generators of the ideal but it
characterizes the ideal, at least when the ideal is prime. The concept of characteristic
set goes back to van der Waerden (who called it basic set) and was extensively studied
by Ritt [12]. We start by recalling some basic facts on orderings which may be useful.

2.1. On ordered sets

An order < on a set S is a relation on S such that
(i) x<x (xe8),

(i) x<yand y<z = x<z (x,y,2€8),

(iii) x<y and y<x = x=y (x, yeS).
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A relation with only properties (i) and (ii) is called a pre-order. A set equipped with
an order (pre-order) is said to be an ordered ( pre-ordered) set. The notation x <y will
stand for its usual meaning: x <y and x#y. An order < on a set S is said to be total
(or linear) if any couple of the elements of S can be compared (i.e., for all x, y in S either
x <y or y<x). By restriction, a subset of an ordered set is also ordered. The product
set S=[],;S; of a family (S,),., of ordered sets is equipped with a canonical order

called the product order on S and defined by

x)ier Sier f X<y GEL (x)icps (V)i €S):

The producti order on S is not necessarily total when the orders on the components are
all total, as shown by the case of N x N when N is equipped with its natural rder.
An element a of a pre-ordered set S is said to be maxzma! (minimal) if there is no

element in S which is strictly greater (less) than a. An element a of an ordered set S is
called the greatest (least) element of S if any element in S is less (greater) than or equal
to g; if such a greatest (least) element exists, it is clearly unique. In a totally ordered set
maximal and greatest are synonyms, and minimal and least are synonyms, too.

An order on a set is called a well-order if every nonempty subset contains a least
element. A set equipped with a well-order is said to be well-ordered. A well-order is
a total order; the converse is not compatible with the axiom of infinity which is usually
assumed in set theory. The product order on [],; S; is not a well-order when the S;’s
are well-orders, as is seen through the exampie of N2. When 1 is a well-ordered set, the

product set S= [],el S;: can be endowed with the order defined as follows.
For all (x) cS. let (x). . <y for the least

1 ay 1 ene that
1Ui au V”I’lél’\'ylhelcu’ 1L\ Ry El\\-}/l}lEI u, 10r (n€ 1€ast InaGex 1 sucn t

£ v
11ac ./\,7-)/',
x;<y; this order on S is called the lexicographic order on S. The product set
S equipped with the lexicographic order is called the lexicographic product set of
(S,);c1- The lexicographic product order is total as soon as the orders on the compon-

ents all are well-orders.

Lemma 2.1. In an ordered set S the following assertions,
(i) every decreasing sequence of elements of S is stationary,
(i) every nonempty subset of S has a minimal element,

are equivalent.

Acguimme that thara 1o o0 ;mnAanramnty githoant € AF Q whink l-. nnnnnnnnnn 1 ala —t
ADOUILLIV LiIal UIvIV 1D a 1vllv llyl_y SUUdLL o1 Ul 0 WILILLL Hlad 11V llllllllllal CICmciit.
Hence, for every x in S, the subset S, (x)

i1l
consisting of the elements y such that y<
nonempty. By the axiom of choice, there is a map f:S, -8, such that for every

en
x is
x in
S, f(x)isin S;(x). Let x, be freely chosen in S, . The sequence defined by x, .+, =f(x,)
is a strictly increasing sequence of elements of S. This shows that (i)=(ii). Now assume
(ii) and let (x,) be a decreasing sequence of elements of S. The subset of S consisting of
the elements x, (neN) is nonempty and, hence, has a minimal element x,,. It is clear
that x,=x,, for all n2n,. The implication (ii)=(i) is, thus, proved, and the stated
equivalence, too.
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Lemma 2.2. In an ordered set S the following assertion,

(ill) every sequence of elements of S has an increasing subsequence,
implies the above-mentioned equivalent ones ((i) and (i1)). Assertions (i), (ii) and (iii) are
equivalent if the order on S is total. An ordered set S is a well-ordered one if and only if
it is totally ordered, and if (1), (i1) and (iii} are equivalent properties of S.

The fact that (iii)=>(i) in any ordered set is clear since from (iii) it follows that there is
no sequence of elements of S which is strictly decreasing, and the latter condition is
equivalent to (i). Now let S be a totally ordered set, and (x,) a sequence of elements of
S. The subset of S consisting of the elements x, (neN) is nonempty and, hence, has
a least element x,,. Again, the subset of S consisting of the elements x, (n>ng) is
nonempty and, hence, has a least element x,, with x,, <x,,. Since this construction
leads to a subsequence (x,,) such that

i<j = x,<x, (ijeN),
(ii)=>(iii). The last statement of the lemma is clear.

Lemma 2.3. A finite product S=[]1<i<m Si of well-ordered sets, when equipped with
the product order, has the above properties (i), (i1} and (i1i) (which then are equivalent) but
is, in general, not a totally ordered set and a fortiori a well-ordered set.

The first part of the lemma is straightforward. The second one is clear since (1, 2)
and (2, 1) are not comparable with respect to the product order; the product set N x N
is not totally ordered.

The finite lexicographic product set of (8,),., is well-ordered as soon as all the S; (i€l)
are such.

2.2. Pre-orders on R{T},...,T,}

Let R be a nonzero A-differential ring, 04, ..., 05 the elements of 4, and © the set of
derivative operators of R. Let R{ T, ..., T, } be a differential polynomial R-algebra in
the differential indeterminates 7, ..., 7,.

A ranking of the differential indeterminates T, ..., T, is a total order on the set of
derivatives of indeterminates @7, consisting of 67; (€@, ie{l, ..., u}), which satisfies

(1) u<bu (ue®T, 0cB),

(i) usv = u<bv (u,ve®@T, 0e6).

We note that if 6=0, then a ranking of T3, ..., T, is merely a total order of the set

consisting of 73,..., T,,.
Note that there is a bijective correspondence between ©T and N* x N° induced in
an obvious way by the bijection 0"'+--8"sr>(ry, ...,rs) of ©® onto N°, where N¥* stands

for the set of the u first nonzero elements of N. By means of this correspondence, the
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rankings of 71, ..., T, are bijectively in correspondence with the total orders on the set
N* x N? which satisfy the following conditions corresponding to (i) and (ii) above:
(') Gy rs) <O riter, ., rstes) (7., rs)EN¥ XN, (eq, ..., e5)eN?);
(1) (G Py ees ) S e bs) = (Lritey, . rst+es) (i, 11 +eq,...,r5+es)
(71 ey e (57 o T)ENE XN, (4, ..., e5)eN?).

Lemma 2.4 (Kolchin [11]). The product order is clearly not a well-order on N¥ x N?,
but it verifies the following fundamental property. Every sequence of elements of
N* x N? possesses an increasing subsequence whose elements all have the same projec-
tion on N¥.

Any sequence of elements of N* x N? has an increasing subsequence as, by Lemma
2.3, this is a property of any finite product of well-ordered sets equipped with the
product order. Now the last components of the elements of such an increasing
sequence must be the same beyond some range. It then suffices to take the subse-
quence beginning at this range and having the same elements as the original sequence.
This proves the lemma.

The lexicographic order on N* x N with respect to (Y1« j<s FjsisF1s....7s) (i.€., the
order on N* x N? induced by the lexicographic order on N x N}¥ x N’ via the injective

map (i, 7y, ..., 7s)—> (1< j<s FjsisF1s--os7s) Of N¥x N? into N x N¥ x N?) clearly veri-
fies the above properties (i’) and (ii’) and, hence, corresponds to a ranking of
Ty,...,T,.

A ranking of Ty, ..., T, is a well-order of the set @T of derivatives of the differential
indeterminates. This results from the following basic lemma.

Lemma 2.5 (Kolchin [11]). With respect to any total order on N¥ x N° which verifies
the above property (i), N* x N? is well-ordered.

By Lemma 2.2, a total order on N* x N’ is a well-order if every sequence in N} x N°
has an increasing sequence. Since, by Lemma 2.4, any sequence of elements of N* x N?
has a subsequence whose elements all have the same last component and which is
increasing with respect to the product order, it wiil suffice to show that such an
increasing sequence is also increasing with respect to any order < on N* x N, which
verifies the property (i'). Let (i,ry,...,rs),(i,r1,...,r5)eN¥xN° be such that
(i,r1,...,1s) is less than or equal to (i,r, ..., rs) with respect to the product order, and
let e, =¢)—ry, ..., es=r5—rs. We have, by property (i), (i,ry,...,r5)<(i, ri +e,=r1,
..., rs+es;=rj), which proves the stated property.

A ranking is said to be orderly if 6 =1, and if 0T; <6'T; whenever «(0) < «(8"). The
lexicographic ranking with respect to (Y1 < j<s 7j,i: 71, ..., ¥5) is an orderly ranking of
T,,....T,.

Let PeR{T},...,T,}\R, and let a ranking of T}, ..., T, be given.

The leader of P is defined to be the greatest (with respect to the given ranking)
derivative 87; which appears in P, and is denoted by up.
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If d=4d,.( P) (the degree of P as a polynomial in up), then P can be put, in a unique
wav into the form
way, into the form
d
p_\" 1.,
=), iup,
i=0

; ¢ in R{Ty,....,T,} and are free of up, 1,#0 and every

e 0T, present in I; is lower than up. The initial of PeR{T,,..., T,}\R i
defined to be its diffe lynomial coefficient I;in th previous mpo
and is denoted b Ip. The separant of PeR{Ty,...,T,}\R is the differential poly-
nomial Y4_, il,us ' (=6P/dup), and is denoted by Sp It is clear in our context of
characteristic zero that the separant of P¢R is never the zero polynomial. The
previous objects, leader, initial and separant are, of course, relative to the particular
ranking used.

The pre-orders that will be considered on R{7},...,T,} are those which extend the
total orders that are defined by rankings of 7;,...,7, in the following way. Let
a ranking of T7,,...,7, be given. With any differential polynomial P of
R{T,,....T,}\R is associated a coupie w(P)=(up,d;,(P}) consisting of its leader and

its degree in its leader. We agree that w(P) for a P in R is (0, 0) and that 0 is less than
anv alament of Q7T T at afeonnlac iy A fu=0nr ucDT and J=RJY 1 1
A MO 2 al }

differential nolvnomial coefficient I, in the nrevious decomposition
iierential deco sition,

’t

s lexicoerashi-
ny element of @T. The set of couples (u,d), (u=00 1d deN)is lexicographi-
cally ordered in the sense that (u,d)<(u',d") if u<u’ or u=u' and d <d’'. The differen-
tial polynomials are ordered according to their associated couples, i.e, we write P<Q,
and say that P is of lower rank than or of the same rank as Q if w(P)<w(Q). When
w(P)=w(Q), we say that P and Q are of the same rank. The pre-order on
R{T,,...,T,} thus defined is, of course, not an order.

Given a differential polynomial P of R{T}, ..., T,)\R, we may write w(Ip)<w(P)

and w(Sp)<w(P).

Lemma 2.6 (Ritt [12]). Any nonempty subset 2 of R{T1, ..., T,} has an element which
is of lower rank than or of the same rank as any element of X.

Such an element is in general not unique; we shall nevertheless call it a least element
of X.

This crucial lemma follows immediately from the fact that a ranking defines
a well-order on the set @T.

2.3. Autoreduced sets. Reduction procedure

Let R be a nonzero A-differential ring and R{T3, ..., 7, } a differential polynomial
algebra over R, with a given ranking of 7y,..., T,.

A differential polynomial FeR{T;,...,T,} is said to be partially reduced with
respect to a differential polynomial PeR{Ty,...,T,}\R if F is free of every proper
derivative of up. We note that if =0, then every FeR{T}, ..., T, } is partially reduced



Differential-algebraic decision methods 145

with respect to any PeR{T, ..., T,}\R. F is said to be reduced with respect to P if F is
partially reduced with respect to P and either F is free of up or d,.(F) <dg.(P).

F is said to be partially reduced (reduced) with respect to a given subset X of
R{T},...,T,}\Rif F is partially reduced (reduced) with respect to each element of Z.

A subset X of R{T,...,T,} \R is said to be autoreduced if each element of X is
reduced with respect to all the others.

Exampiles of autoreduced sets are given by sets of single differential polynomials of
R{T,,...,T,}\R. The empty set is an autoreduced set, too.

In an autoreduced set any two elements must have distinct leaders.

Lemma 2.7 (Ritt [12]). An autoreduced set is necessarily finite, and if <1, then its
cardinal number cannot exceed p.

If there is an infinite autoreduced set .o/, then the set u , of the leaders of the
elements of o7 is infinite since the leaders of two elements of &/ must be distinct. It
follows that, with respect to the order on @T induced by the product order on
N* x N?, we may find in u_,, by Lemma 2.4, an increasing sequence of elements which
are derivatives of a unique 7;. All the elements of this sequence are proper derivatives
of the first one; this is contradictory. The lemma is, thus, proved.

If .o/ is an autoreduced set, we denote [],_ ., I4S,by H_,and [],_., 14 by I,.

Euclidean remainder. Let R be a ring and R[ 7] the polynomial R-algebra in the
solely indeterminate T'; let P,QeR[T], @ #0. We proceed to define what we call the
Euclidean remainder P* of P with respect to Q, and a corresponding natural integer 1,
which is merely a generalization of the notion of remainder when R is a field. The
motivation of this definition will be clear in the sequel. Let I, and dg denote the initial
and the degree (when R#0) of a polynomial ReR[ T], respectively.

If P=0or P#0 and dp <dy, then we let 1,=0 and P, = P; otherwise, we let io=1,
do=dp—dgy, and Po=I1yP—I1,T%Q. This is the first step of an induction which leads
to P* and 1.

Let ieN, and assume d;,1; and P; to be defined. If P;=0 or P;#0 and dp,<dyp,
then we let 1;,, =1; and P, =P;; otherwise, we let 1, ,=1,+1, d;s, =dp,—dy, and
Py =IgPi—Ip,T%*'Q. We have d,, , <d,.

Since the sequence (d;) of natural integers is strictly decreasing, the above procedure
must stop, i.., there is a least i such that either P,=0 or P,#0 and dp,<dy. By
definition, we call P*=P; the Euclidean remainder of P with respect to Q. It is
straightforward to check that, assuming 1=1;, we have

I1oP=P" (mod(Q)), with either P°=0 or P*#0 and dp <dy.
Remark 2.8. The computation of P* and 1 involves only the operations (addition and

multiplication) of the ring R. If factorization is constructively performable in R[ T],
then we may slightly improve the above algorithm if I, is seen as a factor of Ip,
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(Ip=1p,a), in which case we rather let 1, be ;; and P,

ral domain then
iar G ail 1iv

we mav aleo nerfarm the ¢l
om 1, then we 3t

lnfp
1C Hlay aisO poliCIiinl uic ©

iteg
rithm over the quotient field of R, and then return to polynomials over R by clearing
the denominator of the quotient in an obvious way.

Let R{T;,...,T,} be a differential polynomial algebra with a given ranking of
Ti,...,T,, and &/ an autoreduced set. Let the elements A4,,A4,,...,4, of &/ be
increasingly numbered, and let u;,1;,S; and d; be the leader, initial, separant and

degree of A; (1<j<v), respectively.

Partial remainder. We proceed to define the partial remainder F' of any
FeR{T,..., T,} with respect to o and the corresponding natural integers o; (1 < j<v).
If F is partially reduced with respect to 7 (which is certainly the case if 6 =0), then

wa lat  — EF and N Ntharurica S>> 1 and the cat ~f darivativag A7
We Il fg=r anda uJ o=V \x \J\;; UICIWISE, ¢ = 1, and i s8¢ O1 arivalives vi,

which occur in F and which are proper derivatives of a leader of at least one Ae.<«/ is
nonempty and finite. Let v, be its greatest element. The set of elements A of .o/
such that v, is a proper derivative of their leaders also has a greatest element A;,.
Let 6, be the proper derivative operator such that vg=~0,u;. Regarding F and
0y A, as polynomials in vy, we let Fy, be the Euclidean remainder of F with respect to
0,A4;, and o;, , the corresponding integer, and ;=0 for all j# j,. This is the first
step of an induction which leads to the determination of F' and of the integers
g; (1< j<).

Let ieN, and assume o;; (1< j<vV), j,v;, and F; to be defined. If F; is partially
reduced with respect to .«/, then we let g; ;. ; = o;, e <j<v) and F;,,=F;. Otherwise

amd tha cat Af dnmivntivas OT which ~Anaiie 10 EF and whinh aen e A~
L Ul

45/ 1 anda uic s¢i 01 acrivatives
of a leader of at least one 4€.%/ is onempty and finite. Let v;, | be its greatest element.
We have ;. ; <v;. The set of elements 4 of .o/ such that v, is 2 proper derivative of
their leaders also has a greatest element A, .. Let 8;,, be the proper derivative
operator such that v,y ,=60;,,u;,,. Regarding F; and 6,.,4;,., as polynomials
in v;4;, we let F;,, be the Euclidean remainder of F; with respect to 0,.,4;,,,
and ¢;,,, :+, the corresponding integer, and a;, ;41 =0j, i, ..., Gj.i4+1=0j,,:, and
0;i+1=0forall j#j.,,and j#j, ..., and j# jo.

Since the sequence (v;) of derivatives of indeterminates is strictly decreasing, the
above procedure must stop, i.c., there is a least i such that F; 1s partially reduced with
respect to <. By definition, we call F ' =F; the partial remainder of F with respect to

- ie U | N
o It is straightforward to check that, assuming ¢;,=0;; (1< j<v), nave:

(i) F T s partially reduced with respect to .o/;

(ii) ]_l‘: Q"J F=Ft (mod [/ 1);
11 L a7
(iii) FT<F
More prec1sely, [Tj=1 S§F— F' is a linear combination over R{Ty,...,T,} of the

derivatives 64 (Oe@, Aesf, and Ou,<up).

We note that the determination of the partial remainder of F with respect to ./ and
of the corresponding natural integers o4 (A€.=?) involves only the operations (addi-
tion, multiplication and derivation) on R.
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Simultaneous partial remainders. Let F{, F,, ..., F, be elements of R{T},..., T,}. Let
ral 7 7 Anmta tha ragmnntiva martial .-amn'“.-law- ~f E with ragmant
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to «/, and let o;, (1<j<v, 1<I<q) denote the corresponding integers. Let

s;=max(ag; ;,...,0;,) (1< j<v) and [Tj=1 SY7°G; (1<I<q). The following
properties,

(i) F{,F},...,F! all are partially reduced with respect to <7,

(i) [[}=1 SYFi=F] (mod[«/]) (1<I<q),
are satisfied; F{,F},...,F} are called the simultaneous partial remainders of F,
F,, ..., F, with respect to /.

Remainder. We proceed to define the remainder F* of any FeR{T,,...,T,} with
respect to .o/, and the correspondmg natural integers 1;,0; (1< j<v).
Let FT be the partial re

corresponding integers.
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If Ft is reduced with respect to &, then w
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Otherwise, let j, be the greatest integer such that F ' is not reduced with respect to Aj,.
Let F, be the Euclidean remainder of F ' with respect to A4;, (when F' and A4;, are
considered as polynomials in u;,) and 1;, o the corresponding integer, and ;o =0 for
all j# jo. This is the first step of an induction which leads to the determination of F*
and of the integers 1; (1< j<v).

Let ieN, and assume z;; (1< j<v), j;, and F; to be defined. If F; is reduced with
respect to o7, then we let1; ;. =1;; (1< j<v)and F;, ; = F;. Otherwisg, let j;,, be the
greatest integer such that F; is not reduced with respect to 4;,, ,. We note that ji,; < j.

Let F;,, be the Euclidean remainder of F; wiih respeci io A;,,, (when F; and A4;,,,

are considered as polynomials in u;,, ) and 1;,,, ;+, the corresponding integer, and

.. —_7. . —_ and 1 —0 for all £ 3. and i=£ i and £ i.
Liiviv1 =L iseeendjoiv1 =g, i» @G 1 ;1 =V 10T A1 JF Ji4 1, NG J7F i, ..., ANA J7 Jo.

Since .« is finite, the above procedure must stop, i.e., there is a least i such that F;is
reduced with respect to .«/. By definition, we call F*=F; the remainder of F with
respect to /. It is straightforward to check that, assuming 1;=1; ; (1< j<v), we have:

(i) F* is reduced with respect to <7

(i) [1}=1 I¥SYF=F* (mod [/]);

(i) F*<F.

More precisely, []}=; I% S¥F—F* is a linear combination over R{T, ..., T,} of the
derivatives 84 (€@, Ae.o/, and Ou,<ug).

i+

Simultaneous remainders. Let F
rt Fthet

L35 eens kg UL UL

F,,...,F, be elements of R{T},..., T,
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with s; (1< j<v) the corresponding integers. If F{,F1,... F'r all are reduced with
respect to .o, then we let F{=F] (1<I<q)and i;=0(1< 1<v\ Otherwise, let 4;, be

1 ramainde
1 ICHAinGe

the highest element of .« with respect to which some F | is not reduced. We let P, be
the Euclidean remainders of F| by 4, (considering F | and A,, as polynomials in u;,)
and i;,,0,; (1<I<q) the corresponding integers. Assummg ij0o=0 for all j# jo,
ijo.0=max(ijo.0.15j0.0.25+s1jo.0.4)» and F} =lootP (1<1<q), we have:
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F9{,FY,...,F? are partially reduced with respect to .7, and are reduced with respect to

A A A and verify tha IhoOSyL":I.T'OI Fre ZN(t<l<cal
Ajos Ajo+ 19 005 Ay, dlil Veilly tha ll}‘l 11 FaN] \uu L& J) Ut xx§ ).

Let ieN, and assume i; ; (1< j<V), ji, ‘and F (1<I<q) to be defined. If F,

, Fi are reduced with respect to .o, then we let Fi*'=Fi(1<l<qg)and Liv1=1;
(1 ]<v) Otherwise, let j;., be the greatest integer such that one of the F} is not
reduced with respect to 4;,,,. We have j;,; <j,. Welet P, be the Euclidean remainders
of the F; by Aj;,, (considering F; and A , as polynomials in . ,)
and i;,,, ;. (1<I<q) the corresponding integers, and i; ;+, ;=0 for all j# j;.,. As-
suming i;;4;=0 for all j#jvy, and j#j, ..., and j#jo, and i}, ;41 =050 ..,
l_],,l+1_lj| i»oand i l+1_max(l_].+1,l+1*1" lj.+1,z+12""’lji+1,i+1.q)a and Fi*'=
1';‘_-;'1'“ “iieivii poowe haver FitY, FyTR L 1~"‘ are partially reduced with

respect to </, and are reduced with respect to 4;,,,, Aj,,,+1, ..., A,, and verify that

rz,.uos,l:*: Eitl (e o AT 7NNl o )
11,_1 D=0 noa L& Jjluusikqg)
Slnce -4 1s finite, the above procedure must stop, i.e., there is a least i such that
p p
F},F'z,...,F‘ all are reduced with respect to /. By definition, we call F¥=F{,
F¥=Fi, ..., F;“=F,‘, the simultaneous remainders of Fy, F,, ..., F, with respect to JJ.

Assuming i;=i;,; (1< j<v), we have:
(i) FX, F 3‘., ..., F¥ all are reduced with respect to .«/;
(ii) [[}=:I/SYF=FF (mod[«/]) (1<I<q).

If R is a (nondifferential) ring, a an ideal of R, and if aeR, then a:a*® denotes the set
of xeR such that a"xea for some neN; a:a* is an ideal containing a. a:a® is perfect if
a is such. If a is prime and a¢a, then a:a®=a.

Let R be a differential ring.

If a is a differential ideal, then a:a”® is a differential ideal, see [11, Section 1.2,

Corollary of Lemma 1] for a proof.

Let k be a differential field and k{7, ..., 7,} a differential polynomial algebra
provided with a ranking of 7;,...,T,.

For a given autoreduced set o/ of k{71, ..., T, } and a given derivative of indetermi-
nate v, we denote by <, the set of differential polynomials 84 (0@, Ae, and Ou, <v).

An autoreduced set </ is said to be coherent if, whenever A,A'es/, and u,
and u, have a least common derivative v=0,u,=04u,, we have S,;0,A4
— 8,0, Ae(,). HY.

If </ is a coherent autoreduced set, then for all A, A’/ if u, and u, have a common
derivative w=0u,=8u,., then S, 64—5,6 A'e(,): HS; for a proof see [ 11, Section
IV.9].

3<1 then every
Cver

131, uavi

element is coherent, too.

Lemma 2.9. An autoreduced set </ is coherent if and only if any element of [ ]:HZ
which is partially reduced with respect to of is in (&/):H .
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If of is a coherent autoreduced set, then [ o/ ]: H 3y is prime (perfect) if (&/):HZ is
prime (perfect).

The first part of this lemma is due to Rosenfeld [13]. See [11, Section II1.8, Lemmas
5 and 6] for a proof. For 4 =0 this lemma is not really informative. Its main interest, as
indicated by its authors, is in bridging the gap between differential polynomial
algebras and the underlying polynomial algebras.

An easy consequence is the following lemma.

Lemma 2.10. If </ is a coherent autoreduced set, then any element of {/}:HY
which is partially reduced with respect to o/ is in { o/ >:H%.

If of is a coherent autoreduced set, then { o/ }: HY is prime if and only if (/> H%
is so.

2.5. Characteristic sets

Let R{Ty,...,T,} be a differential polynomial algebra with a given ranking of
Ty,...,T,.

Let &/ and &/’ be two autoreduced sets with elements A, A,, ..., 4, and A}, 4,
..., Ay, respectively, numbered in increasing order. We define a pre-order on the set of
autoreduced sets of R{7},..., T, } by assuming that .o/ <.o/’ (we then say that ./ is of
lower rank than .«/’, or that .o/ is lower than /") if one of the following two conditions
is satisfied:

(i) There is some natural integer j such that 1< j<min(v,v), and A4, and
A; (1<i< j) are of the same rank and A4;< A4j;

(i) v>V', and A4; and A; (1<i<v’) are of the same rank.

We say that o/ and ./’ are of the same rank if v=1v and if 4; and 4, (1 <i<v)are of the
same rank. If o/ <./’ or &/ and /' are of the same rank, then we write .o <./,

The relation < thus defined clearly is a pre-order. Any two autoreduced sets may be
compared, i.e., one of the relations &/ <.&’, &/’ <./ holds. Moreover, we have the
following lemma.

Lemma 2.11 (Ritt [12]). A nonempty set & of autoreduced sets contains a least
element, i.e., an element o/ such that of <o’ (A'e8).

The elements of an autoreduced set are supposed to be numbered in increasing
order. Let &, =4&, and define &, (ieN, i >0) to be the set of elements .7 of & _ ; such that
o/ is with cardinal number greater than or equal to i, and such that 4; is a least
element of the set of the ith differential polynomials of the elements of &_,. This
decreasing sequence of subsets of & must terminate by &=¢ for some i since,
otherwise, the leaders v; of the ith differential polynomials of the elements of & would
be a sequence of derivatives of indeterminates which are not proper derivatives of one
of them; this would contradict Lemma 2.4. Since &, =& is nonempty, there exists an
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ieN such that &, =0 and any element of &; is a least element of &. This proves the
lemma. This proof is due to Kolchin [11].

Remark 2.12. If a differential polynomial PeR{Ty, ..., T, }\R is reduced with respect
to an autoreduced set o7, then P and the elements 4 of &/ which are reduced with
respect to P form an autoreduced set which is lower than . It results from this that
an autoreduced set .« of a family 2 of differential polynomials (i.e., an autoreduced set
made up with elements of ) is a minimal element of the set of autoreduced sets of 2 if
and only if # does not contain any element of R{T, ..., T, } \R which is reduced with
respect to 7.

Let a be a differential ideal of R{Tl,...,T,‘} and o/ an autoreduced set with
elements in a.

If 6=1, and & is a least element of the set of autoreduced sets of a, then for any
Aesd,

SA¢G = IA¢0.

Indeed, if A is in o/, and if I,€a, then A—I,u%eaq, where d=d, (A) is such that
d>1. Since A —1 ,u’ is reduced with respect to &, it results from the minimality of
o that A—I u%eR. Now 0=0(4—1u%)/0uy=S,—dIl ,uy eq; hence, S ea. This
proves the assertion.

It follows that if a is a proper differential ideal of R{T},...,T,}, and if & is
a minimal autoreduced set of a, then the separant of an element of ./ cannot be in a if
it is not a nonzero noninvertible element of R. (This assertion depends on the
assumption that the characteristic is zero.) Consequently, if R is a differential field,
then the separant of an element of a minimal autoreduced set of a proper differential
ideal is not is this ideal.

A characteristic set of a differential ideal a of R{Ti,...,T,} is defined to be
a minimal element of the set of autoreduced sets o/ of a such that I,¢a and S,éa
(Ae.of).

It follows from this definition and what precedes it that an autoreduced set ./ of
a differential ideal a is a characteristic set of a if and only if a\R contains no differential
polynomial P reduced with respect to s/ and such that I ¢a and S, ¢a.

When 6 > 1, the empty set is the characteristic set of a differential ideal a if and only
if the separant of any element of a\R is in a. For 6=0 the empty set is the
characteristic set of an ideal a if and only if the initial of any element of a\R is in a.

The zero ideal and the unit ideal are with characteristic sets the empty set.
Conversely, if R is a differential field k, then any differential ideal a of k{T7, ..., T, } is
with characteristic set the empty set only if a is the zero or unit ideal.

Lemma 2.13 (Rosenfeld [13]). Let k be a differential field, k{T\, ..., T,} a differential
polynomial algebra with a given ranking of Ty, ..., T,, and let a be a differential ideal of
k{T,,...,T,}, with o/ an autoreduced subset of a.
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a is a prime differential ideal with characteristic set of if and only if a=[]:HZ,
o is coherent, and (o£): HY is prime and does not contain a nonzero element reduced
with respect to .

For a proof see [11, Section IV.9].
A characteristic set of a differential ideal of k{T,...,T,} is a coherent autoreduced
set.

Lemma 2.14 (Rosenfeld [13]). A coherent autoreduced set < is a characteristic set of
{/}:HG if and only if it is a characteristic set of {.o/):HZ.

A coherent autoreduced set o/ is a characteristic set of [ ./ : HY if and only if it is
a characteristic set of (/). HY.

An autoreduced set .« of k{Ty, ..., T, } is said to be orthonomic if its elements are of
degree 1 in their leaders.

This definition is somewhat more general than that in [12, Section VIIL10]. The
notion of orthonomic systems goes back to Riquier. We call a polynomial orthonomic
autoreduced set an orthonomic autoreduced set whose elements are with initials 1.

Lemma 2.15. If o/ is a coherent orthonomic autoreduced set of k{Ty,...,T,}, then
there is no nonzero element of [.&/]:1% that is reduced with respect to <, and
[/ ]:1% is prime with characteristic set /.

Let A, <A,<---<A, be the elements of .. Assume that there is a Pe[«/]:13%,
P #0, and that P is reduced with respect to /. By Lemma 2.9, Pe(«/):1%. We may
thus write

WwP=7Y PiA+P, (*)
i=1

for some neN, and P,=0. One of the Ps must be nonzero, and we may assume that
s is the least integer such that there exists an neN, and a P, is free of the leader of A;,
and P,#0. Writing every P; as a polynomial in u,_, then, by a degree argument (note
that I, P is free of u, ), we see that the same equation () may be written with s—1 in
place of s. This is contradictory and proves the first part of the lemma. Now, let P and
Q be two elements of k{7, ..., T, } with product in [«/]:I5. Let P* and Q* be the
respective remainders of P and Q with respect to /. The product P*Q* is in
[/ ]:1% and is reduced with respect to .«/; then, by the first part, P*Q* =0. Hence,
Por Qisin [/]:1%. This proves the primality of [«/]:15, and the lemma, too.
A version of this lemma, valid for differential R-algebras of arbitrary characteristic is
given in [11, Section IIL.8, Exercise 1].

2.5.1. The Ritt algorithm
We proceed to give more insight in the construction (which we name after Ritt) of
characteristic sets. For any finite family X of differential polynomials P, P,, ..., P, of
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k{T;,...,T,}, we first give a way to compute the minimal autoreduced set A(Z) of X. If
2 contains a nonzero element of the ground field or if all its elements are zero, then we
agree that A(2) is the empty set. Otherwise, we assume, as we may, that the P;’s are
numbered in increasing order, and we let A(X) consist of P,. For i=2 to s if P, is
reduced with respect to A(Z), then we remove from A(X) its elements which are not
reduced with respect to P;, and we add P; to A(2); it is easy to check that the new A(X)
is lower than the previous one (see Remark 2.12). If P, is not reduced with respect to
A(X), then we skip it. At the end (i=s) of this procedure we have at hand the minimal
autoreduced set A(Z) of X since the latter does no more contain any element which is
reduced with respect to A(Z) and which is not in k.

Now let 2, be X, and A(Z,) be the minimal autoreduced set of .

Assume 2, and A(2;) constructed. Let Z; be the union of the complement of A(Z;)
in X;, and the subset of [ 2] consisting of the differential polynomials S, 84 —S,8' A’
for all A,4" in A(Z;) having a least common derivative w of their leaders:
w=0u,=0u, . Let 2} be the set of remainders with respect to A(Z;) of the elements
of 2i. Let ;. =ZX;uX¥. Either Z¥ consists solely of the zero polynomial or else
A(Zi+1)<A(ZY).

Clearly, there exists an i such that 2¥ consists solely of the zero polynomial since, by
Lemma 2.11, there does not exist a strictly decreasing sequence of autoreduced sets in
k{T,,....,T,}. We denote A(X;) by C(Z).

It is clear that C(X) is a coherent autoreduced set, that [X]=[C(2)]: H%, and that
if C(2)=0, then ¢ is the characteristic set of [Z]={Z} (=0 or k{T, ..., T,}).

We know, by Lemma 2.13, that if (C(X)): H3 is prime and does not contain any
nonzero element reduced with respect to C(ZX), then [C(X)]:H% is prime,
[Z1=[C(2)]:HY, and C(X) is a characteristic set of [2] (={Z}). The following
lemma is thus an easy consequence of Lemma 2.15.

Lemma 2.16. If C(2) is orthonomic, then it is a characteristic set of [X], and [X] is
prime.

2.5.2. Systems of parametric indeterminates

Ritt [12] introduced the concept of parametric indeterminates, which we shall use
in the following. We recall its definition and basic properties. Let p be a nonzero prime
differential ideal of k{77, ..., T, }. A subset V of Ty,..., T, is called a system (or set) of
parametric indeterminates of p if p does not contain any element which involves
derivatives of the elements of ¥ without involving derivatives of the 7’s not in V, and
if, for each T; not in V, there is an element of p which involves only derivatives of
T; and some elements of V.

Let V be a system of parametric indeterminates of p, and let o/ be a characteristic
set of p such that V' is the subset of 7),...,7, whose elements are those without
derivatives involved as leaders of any element of .«/. We say that .« defines V. Each
7; not in V has a least derivative which is the leader of some element 4; of .o7; we say
that A; introduces T,.
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Recall that the differential dimension diff dim(p) of p is defined to be the differential
transcendence degree of k{T;,...,T,} /p=k{r,,...,1,} over k, where 1, is the residue
class of T; mod p. We have the following lemma.

Lemma 2.17. T, T,,, ..., T;,, form a system of parametric indeterminates of p if and
only if 1, ,Ti,, ..., Ty,, form a differential transcendence basis of k{ty,...,7,} over k. The
number of elements of any set of parametric indeterminates of p is, thus, equal to
diff dim(p). Any characteristic set of p defines a system of parametric indeterminates of
p. Conversely, if T;,, T; T, forma system V of parametric indeterminates of p, then
V is defined by any characteristic set of p with respect to any ranking such that the
derivatives of T;,, T,,, ..., T;,, all are lower than the T;s not in V.

PEEXER)

The proof is straightforward. See also Lemma 4.2.

3. Differential dimension polynomial

The concept of Hilbert polynomial is known in algebraic geometry as a measure of
the size of an algebraic variety. It has been discovered by Kolchin that differential-
algebraic geometry is provided with such a polynomial, where its role is actually more
crucial. Recall that the differential dimension of an irreducible system is the differen-
tial transcendence degree of the differential algebra associated with that system.
Kolchin [10, 11] showed that this measure of size of a system is not sufficiently fine.
The differential dimension polynomial is a better candidate, and is a right one [16];
see also [9]. A differential dimension polynomial is a polynomial in one indeterminate
with rational coefficients, carrying with it much information on the invariants of an
irreducible system.

3.1. Numerical polynomials

By a numerical polynomial we mean an element y of the polynomial algebra Q[ ¢] in
one indeterminate with coefficients in the field Q of rational numbers such that y(r)eN
for sufficiently large reN. The set of numerical polynomials is totally ordered accord-
ing to: y <y’ if x(r)<y (r) for sufficiently large reN. Denoting &(&—1)---(&E—i+ 1)/i!
by ( ‘f ), we have:  is a numerical polynomial if and only if y may be written in the form

fo0a;(*7') for some seN, and a; in the ring Z of rational integers. If
1=Yioa;(*7) and y'=Yi.obi(*]'), then x<y if and onmly if (a,...,
ag) <(by, ..., bg) lexicographically.

Given a finite subset E of N?, Kolchin [11] and then Sit [15, 16] showed that we
may effectively compute a numerical polynomial xg verifying the following:

(i) For every sufficiently large reN the number of elements (r, ...,rs) of N° which
are not greater than (with respect to the product order) or equal to any element of E and

which verify that ri+---+rs<r is equal to yg(r).
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(i) d°(yg)<9; equality occurs if and only if E is empty, in which case XE=(§$'5).
(i) yg=0 if and only if (0, ...,0)eE.

3.2. Differential dimension polynomial

Let K be a finite-type differential field extension of k, t=(1,,...,7,) a set of
generators of K over k, i.e., K=k{t,,...,7,), p the defining differential ideal of K over
k, i.e., p is the set of differential polynomials in k{7, ..., 7,} that vanish at t and is
such that K is the quotient field of k{7, ..., 7,,}/p, and «/ a characteristic set of p with
respect to some orderly ranking of T3, ..., T,,. For each i, 1 <i< y, let E; be the subset of
N? consisting of the elements (ri,...,rs) such that §"-..4% T} is the leader of some
element of .o/. The numerical polynomial Xk =Xg, + +Xg, verifies the following;

(i) For every sufficiently large reN the (nondifferential) transcendence degree over
k of k((Oti)scom. 1<i<u) is equal to y,,\ (r).

(i) d°(1) <. |

(iii) If we write x, =% 1-0 a; 1YY, then a; is equal to the differential transcendence
degree of k{ty,...,7,) over k.

X./x depends on the choice of 7, and, thus, is not an invariant of the differential field
extension K of k. Sit [15] showed that the set of numerical polynomials is actually
well-ordered relative to the previously defined order. Sit [16] takes the least element
of the set of numerical polynomials x,,, where T runs over the generators of the
finite-type differential field extension K of k; and then obtains a numerical polynomial,
kx> Which does not depend on particular generators of K over k. However, in general
Yxx = Xxx does not imply that K and K’ are isomorphic differential field k-extensions;
and we do not know how to compute yy .

4. Some basic decision problems

4.1. Prime component decomposition

The state of affairs of this problem is rather poor. The problem is solvable provided
that the same problem is solvable for polynomial algebras.

4.2. Membership problem

The membership problem is trivially solved if we can decompose any differential
ideal into prime components and if we can find a characteristic set of any prime
differential ideal.

Lemma 4.1 (Ritt [12]). Let k be a differential field, and k{T;, ..., T,} a differential
polynomial algebra provided with a ranking of Ty, ..., T,. If a is a prime differential ideal
of k{Ty, ..., T,} with characteristic set o/, then for any differential polynomial P, Pea if
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and only if the remainder of P with respect to &/ is 0. If a and b are two prime
differential ideals with characteristic sets of and &, respectively, then a=b if and only if
o Sb, Sy¢b, and S ;¢ a, where Sy (respectively, S ;) denotes the product of the separants
of the elements of o (respectively, #).

The proof of this result is straightforward.

4.2. Elimination theory

Elimination theory is one of the key tools in algebra. Its role in differential algebra
was stressed enough by Ritt [12] and by the outstanding paper by Seidenberg [14].
Application of this theory to system theory was first attempted in [1, 2]; see also [3]
for a recent related result. One of the basic questions dealing with elimination theory
consists in deriving the equations of the projection of a differential-algebraic set along
some of the coordinates. We know that this projection is not closed. The second
question addressed by elimination theory is the computation of the equations of the
closures of the above projections of differential-algebraic sets. This last question is not
addressed in [14]. The following lemma is a rather standard straightforward solution
based on the construction of characteristic sets.

Lemma 4.2. Let o be a differential ideal of k{T\,...,T,}. Let V be a subset
of Ty,...,T,, k{V} the differential polynomial algebra in the elements of V, and
let a ranking be fixed such that the derivatives of the elements of V all are lower
than the T;s not in V. If o is a characteristic set of p, then o "k{V} is one
for pnk{V}.

5. Applications to system theory

We provide some examples of applications of the above differential algebraic
decision methods. We could not be exhaustive. More applications should be expected
in further communications.

5.1. Computation of invariants

Let there be an irreducible system & defined by a set of algebraic differential
equations, Py(t,7,,...,7,)=0, Py(t1,72,...,7,)=0,..., Py(14, 13, ..., 7,)=0, with co-
efficients in a differential field k. The variables t,,1,,...,7, of & are usually par-
titioned into inputs, outputs, etc. Assume that such a partition is done and that the
variables are renamed according to our notations. The number of independent inputs
that we denote by m is an invariant of the system and is defined to be the differential
dimension or the differential transcendence degree of k(¥ >=k{1y,73,...,7,) over k.
m is independent of the partition of the variables, and may be readily obtained
from any characteristic set of the defining differential ideal I(Z)={P,,P,, ..., P}
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of & over k merely by inspecting this characteristic set. See Lemma 2.17 for more
details.

Moreover, we already reported (Section 3) that the differential dimension poly-
nomial is more informative than the simple differential dimension. See Section 3 for
more details. Further studies on this numerical polynomial should bring out more
insight into the structure of a system merely by inspecting this polynomial.

5.2. Realization

We refer to [7] for a differential-algebraic theory of realization. The main point of
this theory is the fact that realizations of a given system are not necessarily in the
classical form introduced in system theory by Kalman. Input derivatives as well as
implicit algebraic differential equations should be inciuded in the state equations. In

realization theorv mav he derived from ¢
réainzation ncor Hiay UL uviive

following theorem.

Theorem 5.1. Let & be an ordinary irreducible system given by its external behavior
k<{u,y>. Let U and Y be ranked such that any derivative of U is less than any derivative
of Y, and let </ be a characteristic set of the defining differential ideal of k{u,y . Let
the elements of o be A, <A <---<A,, with A; introducing Y;. A minimal realization

-~

X1 =X»,
Xy =X3,
xn;*l =X,”,

A (X, X1, Xy, ) =0,

xn1+1:xn1+29

xn1+n2—1=xn1+n2a

Al(xn1+n2$x17 --"xn1+n2):Oa

Xpgtdnp oy +1 = Xp 4 bn, +25

xn1+~--+np‘1 =xn|+---+n_,,a

Ap(xn1+-~-+np’x17 '-~’xn1+---+np)=0
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of & is obtained by assuming

~

X1=Y1,
X2=Y1,

— yim—1)
xnl_y(ll ’

xn1+---+np-1+1=yp’

Xny+obnp_1+2= Vps

— yinp—1)
xn1+---+nP_ypp .

We stress the well-known fact that such a realization procedure may be unsuitable
when one looks for state equations where input derivatives appear with lowest
possible orders. The problem of finding realizations with least derivatives of the input
has been characterized by Freedman and Willems [17] from a local point of view.
Further studies using techniques from differential algebra will follow this paper, giving
a characterization of systems which are globally realizable.

5.2.1. Irreducibility of state space systems

The irreducibility of systems described by

xi=pi(x’u), SiSn,
qi(x7 u)
x
S/
gj(xa u)

is often referred to in the literature. By means of characteristic-set techniques, we
provide the following justification of such an assumption. We first have to put the
problem in terms of our general setting. Assuming

P(U, Y, X)=qU,X)X{"—p(U,X) (1<i<n),
P (U, Y, X)=g/U,X)Y,—f(X) (1<i<p),

where & is, by definition, the locally closed subset consisting of the (u, y, x) which
annul all the P;’s without annulling any of the g¢;'s and the g;’s. Let a ranking of U, Y, X
be fixed such that any derivative of U,, U,, ..., U, is lower than X, X, ..., X,, which,
in turn, are lower than Y, Y,,..., Y,. Then the set </ consisting of P, v Pusp is
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readily a coherent orthonomic autoreduced set. By Lemma 2.15, p=[/]:1% is
a prime differential ideal with characteristic set .o/ (where Iy =[T1<i<a @i [11<j<p 9>
The points (4, y, x) of Z are easily seen as annulling each Pep. Conversely, if (i, y, x)
annuls each Pep without annulling I,, then (i, y, x) is a point of Z. This shows that
Z is the intersection of the differential closed set defined by p, and the differential open
set defined by I, #0. The adherence of Z is clearly the differential closed set defined by
p. Hence, & is irreducible. We have just proved the following lemma (compare with
Moog et al. [18]).

Lemma 5.2. & is irreducible if the p/'s, q/'s, fis and g;'s are differential polynomials of
order 0 in the x;’s. (Notice that input derivatives may be present in the expressions of the

pi’sa qi’s’ f;"S and gi’s')

5.3. Observability theory

We refer to [4, 5] for an algebraic theory of observability. We recall that the
observability of an irreducible system Z (with k{Z >=k{u,y,z>, u=(us,us, ..., lUm),
y=(¥1,¥2,-.>¥p} 2=(21,22,...,2,)) means the algebraicity of z over k{u,y). We
denote the degree of z; over k{u, y > (which is defined to be the degree of the minimal
polynomial of z; over k<u, y > if z; is algebraic over k<u, y >, or 0 otherwise) by d,, ,(z;).
An observable variable is one with degree greater than or equal to 1. The degree of an
observable variable is sometimes called its degree of observability. The following
theorem is a new test of observability based on the construction of a characteristic set
of the defining differential ideal of  (compare with [8]).

Theorem 5.3. Let a ranking of k{U,Y,Z} be fixed such that any derivative of the
components of U and Y is lower than Z,,Z,,...,Z,. Let o/ be a characteristic set of
1(&). If X is observable (with respect to u and y), then each Z; is (effectively) introduced
in <7 by a differential polynomial of order zero and with degree <d, ,(z;)in Z;(1<i<n).
Conversely, if each Z; (1 <i<n) is introduced in o/ by a differential polynomial of order
zero and degree d; in Z;, then Z is observable, d, ,(z;)=>d;, and d, ,(z;) divides
d;-----dy-dy (hence, d, ,(z,)=d,).

Assume that & is observable. Let P; be the polynomial of k{U, Y }[Z,] obtained by
substituting U and Y for u and y, respectively, in the minimal polynomial of z; over
k<u,y> and by multiplying by the least common multiple of the denominators. By
multiplying P; by the product of some powers of the initials and separants of the
elements of &/ Nk{U, Y}, we may substitute the simultaneous remainders of the
coeflicients of P; for these coefficients, and then consider P; as reduced with respect to
o/ nk{U, Y}; having done this transformation of P;, we still have P; with degree
d; ,(z;) in Z; since the initial of P; could not have been reduced to zero by the fact that
it is not in I(Z)nk{U, Y}. Now, if Z; is not introduced in ./ by a differential
polynomial of order 0 and degree<d;, ,(z;), then the corresponding P; would be
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reduced with respect to o7, which would contradict the nonnullity of P;. Conversely,
assume that each Z; is introduced in &/ by a differential polynomial of order 0 and
degree d;. It is then clear that z, is algebraic over k<{u,y>, z, is algebraic over
k<{u,y>(zy), etc., and z, is algebraic over k{u, y > (zy, ..., 2,-1)- This implies that & is
observable. The rest of the proof is classical in the theory of algebraic extensions. We
note that, by the primality of I(Z'), and the fact that .»7 is a characteristic set of I(%),
the differential polynomials in &/ which introduce z,, ..., z, are irreducible over the
fields k{u, y >, k{u, ¥y (z(), ... k<u, y ) (24, ..., 2, - 1 ), respectively; hence, the degrees of
k<u,y>(zy), k<u,y>(z4,25),....k<u, ¥ >(2y,...,2,) over k{u,y) are given by d,,
dy-dy,....d, ----dy dy, respectively. This completes the proof.

Remark 5.4. Note that Theorem 5.3 carries with it the relativity of the concept of
observability, i.e., if we need to test the observability of any variables with respect to
any others, then the theorem contains an indication to a way to perform that test by
ranking these variables conveniently.

5.3.1. Observability and minimal realization

It could have been thought that the minimality of a realization is equivalent to the
controllability and observability of that realization. This is not so. The point is that
the minimality of a realization of an ordinary system is equivalent to its observability
only. Let us proceed to prove this.

We assume that the components of the input are independent, i.e., they are
differential indeterminates.

Recall (see [6]) that the order (%) of an irreducibile ordinary system Z is
defined to be the (nondifferential) transcendence degree tr dy <u>k<u, y» of k{u, y>
over k<{u).

A realization

{')‘Ci =fl'(x’ “)’ lslgna
yi=hix,u), 1<j<p

of & is said to be minimal if the number of components n of x is equal to (%)
Let the above equations be a realization of 2. We have

n=trdy k< x)=trdy k<, y,x>=trdg,  k<{u,y, x> +o(%) (*)

The second and third equalities in (*) are clear. Let us prove the first one. With
respect to any ranking of k{U, Y, X } such that the derivatives of U and X all are
lower than the components of Y, and these derivatives are orderly ranked, the
equations of the above realization are readily a characteristic set of k{u, y,x). By
Lemma 4.2, the equations

X;=fi{x,u), 1<i<n
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form a characteristic set of k{u, x>. This proves that there is no nontrivial (nondif-
ferential) algebraic relation between the x/’s, i.e., the x;’s are algebraically independent
over k{u).

We have just shown the following theorem.

Theorem 5.5. A realization of an irreducible ordinary system is minimal if and only if it
is observable.

5.3.2. On universal external trajectories

Recall that the universal external trajectories of & are the specializations of u and
y for which there exist expressions of the respective minimal polynomials of the
components of z whose denominators are not annulled by these specializations of
u and y. Universal inputs of & would be readily obtainable from a characteristic set of
Z if the minimal polynomials of the components of z are such. This is wanting,
However, we have the following partial result.

Theorem 5.6. Let a ranking of k{U,Y,Z} be fixed such that any derivative of the
components of U and Y is lower than any component of Z. If & is observable and
possesses an orthonomic characteristic set </, then the universal external trajectories of
X are characterized by means of the initials of the elements of o/ which introduce the
components of Z, respectively.

This theorem is quite an immediate consequence of the previous one.

5.4. Invertibility

We refer to [6] for an algebraic theory of invertibility. We recall that the invertibil-
ity of an irreducible system % (with k{Z>=k<u,y,z>, u=(ug,uz,...,uUy),
y=(¥1,Y2,--»Vp) 2=(21,22,...,2,)) reads as the equality of the differential output
rank of 4 and the (differential) dimension of Z. The following theorem is a new test of
invertibility based on the construction of a characteristic set of the defining differential
ideal of .

Theorem 5.7. Let a ranking of k{U,Y,Z} be fixed such that the derivatives of the
components of 'Y are all lower than the components of U and Z. Let </ be a character-
istic set of 1(Z'). & is invertible if and only if the system of parametric indeterminates of
p defined by o is a subset of Y.

This is quite an immediate consequence of Lemma 2.17.
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