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Abstract 

Diop, S., Differential-algebraic decision methods and some applications to system theory, Theoret- 

ical Computer Science 98 (1992) 137-161. 

This paper provides a general view of differential-algebraic decision methods and their applications 

to system theory. It includes the basic properties of differential polynomials, reduction procedures 

and culminates in the concept of characteristic set and its computation. Such topics are well known 

from the works by Ritt (1950). A characteristic set of a differential ideal is a finite subset from which 

many properties of the differential ideal are often readily obtainable merely by inspecting its 

elements. This is the main point of decision methods in differential algebra. We show through some 

theorems that basic tests in system theory are thus performable by means of a characteristic set of the 

differential ideal defining a system. Such tests are, say, invertibility, observability, universal external 

trajectories computation, etc. As far as computation of characteristic sets is constructive, these tests 

are now available for algebraic systems. Computation of characteristic sets is actually constructive in 
principle, but a general algorithm which is fit for use is wanting. Interesting partial results are 

proposed. Reduce programs of the algorithms described in this paper are written. 

0. Introduction 

The aim of this report is to make available to system theory community differential- 
algebraic decision methods which should be of some interest. The main ideas of 
decision methods are very old in mathematics; they are often named after Kronecker, 
Hilbert, Hermann, Tarski, etc. When founding differential algebra, Ritt [12] intro- 
duced many of them, providing this new discipline with these powerful tools. The 
pioneering work by Ritt is now considered standard, thanks to Seidenberg [14], 
Rosenfeld [13], Kolchin [lo], and Sit [15, 163. This paper hardly contains some 
novelty in the field of differential-algebraic decision methods, except for its systematic 
and elementary expository aspect, and some partial results. Our goal is rather to lay 
down the main lines of applications of these techniques to system theory problems. 
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We shall report many things from the book by Kolchin [ll], merely because we 

believe that it will be of some interest for system theorists to have a self-contained 

expository text which is general enough to embrace the main system theory problems 

and which excludes the generalities in Kolchin’s work which are unnecessary for 

standard applications. This part includes differential polynomial algebras, character- 

istic sets, differential polynomial dimensions, and some basic decision problems. This 

text is incomplete in the sense that a general procedure for construction of character- 

istic sets is not laid down in detail, whereas almost all our results assume the 

availability of such a construction. However, we may console ourselves with the idea 

that this construction is possible in principle; what is really lacking is merely a fit- 

for-use algorithm, which certainly will be derived in further studies. Nevertheless, we 

give an interesting particular case where easy computations lead to characteristic sets 

of differential ideals. 

The last section aims to show some applications of the previous results to system 

theory problems. The general problem of computing invariants such as dimension, 

transcendence degrees, etc. is readily solved as soon as we may compute a character- 

istic set. The problem of realization of ordinary systems (i.e., those defined by algebraic 

ordinary differential equations) is considered, too. Observability test as well as 

computation of universal external trajectories are shown to be readily performable on 

the basis of characteristic sets. Invertibility test is also discussed. 

Recall that differential algebra has been introduced in system theory since 1985 by 

Fliess [6]. 

Throughout this paper, the word ring will stand for commutative ring with unit 
element, the word field for commutative field, and the word algebra for associative and 
commutative algebra with unit element; we assume the characteristic of rings, fields, and 

algebras to be zero, i.e., the latter contain the field Q of rational numbers as a subfield. 

1. Differential polynomial algebras 

Let R be a differential ring with set of derivations A. Let 6 be the cardinal number of 

A. Let 0 denote the free commutative monoid (denoted multiplicatively) generated by 

the elements of A, with unit element 1. The elements of 0 are called the derivative 
operators of R. For every derivative operator 0, there exists one, and only one, Stuple 

(e(a)),,, of natural integers such that O=nFEd ~3~~‘). 0 is thus isomorphic to the 

additive monoid N”. The integer CdGd e( 8) is denoted by o(0), and called the order of 0. 

A proper derivative operator is one with o(G)> 1. When 6=0, 0 consists solely of 1, 

and there is no proper derivative operator. 

Recall that the polynomial R-algebra in the family of indeterminates ( Qc, is 

denoted by R[(Q,,]. Its monomials are the following objects: 
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where p=( ~i)ier~N(‘)l. The elements of R[( T&r] are the (finite) linear combinations 
of monomials in (T&, with coefficients in R: 

P= c a,TP, 

/lLE NC’) 

where (a,)p,Uii,~R(N”‘). 
The polynomial R-algebra in the family of indeterminates indexed by the set of 0Ti 

(iE1, f3&) is denoted by R[(BTi)i,r,O,o]. Its monomials are 

where (vi,e)(;, +I X 0 - - VE N(’ x @). Its elements are 

where (a,),ER(N(‘X@)). R[(07&i,0)E,XB] is made into a differential R-algebra by assum- 
ing, for any aEA, that 

a(T”)= c vi,eTv’.(LV3TJ, 
(i,B)EI x 0 

where, if v=(Vi,B)(,,B)EIXe, then v’=(v:,,~,)(~,,~)~~~~, with vI*,~‘=vi,,~, for (i’, e’)#(i,e) 
and v~,~=max(vi,~- 1,0) (note that v’ should be indexed by (i, 0) since it depends on 
this object), and 

=c a(a,)T”+x a,a(T”). 
Y Y 

The differential R-algebra thus defined is denoted by R{ (T&,}, and called the 
diferential polynomial R-algebra in the difSerentia1 indeterminates ( TJieI. If I is a finite 
set with cardinality Jo, then R{ (q)i,r} is denoted by R { T,, T2, . . . . T,), or by R{ T} if 
I consists of one single element. We note that if 6 = 0, i.e., if the set of derivations of R is 

empty, then R{(&t> = RC(&ll. 
The integer o-(T’) defined as 

(i,&x 0 u(e) 
“,,,+O 

is called the order of the differential monomial 

1 We agree that if E is a commutative monoid with e as unit element, and if I is an arbitrary set, then E(I) 

denotes the set of families of elements of E indexed by I whose members are all equal to e but are finite in 
number. When no precision is given on the structure of the monoid E, the obvious one is assumed to be 

attached to E. 
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The order of a differential polynomial P is the maximum o(P) of the orders of its 

monomials which have nonzero coefficients. 

R { ( 7J,,r) is a differential integral domain if and only if R is such. 

R{(&t} is easily seen as the free differential R-algebra generated by the set 

consisting of the z (i~1). Hence, any map f of the set T (i~1) into a differential 

R-algebra A extends, in a unique way, to a differential R-algebra morphism f of 

R{ (?&,I into A such that 

where, for v = (V;,e)(i,n)EI x 0, 

f(T)“= n (01‘(~))‘~.8. 
(I. H)EI x e 

In particular, if R and A are two d-differential rings, and if f: R-+A is a differential 

ring morphism and (ti)itI a family of elements of A, then there is one, and only one, 

differential ring morphism J R(( q)+,}+A such that the restriction to R of f” co- 

incides with L and i(c) = ti (i~1). The image through f” of P is usually denoted by 

P((L~)~,,), and called the value of P at (ti&t. This allows one to indistinguishably write 

P or P((QiE,), as these symbols denote the same object. 

2. Characteristic sets 

Calculations on a ring usually invoke a basic procedure known as the reduction 

procedure. In order to provide differential polynomial algebras with such a procedure, 

it is necessary to define the notion of a differential polynomial reduced with respect to 

another one as is done for usual polynomials by means of their degrees. The concept of 

ranking is the first step towards that goal. Given a differential ideal by means of one of 

its sets of generators, does there exist some subset of that ideal the computations on 

which will make easier the answers to questions on the ideal? A characteristic set of 

a differential ideal aims to play that role. It is not a set of generators of the ideal but it 

characterizes the ideal, at least when the ideal is prime. The concept of characteristic 

set goes back to van der Waerden (who called it basic set) and was extensively studied 

by Ritt [12]. We start by recalling some basic facts on orderings which may be useful. 

2.1. On ordered sets 

An order < on a set S is a relation on S such that 

(i) x d x (xES), 

(ii) x<y and y<z * xdz (x,y,z~S), 

(iii) xdy and y<x * x=y (x,y~S). 
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A relation with only properties (i) and (ii) is called a pre-order. A set equipped with 

an order (pre-order) is said to be an ordered ( pre-ordered) set. The notation x < y will 

stand for its usual meaning: x d y and x # y. An order < on a set S is said to be total 
(or linear) if any couple of the elements of S can be compared (i.e., for all x, y in S either 

x < y or ybx). By restriction, a subset of an ordered set is also ordered. The product 

set S=&,, Si of a family (S&r of ordered sets is equipped with a canonical order 

called the product order on S and defined by 

(xi)ielG(Yj)j+zl if xidYj tiEI (xi)irz13(Yj)j,,Es)' 

The product order on S is not necessarily total when the orders on the components are 

all total, as shown by the case of N x N when N is equipped with its natural order. 

An element a of a pre-ordered set S is said to be maximal (minimal) if there is no 

element in S which is strictly greater (less) than a. An element a of an ordered set S is 

called the greatest (least) element of S if any element in S is less (greater) than or equal 

to a; if such a greatest (least) element exists, it is clearly unique. In a totally ordered set 

maximal and greatest are synonyms, and minimal and least are synonyms, too. 

An order on a set is called a well-order if every nonempty subset contains a least 

element. A set equipped with a well-order is said to be well-ordered. A well-order is 

a total order; the converse is not compatible with the axiom of infinity which is usually 

assumed in set theory. The product order on n,,t Si is not a well-order when the S’s 

are well-orders, as is seen through the example of N2. When I is a well-ordered set, the 

product set S=ni,, Si can be endowed with the order defined as follows. 

For all (~~)~~r,(y~)~~r~S, let (~~&,<(y~)~~~ if, for the least index i such that x,#y,, 

xi<yi; this order on S is called the lexicographic order on S. The product set 

S equipped with the lexicographic order is called the lexicographic product set of 

(Si)i6,. The lexicographic product order is total as soon as the orders on the compon- 

ents all are well-orders. 

Lemma 2.1. In an ordered set S the following assertions, 
(i) every decreasing sequence of elements of S is stationary, 

(ii) every nonempty subset of S has a minimal element, 

are equivalent. 

Assume that there is a nonempty subset S1 of S which has no minimal element. 

Hence, for every x in S, the subset S,(x) consisting of the elements y such that y < x is 

nonempty. By the axiom of choice, there is a map f:S1+S1 such that for every x in 

S1, f(x) is in S1 (x). Let x0 be freely chosen in S1 . The sequence defined by x, + 1 =f (x,) 
is a strictly increasing sequence of elements of S. This shows that (i)=z-(ii). Now assume 

(ii) and let (x,) be a decreasing sequence of elements of S. The subset of S consisting of 

the elements x, (neN) is nonempty and, hence, has a minimal element x,,. It is clear 

that x,=x,, for all n an,. The implication (ii)*(i) is, thus, proved, and the stated 

equivalence, too. 
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Lemma 2.2. In an ordered set S the following assertion, 

(iii) every sequence of elements of S has an increasing subsequence, 

implies the above-mentioned equivalent ones ((i) and (ii)). Assertions (i), (ii) and (iii) are 

equivalent if the order on S is total. An ordered set S is a well-ordered one tf and only if 

it is totally ordered, and if(i), (ii) and (“‘) in are equivalent properties of S. 

The fact that (iii)*(i) in any ordered set is clear since from (iii) it follows that there is 

no sequence of elements of S which is strictly decreasing, and the latter condition is 

equivalent to (i). Now let S be a totally ordered set, and (x,) a sequence of elements of 

S. The subset of S consisting of the elements x, (nEN) is nonempty and, hence, has 

a least element x,,. Again, the subset of S consisting of the elements x, (n>no) is 

nonempty and, hence, has a least element x,, with x,,<x,,, . Since this construction 

leads to a subsequence (x,,) such that 

i<j * x,,<xU1 (i, jEN), 

(ii)+iii). The last statement of the lemma is clear. 

Lemma 2.3. A finite product S=fllsiQm Si of well-ordered sets, when equipped with 

the product order, has the abol;e properties (i), (ii) and (iii) (which then are equivalent) but 

is, in generul, not a totally ordered set and a fortiori a well-ordered set. 

The first part of the lemma is straightforward. The second one is clear since (1, 2) 

and (2, 1) are not comparable with respect to the product order; the product set FV x N 

is not totally ordered. 

The finite lexicographic product set of (ES,),,, is well-ordered us soon as all the Si (ie1) 

are such. 

2.2. Pre-orders on R { T, , , &‘,I 

Let R be a nonzero d-differential ring, i31, . ,I!?, the elements of d, and 0 the set of 

derivative operators of R. Let R ( T, , . . , T,} be a differential polynomial R-algebra in 

the differential indeterminates T, , , T,. 

A ranking of the differential indeterminates TI, . . . . T, is a total order on the set of 

derivatives of indeterminates OT, consisting of (3z (8~0, ic{ 1, , p}), which satisfies 

(i) u<Qu (uEOT, (YE@), 

(ii) ubv = t3ub0v (u,u~@T, 8~0). 

We note that if 6 = 0, then a ranking of T, , . . . , T, is merely a total order of the set 

consisting of TI , . . . , T,. 

Note that there is a bijective correspondence between OT and FUE x NS induced in 

an obvious way by the bijection dl’...~?‘~~--+(r~, . .., ra) of 0 onto N”, where lVz stands 

for the set of the p first nonzero elements of i%. By means of this correspondence, the 
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rankings of TI, . . . , T, are bijectively in correspondence with the total orders on the set 

FUz x N” which satisfy the following conditions corresponding to (i) and (ii) above: 

(i’) (i,rl,..., ra)d(i,rI+eI ,..., rs+ed) ((i,r, ,..., rd)ENa x FJP, (e, ,..., e6)ENd); 

(ii’) (i, ri, . . . . rs)<(i’, r;,...,rb) j (i,rI+e, ,..., r6+es)<(i’,r;+eI ,..., rb+ed) 

((i, r l,..., ra),(i’,r; . . . . rb)ENz x N”, (eI, . . . . es)ENd). 

Lemma 2.4 (Kolchin [ 111). The product order is clearly not a well-order on Nf x N’, 

but it verifies the following fundamental property: Every sequence of elements of 

Nz x Nd possesses an increasing subsequence whose elements all have the same projec- 
tion on N:. 

Any sequence of elements of Nf x N’ has an increasing subsequence as, by Lemma 

2.3, this is a property of any finite product of well-ordered sets equipped with the 

product order. Now the last components of the elements of such an increasing 

sequence must be the same beyond some range. It then suffices to take the subse- 

quence beginning at this range and having the same elements as the original sequence. 

This proves the lemma. 

The lexicographic order on F+Jz x Nd with respect to (x1 ,c jQ6 rj, i, rI , . . . , r6) (i.e., the 

order on lVE x NJ induced by the lexicographic order on N x Nz x N’ via the injective 

map(t,r,,...,rg)++(~IgjQsrj,i,r,,...,rs) of N,*xN’into NxN,*xN”) clearly veri- 

fies the above properties (i’) and (ii’) and, hence, corresponds to a ranking of 

T T,. 1, ..., 
A ranking of T,, . . . . T, is a well-order of the set OT of derivatives of the diflerential 

indeterminates. This results from the following basic lemma. 

Lemma 2.5 (Kolchin [ll]). With respect to any total order on NE x N’ which verifies 

the above property (i’), Nz x N6 is well-ordered. 

By Lemma 2.2, a total order on N;1* x Nb is a well-order if every sequence in Nz x N’ 

has an increasing sequence. Since, by Lemma 2.4, any sequence of elements of NE x N’ 

has a subsequence whose elements all have the same last component and which is 

increasing with respect to the product order, it will suffice to show that such an 

increasing sequence is also increasing with respect to any order < on FU;F x N”, which 

verifies the property (i’). Let (i,r,, . . ..rg).(i,r;, . . ..rb)ENz x Nb be such that 

(i r 1, . . . , rs) is less than or equal to (i, r; , . . , rb) with respect to the product order, and 

let e,=r;-rr,, . . . . ea=rb-ra. We have, by property (i’), (i,r,, . . ..ra)<(i. rI+e,=r;, 
. . . ) rs + e6 = rb), which proves the stated property. 

A ranking is said to be orderly if 6 > 1, and if l3K<@7; whenever 0(0)<0(0’). The 

lexicographic ranking with respect to (& S jSs rj, i, rl , . . . , ra) is an orderly ranking of 

T1, . . . . T,. 
Let PER{T,, . . . . T,} \R, and let a ranking of T,, . . . , T, be given. 

The leader of P is defined to be the greatest (with respect to the given ranking) 

derivative 8K which appears in P, and is denoted by up. 
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If d = d$( P) (the degree of P as a polynomial in up), then P can be put, in a unique 

way, into the form 

P= ~ IiU~, 
i=O 

where the Ii (1 <i<d) are in R{T,,...,T,} and are free of up, Zd#O and every 

derivative 0q present in Ii is lower than up. The initial of PER(T,, . . . , T,}\R is 

defined to be its differential polynomial coefficient Id in the previous decomposition, 

and is denoted by Ip. The separant of PER { T, , . . . , T,}\ R is the differential poly- 

nomial If= 1 ilit.& ’ (= o?P/L:ur), an is d d enoted by Sp. It is clear in our context of 

characteristic zero that the separant of P$R is never the zero polynomial. The 

previous objects, leader, initial and separant are, of course, relative to the particular 

ranking used. 

The pre-orders that will be considered on R { TI , . . . ,T,} are those which extend the 

total orders that are defined by rankings of T,, . . ., T, in the following way. Let 

a ranking of T,,..., T, be given. With any differential polynomial P of 

R{T,, . . . . T,}\R 1s associated a couple w(P) = (up, d$( P)) consisting of its leader and 

its degree in its leader. We agree that w(P) for a P in R is (0,O) and that 0 is less than 

any element of OT. The set of couples (u, d), (u =0 or UEOT and dEN) is lexicographi- 

tally ordered in the sense that (u, d) < (u’, d’) if u < u’ or u = u’ and d cd’. The differen- 

tial polynomials are ordered according to their associated couples, i.e, we write P Q Q, 

and say that P is of lower rank than or of the same rank as Q if w(P)bw(Q). When 

w(P)=w(Q), we say that P and Q are of the same rank. The pre-order on 

R{ T,, . . . . T,} thus defined is, of course, not an order. 

Given a differential polynomial P of R { TI, . , T,)\R, we may write w(Zp) <w(P) 

and w(Sr)<o(P). 

Lemma 2.6 (Ritt [12]). Any nonempty subset C of R { TI, . . , T,} has an element which 

is of lower rank than or of the same rank as any element of C. 

Such an element is in general not unique; we shall nevertheless call it a least element 

of c. 

This crucial lemma follows immediately from the fact that a ranking defines 

a well-order on the set OT. 

2.3. Autoreduced sets. Reduction procedure 

Let R be a nonzero d-differential ring and R { T, , . . . , T,} a differential polynomial 

algebra over R, with a given ranking of T,, . . . . T,. 

A differential polynomial FER{ TI, . , T,> is said to be partially reduced with 

respect to a diJherentia1 polynomial PER { TI, . . . . T, > \ R if F is free of every proper 

derivative of up. We note that if 6 = 0, then every FER (T,, . . . , T,} is partially reduced 
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with respect to any PER{T,, . . . . T,} \R. F is said to be reduced with respect to P if F is 

partially reduced with respect to P and either F is free of up or d&(F) <d&(P). 
F is said to be partially reduced (reduced) with respect to a given subset C of 

R{T,, . . . . T,,} \R if F is partially reduced (reduced) with respect to each element of C. 

A subset C of R { TI , . . . , Tp} \R is said to be autoreduced if each element of C is 

reduced with respect to all the others. 

Examples of autoreduced sets are given by sets of single differential polynomials of 

R(T1, . . . . T,}\R. Th e empty set is an autoreduced set, too. 

In an autoreduced set any two elements must have distinct leaders. 

Lemma 2.7 (Ritt [12]). An autoreduced set is necessarily finite, and if 6 < 1, then its 
cardinal number cannot exceed /r. 

If there is an infinite autoreduced set ZS?, then the set u,~ of the leaders of the 

elements of d is infinite since the leaders of two elements of & must be distinct. It 

follows that, with respect to the order on OT induced by the product order on 

N; x N’, we may find in Us, by Lemma 2.4, an increasing sequence of elements which 

are derivatives of a unique Ti. All the elements of this sequence are proper derivatives 

of the first one; this is contradictory. The lemma is, thus, proved. 

If d is an autoreduced set, we denote flA_, ZaSa by H& and nAEd IA by I&. 

Euclidean remainder. Let R be a ring and R[ T] the polynomial R-algebra in the 

solely indeterminate T; let P, QER[ T], Q #O. We proceed to define what we call the 

Euclidean remainder Pb of P with respect to Q, and a corresponding natural integer I, 

which is merely a generalization of the notion of remainder when R is a field. The 

motivation of this definition will be clear in the sequel. Let ZR and dR denote the initial 

and the degree (when RfO) of a polynomial RER[ T], respectively. 

If P = 0 or P # 0 and dp < d,, then we let lo = 0 and PO = P; otherwise, we let lo = 1, 

do = dp - d,, and PO = I, P - Ip TdoQ. This is the first step of an induction which leads 

to Pq and 1. 

Let iE N, and assume di, Zi and Pi to be defined. If Pi =0 or Pi #O and dpi <d,, 
then we let Zi+l=Ii and Pi+l= Pi; otherwise, we let li+ 1 = li+ 1, di+ 1 =dp, -d,, and 

Pi+l=InPi-IpiTdi+‘Q. We have di+l<di. 
Since the sequence (di) of natural integers is strictly decreasing, the above procedure 

must stop, i.e., there is a least i such that either Pi = 0 or Pi #O and dpi <dQ. By 

definition, we call P’= Pi the Euclidean remainder of P with respect to Q. It is 

straightforward to check that, assuming z = Zi, we have 

Z’QP=P’ (mod(Q)), with either P’ =0 or Pb #O and d,, cd,. 

Remark 2.8. The computation of Pq and I involves only the operations (addition and 

multiplication) of the ring R. If factorization is constructively performable in R[ TJ 

then we may slightly improve the above algorithm if I, is seen as a factor of Ipi 
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(Zp = I,,u), in which case we rather let Zi+ 1 be li and Pi+ 1 be Pi-UT*‘+ 1 Q. If R is an 

integral domain, then we may also perform the classical Euclidean remainder algo- 

rithm over the quotient field of R, and then return to polynomials over R by clearing 

the denominator of the quotient in an obvious way. 

Let R{T,, . . . . T,} be a differential polynomial algebra with a given ranking of 

T, ,. .., T,, and d an autoreduced set. Let the elements Ai, AZ, . . . . A, of d be 

increasingly numbered, and let Uj, Ij,Sj and dj be the leader, initial, separant and 

degree of Aj (1 <j d v), respectively. 

Partial remainder. We proceed to define the partial remainder F + of any 

FER { T, , . . . , T,} with respect to d and the corresponding natural integers Oj (1 Q j Q v). 

If F is partially reduced with respect to .d (which is certainly the case if 6 = 0), then 

we let F0 = F and cj, 0 = 0 (1 <j< v). Otherwise, 6 2 1, and the set of derivatives OT, 

which occur in F and which are proper derivatives of a leader of at least one AEAZZ is 

nonempty and finite. Let u0 be its greatest element. The set of elements A of JZZ 

such that u,, is a proper derivative of their leaders also has a greatest element Aj,. 

Let O0 be the proper derivative operator such that u0 =O,uj,. Regarding F and 

O,A,, as polynomials in uO, we let F0 be the Euclidean remainder of F with respect to 

O,Aj, and cjo.0 the corresponding integer, and ~j.0 =0 for all j# j,. This is the first 

step of an induction which leads to the determination of Ft and of the integers 

aj (l< j<v). 

Let HEN, and assume aj,i (1 < j< v), ji, Ui, and Fi to be defined. If Fi is partially 

reduced with respect to -c9, then we let aj, i + I= aj, i (1 < j < V) and Fi + 1 = Fi. Otherwise, 

6 2 1, and the set of derivatives OT, which occur in Fi and which are proper derivatives 

of a leader of at least one A E& is nonempty and finite. Let Ui+ 1 be its greatest element. 

We have L’i+ 1 < Ui. The set of elements A of x2 such that Ui+ 1 is a proper derivative of 

their leaders also has a greatest element Aj,, ,. Let Oi+i be the proper derivative 

operator such that Vi+ i = Oi+ i Uji+ I. Regarding Fi and Oi+ 1 A,,, I as polynomials 

m ui+i, we let Fi+l be the Euclidean remainder of Fi with respect to Oi+ 1 Aji+ 1 

and aj,+,,i+l the corresponding integer, and aj,,i+ 1 =cJ~~,;, . . . . aj,,i+l =ajo,i, and 

aj,i+l=O for all j# ji+i, and j# ji, . . . . and j# j,. 

Since the sequence (Vi) of derivatives of indeterminates is strictly decreasing, the 

above procedure must stop, i.e., there is a least i such that Fi is partially reduced with 

respect to ~2. By definition, we call F + = Fi the partial remainder of F with respect to 

&. It is straightforward to check that, assuming aj=aj.i (1 d j<v), we have: 

(i) Ft is partially reduced with respect to ~4; 

(ii) nJ=i S~JFEF+ (mod [&I); 

(iii) F + < F. 

More precisely, nJ= 1 Sq’F - Ft is a linear combination over R { T, , . . . , T,} of the 

derivatives OA (0~0, AE&, and OuA <uF). 

We note that the determination of the partial remainder of F with respect to d and 

of the corresponding natural integers aA ( AE&‘) involves only the operations (addi- 

tion, multiplication and derivation) on R. 
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Simultaneous partial remainders. Let F1 , F2, . . . , F, be elements of R { TI , . . . , T,}. Let 

Gi,Gz, . . . . G, denote the respective partial remainders of F1, F2, . . . , F, with respect 

to d, and let oj,r (1~ j < v, 1~ 1 dq) denote the corresponding integers. Let 

Sj=IllaX(CTj,1,..., CT~,~) (1 <j<v) and F/=nJEI Sgj-““jGi (l<l<q). The following 

properties, 

(i) F:,Fi,..., FJ all are partially reduced with respect to &, 

(ii) nJ= 1 SYF - l=F/(modCdl) (1 <l<q), 
are satisfied; Fl,Fi, . . . . Fi are called the simultaneous partial remainders of F1, 

F *, . . ., F, with respect to d. 

Remainder. We proceed to define the remainder F* of any FER{T,, . . . , T,} with 

respect to &, and the corresponding natural integers Ij, aj (1 d j< v). 

Let F + be the partial remainder of F with respect to d, with aj (1~ j<v) the 

corresponding integers. 

If F + is reduced with respect to d, then we let F. = F + and Ij,o =0 (1~ j< v). 

Otherwise, let j, be the greatest integer such that F + is not reduced with respect to Aj,. 

Let F. be the Euclidean remainder of F + with respect to Aj, (when Ft and Aj, are 

considered as polynomials in Uj,,) and rj,,o the corresponding integer, and tj, o = 0 for 

all j# j,. This is the first step of an induction which leads to the determination of F * 
and of the integers rj (1 d j < v). 

Let ie N, and assume rj,i (1 d j< v), ji, and Fi to be defined. If Fi is reduced with 

respect to d, then we let rj,i+ I= Ij,i (1 d j<v) and Fi+ 1 = Fi. Otherwise, let ji+ 1 be the 

greatest integer such that Fi is not reduced with respect to Aji+, . We note that ji+ 1 < ji. 
Let Fi+l be the Euclidean remainder of Fi with respect to Aj,+] (when Fi and Aj,+l 

are considered as polynomials in Uj,+ 1) and rj,+, , i+ 1 the corresponding integer, and 

rj,,i+i=lj,,i, ...) IjO,i+l=ZjO,i, and rj,i+l=O for all j# ji+l, and j# ji ,..., and j# j,,. 

Since J%’ is finite, the above procedure must stop, i.e., there is a least i such that Fi is 
reduced with respect to &‘. By definition, we call F * = Fi the remainder of F with 

respect to ~4. It is straightforward to check that, assuming zj = zj, i (1~ j < v), we have: 

(i) F * is reduced with respect to &‘; 

(ii) flJ=i Z’jSyjF=F* (mod [&I); 

(iii) F* d F. 

More precisely, nJ= 1 Z’j SgJF - F* is a linear combination over R{ T,, . . . , T,} of the 

derivatives 8A (8~0, Aed, and OuA<uF). 

Simultaneous remainders. Let F1, F,, . . . . Fq be elements of R{ T,, . . , T,). Let F 1, 
F+ 2, . . . , F i be the simultaneous partial remainders of F1, F2, . . . , Fq with respect to JZ?, 

with Sj (1 d j d v) the corresponding integers. If F 1, F 1, . , F i all are reduced with 

respect to J&‘, then we let F p = F 1 (16 16 q ) and ij = 0 (1~ j < v). Otherwise, let Aj, be 

the highest element of ._& with respect to which some F f is not reduced. We let Pl be 

the Euclidean remainders of F r by Aj, (considering F ! and Aj, as polynomials in Uj,) 

and ij, , 0, I (1 < 164) the corresponding integers. Assuming ij,o =0 for all j# j,, 

Zjo.o=max(ijo,O,~,ijo,o,~r ...,ijo,o,q)r and FF=Z);.O-~J”.~.~P, (ldlbq), we have: 
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Fy, F i, . . , F p are partially reduced with respect to &‘, and are reduced with respect to 

Ajo,Aj,+l,..., A,, and verify that nJcl Ij’*“S~FI-F~ (mod [&I) (1~1~4). 

Let i6N, and assume ij,i (1 <j<v), ji, and Ff (1 <l<q) to be defined. If F’,, Fi, 
. . ..Fi are reduced with respect to r;P, then we let Ff+‘=Ff (l<l$q) and ij,i+l=ij,i 

(1 d j < v). Otherwise, let ji+ 1 be the greatest integer such that one of the Fi is not 

reduced with respect to Aj, + , . We have ji+ 1 < ji. We let P1 be the Euclidean remainders 

of the Ff by Aji + , (considering Ff and A, + 1 as polynomials in Uji+, ) 

and ij, + 1 , i, I (1 < 1 d q ) the corresponding integers, and ij, i + 1, 1 = 0 for all j # ji + 1. As- 

suming ij, i+ 1 = 0 for all j#ji+l, and j# ji ,..., and j#j,, and ijO,i+l=ijO,i )..., 

ij,,i+l=ij,,i, and ij,+,.i+l=max(ij,+I,i+l,l, ij,+,,i+1,2,...,ij,+*,i+l.q), and Ff+‘= 
li,,,,.,+l-i,,,,.,+l,f 
,,+ L Pr, we have: F’;+‘, F’;+‘, . . . . F6+’ are partially reduced with 

respect to JTZ, and are reduced with respect to Aj,+, , Aj,+, + 1, . . . , A,, and verify that 

nJcl Iy,l+lSflFl=Ff+’ (mod [d]) (1 <l<q). 

Since d is finite, the above procedure must stop, i.e., there is a least i such that 

F’;, F;, . . . . Fd all are reduced with respect to ~2. By definition, we call FT = F’, , 
F r = F i,, . . , F: = Fi the simultaneous remainders of Fl , F,, . . . , Fp with respect to d. 

Assuming ij = ij. i (1~ j < v), we have: 

(i) FT,Ff, . . . . F,* all are reduced with respect to &‘; 

(ii) nJzIZj’$‘F,=F: (mod[&])(l<l<q). 

2.4. Coherent autoreduced sets 

If R is a (nondifferential) ring, a an ideal of R, and if aER, then a : ace denotes the set 

of XER such that a’xca for some nEN; a : a” is an ideal containing a. a : am is perfect if 

a is such. If a is prime and a$a, then a: am = a. 

Let R be a differential ring. 

If a is a difSerentia1 ideal, then a: a30 is a difSerentia1 ideal; see [ 11, Section 1.2, 

Corollary of Lemma l] for a proof. 

Let k be a differential field and k{ T,, . . . . T,} a differential polynomial algebra 

provided with a ranking of T, , . . . , T,. 
For a given autoreduced set d of k { Tl, . . . , T,} and a given derivative of indetermi- 

nate u, we denote by dV the set of differential polynomials BA (0~0, AE~, and Bu, <u). 

An autoreduced set d is said to be coherent $ whenever A, A’E~, and uA 
and uA, have a least common derivative V =d,U, = ~A’UA,, we have SA’6JAA 
- S,,,OA, A’&&) : H,s . 

If ~2’ is a coherent autoreduced set, then for all A, A’E& if uA and uA’ have a common 
derivative w = &A = @uA., thenSAG0A-SA@A’@&,,,):HP”,;foraproofsee[11,Section 

IV.91. 

If 6 < 1, then every autoreduced set is coherent. An autoreduced set with at most one 

element is coherent, too. 

Lemma 2.9. An autoreduced set LZI’ is coherent if and only if any element of [d] : H~z 
which is partially reduced with respect to .d is in (d): Has. 
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If d is a coherent autoreduced set, then [LX!] : Hs is prime (perfect) if (d): H.2 is 
prime (perfect). 

The first part of this lemma is due to Rosenfeld [ 131. See [ 11, Section 111.8, Lemmas 

5 and 63 for a proof. For 6 = 0 this lemma is not really informative. Its main interest, as 

indicated by its authors, is in bridging the gap between differential polynomial 

algebras and the underlying polynomial algebras. 

An easy consequence is the following lemma. 

Lemma 2.10. If d is a coherent autoreduced set, then any element of { ~44) : H.2 
which is partially reduced with respect to & is in (d) : H.2. 

Zf J&’ is a coherent autoreduced set, then { sZ} : H.2 is prime if and only if ( d ) : H.2 
is so. 

2.5. Characteristic sets 

Let R{T,, . . . . T,} be a differential polynomial algebra with a given ranking of 

TI , . . . , T, 
Let & and d’ be two autoreduced sets with elements Al, AZ, . . . . A, and A;, A;, 

. . . , A:,, respectively, numbered in increasing order. We define a pre-order on the set of 

autoreduced sets of R { TI, . . , T,} by assuming that d cd’ (we then say that d is of 

lower rank than JzZ’, or that d is lower than &‘) if one of the following two conditions 

is satisfied: 

(i) There is some natural integer j such that 1 < j<min(v, v’), and Ai and 

Ai (16 i < j) are of the same rank and Aj < A>; 

(ii) v > v’, and Ai and Ai (1~ i < v’) are of the same rank. 

We say that d and CC& are of the same rank if v = v’ and if Ai and Ai (1 <i < v) are of the 

same rank. If &cd’ or & and d’ are of the same rank, then we write &<_c&. 

The relation d thus defined clearly is a pre-order. Any two autoreduced sets may be 

compared, i.e., one of the relations &‘d JzZ’, ~2’ < & holds. Moreover, we have the 

following lemma. 

Lemma 2.11 (Ritt [12]). A nonempty set d of autoreduced sets contains a least 

element, i.e., an element & such that &<1;9’ (s?E~). 

The elements of an autoreduced set are supposed to be numbered in increasing 

order. Let &, = 8, and define 4 (in N, i > 0) to be the set of elements & of c$_ I such that 

J$ is with cardinal number greater than or equal to i, and such that Ai is a least 

element of the set of the ith differential polynomials of the elements of I-1. This 

decreasing sequence of subsets of d must terminate by 4=8 for some i since, 

otherwise, the leaders Vi of the ith differential polynomials of the elements of & would 

be a sequence of derivatives of indeterminates which are not proper derivatives of one 

of them; this would contradict Lemma 2.4. Since &, = d is nonempty, there exists an 
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iE N such that &+ 1 = cb and any element of 4 is a least element of 8. This proves the 

lemma. This proof is due to Kolchin [I 11. 

Remark 2.12. If a differential polynomial PER { TI, . . . , T,} \R is reduced with respect 

to an autoreduced set &‘, then P and the elements A of &’ which are reduced with 

respect to P form an autoreduced set which is lower than d. It results from this that 

an autoreduced set ~2 of a family 9 of differential polynomials (i.e., an autoreduced set 

made up with elements of 9) is a minimal element of the set of autoreduced sets of 9 if 

and only if 9 does not contain any element of R { T, , . , T,} \R which is reduced with 

respect to &. 

Let a be a differential ideal of R{ TI, . . , T,} and & an autoreduced set with 

elements in a. 

If 62 1, and & is a least element of the set of autoreduced sets of a, then for any 
AE&d, 

Indeed, if A is in d, and if I,Ea, then A-l,uiEa, where d=dE,(A) is such that 

d 2 1. Since A -IA ui is reduced with respect to &, it results from the minimality of 

d that A-I,u~ER. Now O=a(A-IAu~)/auA=SA-dZAu~-lEa; hence, SAga. This 

proves the assertion. 

It follows that if a is a proper differential ideal of R(T,, . . . . T,}, and if d is 

a minimal autoreduced set of a, then the separant of an element of & cannot be in a if 

it is not a nonzero noninvertible element of R. (This assertion depends on the 

assumption that the characteristic is zero.) Consequently, if R is a difSerentia1 field, 

then the separant of an element of a minimal autoreduced set of a proper difSerentia1 
ideal is not is this ideal. 

A characteristic set of a differential ideal a of R{ T,, . . . . T,} is defined to be 

a minimal element of the set of autoreduced sets d of a such that IA&a and SA$a 

(AE&). 
It follows from this definition and what precedes it that an autoreduced set d of 

a dtfherential ideal a is a characteristic set of a if and only if a\R contains no d@erential 
polynomial P reduced with respect to d and such that I,$a and SAga. 

When 6 2 1, the empty set is the characteristic set of a differential ideal a if and only 

if the separant of any element of a\R is in a. For 6 =0 the empty set is the 

characteristic set of an ideal a if and only if the initial of any element of a\R is in a. 

The zero ideal and the unit ideal are with characteristic sets the empty set. 

Conversely, if R is a differential field k, then any differential ideal a of k { T, , . . . , T,} is 

with characteristic set the empty set only if a is the zero or unit ideal. 

Lemma 2.13 (Rosenfeld [13]). Let k be a dtfferential field, k { T,, . . , Tp} a dtrerential 
polynomial algebra with a given ranking of T, , . . . , T,, and let a be a differential ideal of 
k { TI, , T,}, with G? an autoreduced subset of a. 
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a is a prime diflerential ideal with characteristic set d if and only if a = [d] : Hs, 

d is coherent, and (ST!): Hs is prime and does not contain a nonzero element reduced 

with respect to d. 

For a proof see [l 1, Section IV.91. 

A characteristic set of a differential ideal of k { TI, . . . , T, > is a coherent autoreduced 

set. 

Lemma 2.14 (Rosenfeld [ 131). A coherent autoreduced set ~2 is a characteristic set of 
{ &} : H.2 if and only if it is a characteristic set of (&) : H.2. 

A coherent autoreduced set ~2 is a characteristic set of [d] : Hs if and only if it is 

a characteristic set of(d): H,z. 

An autoreduced set G? of k { T, , . . . , T,} is said to be orthonomic if its elements are of 

degree 1 in their leaders. 

This definition is somewhat more general than that in [12, Section VIII.101. The 

notion of orthonomic systems goes back to Riquier. We call a polynomial orthonomic 

autoreduced set an orthonomic autoreduced set whose elements are with initials 1. 

Lemma 2.15. Zf ~2 is a coherent orthonomic autoreduced set of k{ T,, . . ., T,}, then 
there is no nonzero element of [-cS] : 1.2 that is reduced with respect to -c4, and 
[&I : I.2 is prime with characteristic set d. 

Let A, <A,<... < A, be the elements of d. Assume that there is a PIZ[&] :r~g, 

P#O, and that P is reduced with respect to d. By Lemma 2.9, Pe(&‘): Z.2. We may 

thus write 

(*) 
i=l 

for some nE N, and PO =O. One of the Pi’s must be nonzero, and we may assume that 

s is the least integer such that there exists an nEN, and a PO is free of the leader of A,, 
and P, # 0. Writing every Pi as a polynomial in uA,, then, by a degree argument (note 

that Z’$P is free of uA,), we see that the same equation ( * ) may be written with s- 1 in 

place of s. This is contradictory and proves the first part of the lemma. Now, let P and 

Q be two elements of k{ T,, ,.., T,} with product in [&I : I.2. Let P* and Q* be the 

respective remainders of P and Q with respect to &. The product P*Q* is in 

[d] : Zs and is reduced with respect to d; then, by the first part, P*Q* = 0. Hence, 

P or Q is in [-cS] : I ,z. This proves the primality of [&I : 12, and the lemma, too. 

A version of this lemma, valid for differential R-algebras of arbitrary characteristic is 

given in [ll, Section 111.8, Exercise 11. 

2.5.1. The Ritt algorithm 
We proceed to give more insight in the construction (which we name after Ritt) of 

characteristic sets. For any finite family C of differential polynomials PI, Pz, . . . , P, of 
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k{T,, . . . . T,}, we first give a way to compute the minimal autoreduced set A(C) of C. If 

Z contains a nonzero element of the ground field or if all its elements are zero, then we 

agree that A(C) is the empty set. Otherwise, we assume, as we may, that the Pi’s are 

numbered in increasing order, and we let A(C) consist of P1. For i = 2 to s if Pi is 

reduced with respect to A(C), then we remove from A(C) its elements which are not 

reduced with respect to Pi, and we add Pi to A(C); it is easy to check that the new A(C) 
is lower than the previous one (see Remark 2.12). If Pi is not reduced with respect to 

A(Z), then we skip it. At the end (i = s) of this procedure we have at hand the minimal 

autoreduced set A(C) of C since the latter does no more contain any element which is 

reduced with respect to A(C) and which is not in k. 

Now let C,, be Z, and A(C,) be the minimal autoreduced set of Co. 

Assume Ci, and A(Ci) constructed. Let Ci be the union of the complement of A(C,) 
in Ci, and the subset of [Ci] consisting of the differential polynomials SA88A -SA6’A’ 

for all A, A’ in A(nZi) having a least common derivative w of their leaders: 

w = 0~~ = B’u,,. Let CF be the set of remainders with respect to A(Ci) of the elements 

Of Cj. Let Ci+l= CiUZT. Either ZT consists solely of the zero polynomial or else 

A(Ci+ l)<A(Ci). 
Clearly, there exists an i such that CT consists solely of the zero polynomial since, by 

Lemma 2.11, there does not exist a strictly decreasing sequence of autoreduced sets in 

k{T,, . . . . T,j. We denote A(Ii) by C(C). 

It is clear that C(Z) is a coherent autoreduced set, that [C] E [C(C)] : H,z, and that 

if C(Z)=& then 8 is the characteristic set of [C]=(C) (=0 or k{T,, . . . . T,}). 

We know, by Lemma 2.13, that if (C(C)): H.2 is prime and does not contain any 

nonzero element reduced with respect to C(Z), then [C(C)]: H~Z is prime, 

[C] = [C(Z)] : H.2, and C(Z) is a characteristic set of [C] (= {C}). The following 

lemma is thus an easy consequence of Lemma 2.15. 

Lemma 2.16. Zf C(Z) is orthonomic, then if is a characteristic set of [C], and [C] is 

prime. 

2.5.2. Systems of parametric indeterminates 

Ritt [12] introduced the concept of parametric indeterminates, which we shall use 

in the following. We recall its definition and basic properties. Let p be a nonzero prime 

differential ideal of k { T,, . . . , T,}. A subset V of T,, . . . , T, is called a system (or set) of 

parametric indeterminates of p if p does not contain any element which involves 

derivatives of the elements of V without involving derivatives of the T’s not in V, and 

if, for each T not in V, there is an element of p which involves only derivatives of 

K and some elements of V. 

Let V be a system of parametric indeterminates of p, and let SZZ be a characteristic 

set of p such that V is the subset of T,, . . . . T, whose elements are those without 

derivatives involved as leaders of any element of JZZ’. We say that JZZ defines V. Each 

T not in V has a least derivative which is the leader of some element Ai of &; we say 

that Ai introduces z. 
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Recall that the differential dimension diff dim( p) of p is defined to be the differential 

transcendence degree of k {T, , . . . , T,} /p = k (T1, . . . , T@} over k, where ri is the residue 

class of Ti mod p. We have the following lemma. 

Lemma 2.17. T,,, T,,, . . . . T,,, form a system of parametric indeterminates of p if and 

only if ti,, Ti2T . . . , Zi, form a difirential transcendence basis of k { tI ,. . . , 7,) over k. The 

number of elements of any set of parametric indeterminates of p is, thus, equal to 
diff dim( p). Any characteristic set of p defines a system of parametric indeterminates of 

p. Conversely, if 7;:, , T,, . . . , K,,, form a system V of parametric indeterminates of p, then 

V is defined by any characteristic set of p with respect to any ranking such that the 
derivatives of 7;:,, T,,, . . . , z,,, all are lower than the cs not in V. 

The proof is straightforward. See also Lemma 4.2. 

3. Differential dimension polynomial 

The concept of Hilbert polynomial is known in algebraic geometry as a measure of 

the size of an algebraic variety. It has been discovered by Kolchin that differential- 

algebraic geometry is provided with such a polynomial, where its role is actually more 

crucial. Recall that the differential dimension of an irreducible system is the differen- 

tial transcendence degree of the differential algebra associated with that system. 

Kolchin [lo, 1 l] showed that this measure of size of a system is not sufficiently fine. 

The differential dimension polynomial is a better candidate, and is a right one [16]; 

see also [9]. A differential dimension polynomial is a polynomial in one indeterminate 

with rational coefficients, carrying with it much information on the invariants of an 

irreducible system. 

3.1. Numerical polynomials 

By a numerical polynomial we mean an element x of the polynomial algebra Q [ 51 in 

one indeterminate with coefficients in the field Q of rational numbers such that X(r)E N 
for sufficiently large rE N. The set of numerical polynomials is totally ordered accord- 

ing to: x<x’ if X(r)<X’(r) for sufficiently large reN. Denoting <(r-- l)...(&i+ 1)/i! 

by ( 5)) we have: x is a numerical polynomial if and only if x may be written in the form 

CT=0 ai( ‘r’) f or some HEN, and ai in the ring 7 of rational integers. If 

X=xf=oai( ‘f’) and x’=c~=obi(5fi), then x<x’ if and only if (a,,..., 
ao) < (b,, . . , b,) lexicographically. 

Given a finite subset E of Nd, Kolchin [ 1 l] and then Sit [15, 163 showed that we 

may effectively compute a numerical polynomial xE verifying the following: 

(i) For every sufficiently large rE N the number of elements (rl, . . . , ra) of N* which 
are not greater than (with respect to the product order) or equal to any element of E and 

which verify that rl + ... +rs<r is equal to XE(r). 
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(ii) ~“(xE)<c?; equality occurs if and only if E is empty, in which case XE=( ‘i”). 
(iii) XE = 0 if and only if (0, . . . , O)EE. 

3.2. D@erential dimension polynomial 

Let K be a finite-type differential field extension of k, T =(tl, . . . , tp) a set of 

generators of K over k, i.e., K = k(r 1, . . . ,tp), p the defining differential ideal of K over 

k, i.e., p is the set of differential polynomials in k { TI, . . , T,} that vanish at T and is 

such that K is the quotient field of k { T, , . . . , T,}/p, and ~2 a characteristic set of p with 

respect to some orderly ranking of TI , . . , T,. For each i, 1~ i < p, let Ei be the subset of 

N6 consisting of the elements (rI, . . ..rd) such that P...a’b T is the leader of some 

element of JZ?. The numerical polynomial x,,~ = xE, + ... + xE, verifies the following: 

(i) For every sufficiently large rE N the (nondifirential) transcendence degree over 

k of k((~Zi)~E~(r), l<i<p) is equal to x&9. 
(ii) d”(x,,,J d 6. 

(iii) If we write xrik =Cf= 0 ai ( ‘Ii), then ad is equal to the diflerential transcendence 

degree of k(zI , . . . , s,, ) over k. 

xTjk depends on the choice oft, and, thus, is not an invariant of the differential field 

extension K of k. Sit [15] showed that the set of numerical polynomials is actually 

well-ordered relative to the previously defined order. Sit [16] takes the least element 

of the set of numerical polynomials xrlk, where 7 runs over the generators of the 

finite-type differential field extension K of k; and then obtains a numerical polynomial, 

xKjk, which does not depend on particular generators of K over k. However, in general 

XK/k = &Y/k does not imply that K and K’ are isomorphic differential field k-extensions; 

and we do not know how to compute xKIk. 

4. Some basic decision problems 

4.1. Prime component decomposition 

The state of affairs of this problem is rather poor. The problem is solvable provided 

that the same problem is solvable for polynomial algebras. 

4.2. Membership problem 

The membership problem is trivially solved if we can decompose any differential 

ideal into prime components and if we can find a characteristic set of any prime 

differential ideal. 

Lemma 4.1 (Ritt [12]). Let k be a diferential field, and k{ T,, . . . , T,,] a dijferential 
polynomial algebra provided with a ranking of T, , . . . , T,. If a is a prime differential ideal 

ofk{T,, . . . . T,} with characteristic set &, then for any differential polynomial P, PEG if 
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and only if the remainder of P with respect to d is 0. If a and b are two prime 
difSerentia1 ideals with characteristic sets d and 29, respectively, then a = b if and only if 

d G 6, &$b, and S,#a, where & (respectively, S,) denotes the product of the separants 
of the elements of d (respectively, 99). 

The proof of this result is straightforward. 

4.2. Elimination theory 

Elimination theory is one of the key tools in algebra. Its role in differential algebra 

was stressed enough by Ritt [12] and by the outstanding paper by Seidenberg [14]. 

Application of this theory to system theory was first attempted in [l, 2); see also [3] 

for a recent related result. One of the basic questions dealing with elimination theory 

consists in deriving the equations of the projection of a differential-algebraic set along 

some of the coordinates. We know that this projection is not closed. The second 

question addressed by elimination theory is the computation of the equations of the 

closures of the above projections of differential-algebraic sets. This last question is not 

addressed in [14]. The following lemma is a rather standard straightforward solution 

based on the construction of characteristic sets. 

Lemma 4.2. Let a be a diflerential ideal of k { T,, . . ., T,}. Let V be a subset 

of T,, . ., T,, k{ V> the difSerentia1 polynomial algebra in the elements of V, and 
let a ranking be jixed such that the derivatives of the elements of V all are lower 

than the T’s not in V. If .& is a characteristic set of p, then dn k{ V} is one 

for pnk( V}. 

5. Applications to system theory 

We provide some examples of applications of the above differential algebraic 

decision methods. We could not be exhaustive. More applications should be expected 

in further communications. 

5.1. Computation of invariants 

Let there be an irreducible system X defined by a set of algebraic differential 

equations, P1(~1,z2, . . . . zp)=O, P2(tI,t2, . . . . 7J=O, . . . . P,(z~,~~, . . . . zp)=O, with co- 

efficients in a differential field k. The variables tl, t2, . . . ,7,, of X are usually par- 

titioned into inputs, outputs, etc. Assume that such a partition is done and that the 

variables are renamed according to our notations. The number of independent inputs 
that we denote by m is an invariant of the system and is defined to be the difSerentia1 
dimension or the d&erential transcendence degree of k(X) = k (zl, 72, . . . ,7,) over k. 

m is independent of the partition of the variables, and may be readily obtained 

from any characteristic set of the defining differential ideal I(X)= { PI, P2, . . . . Ps} 
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of X over k merely by inspecting this characteristic set. See Lemma 2.17 for more 

details. 

Moreover, we already reported (Section 3) that the differential dimension poly- 

nomial is more informative than the simple differential dimension. See Section 3 for 

more details. Further studies on this numerical polynomial should bring out more 

insight into the structure of a system merely by inspecting this polynomial. 

5.2. Realization 

We refer to [7] for a differential-algebraic theory of realization. The main point of 

this theory is the fact that realizations of a given system are not necessarily in the 

classical form introduced in system theory by Kalman. Input derivatives as well as 

implicit algebraic differential equations should be included in the state equations. In 

deriving such realizations Fliess uses the primitive-element theorem. A constructive 

realization theory may be derived from characteristic set techniques. We have the 

following theorem. 

Theorem 5.1. Let 3 be an ordinary irreducible system given by its external behavior 
k (u, y ). Let U and Y be ranked such that any derivative of U is less than any derivative 

of Y, and let d be a characteristic set of the dejning difSerentia1 ideal of k(u,y). Let 
the elements of SZZ’ be AI < A2 < ... <A,, with Ai introducing x.. A minimal realization 

%I, - 1 = xn, > 

AI(&,,xI, . . ..x.,)=O, 

%Q+1=&,+2, 

< 
&,+"2-1=xn,+n*~ 

Az(x,,+nZ,xl,...,xnl+nz)=O, 

X,,+...+n,-1=x,,+...+n,, 

A,(i n,+...+n&,, xl,...,x,,+...+.p)=o 
L 
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of 3 is obtained by assuming 
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i 

Xl =Ylv 

x2=_61, 

I x”,+...+np= 
(“p- 1) 

YP 

We stress the well-known fact that such a realization procedure may be unsuitable 

when one looks for state equations where input derivatives appear with lowest 

possible orders. The problem of finding realizations with least derivatives of the input 

has been characterized by Freedman and Willems [17] from a local point of view. 

Further studies using techniques from differential algebra will follow this paper, giving 

a characterization of systems which are globally realizable. 

5.2.1. Irreducibility of state space systems 

The irreducibility of systems described by 

1 
ii _ Pi(x, u), 

4ilx2 u, 

1 <i<n, 

!z- 

y.=A(x’u) I< j<p 

Jgjo’ ” 

is often referred to in the literature. By means of characteristic-set techniques, we 

provide the following justification of such an assumption. We first have to put the 

problem in terms of our general setting. Assuming 

Pi(u, y,x)=qi(U,X)XI”-pi(U,X) (l<i<n), 

pn+i(“, y~x)=Qi(U,X)~-fi(X) (1 GiGp), 

where !E is, by definition, the locally closed subset consisting of the (u, y,x) which 

annul all the Pi’s without annulling any of the qi’s and the gi’s. Let a ranking of U, Y, X 

be fixed such that any derivative of Ul, Uz, . . . , U,,, is lower than Xl, X2, . . . . X, which, 

in turn, are lower than Y,, Y,, . . . . Y,. Then the set .& consisting of Pl , . . . , I’,,,, is 



158 S. Diop 

readily a coherent orthonomic autoreduced set. By Lemma 2.15, p = [&I : I.2 is 

a prime differential ideal with characteristic set G! (where Jd=nlSi4,, qi nI aj~pgj). 

The points (u, y, x) of X are easily seen as annulling each PEP. Conversely, if (u, y,x) 

annuls each PEP without annulling ! d, then (u, y, x) is a point of X. This shows that 

3 is the intersection of the differential closed set defined by p, and the differential open 

set defined by ld # 0. The adherence of X is clearly the differential closed set defined by 

p. Hence, 9” is irreducible. We have just proved the following lemma (compare with 

Moog et al. [18]). 

Lemma 5.2. % is irreducible if the pi)s, q;s,fi(s and g;s are d@erential polynomials of 
order 0 in the xi’s. (Notice that input derivatives may be present in the expressions of the 

pi’s, qts, J'S and gi’s.) 

5.3. Observability theory 

We refer to [4, 5) for an algebraic theory of observability. We recall that the 

observability of an irreducible system E (with k(z)= k(u,y,z), u=(ul, u2, . . . . u,,,), 

y=(y,,y,, . . ..Yp). z=(z,,z2, ..., z,)) means the algebraicity of z over k(u, y). We 

denote the degree of zi over k (u, y ) (which is defined to be the degree of the minimal 

polynomial of Zi over k (u, y ) if Zi is algebraic over k (u, y ), or 0 otherwise) by d,“,,(zi). 
An observable variable is one with degree greater than or equal to 1. The degree of an 

observable variable is sometimes called its degree of observability. The following 

theorem is a new test of observability based on the construction of a characteristic set 

of the defining differential ideal of X (compare with [S]). 

Theorem 5.3. Let a ranking of k { U, Y, Z} be fixed such that any derivative of the 
components of U and Y is lower than Z1, Z2, . , Z,. Let d be a characteristic set of 
I(X). lf Z is observable (with respect to u and y), then each Zi is (effectively) introduced 

in ~2 by a differential polynomial of order zero and with degree < d,“,,(zi) in Zi (1 d i < n). 
Conversely, zf each Zi (1 <i < n) is introduced in .d by a differential polynomial of order 

zero and degree di in Zi, then X is observable, dE,,(zt)>,di? and dz,,(zi) divides 
di.....d2.dI (hence, d,“,,(z,)=d,). 

Assume that 3 is observable. Let Pi be the polynomial of k{ U, Y} [Zi] obtained by 

substituting U and Y for u and y, respectively, in the minimal polynomial of Zi over 

k<u, y) and by multiplying by the least common multiple of the denominators. By 

multiplying Pi by the product of some powers of the initials and separants of the 

elements of dnk{ U, Y}, we may substitute the simultaneous remainders of the 

coefficients of Pi for these coefficients, and then consider Pi as reduced with respect to 

&n k{ U, Y>; having done this transformation of Pi, we still have Pi with degree 

d,“,,(zi) in Zi since the initial of Pi could not have been reduced to zero by the fact that 

it is not in I(X)n k{ U, Y). Now, if Zi is not introduced in & by a differential 

polynomial of order 0 and degree ads,,, then the corresponding Pi would be 
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reduced with respect to -c4, which would contradict the nonnullity of Pi. Conversely, 

assume that each Zi is introduced in &’ by a differential polynomial of order 0 and 

degree di. It is then clear that z1 is algebraic over k(u, y), z2 is algebraic over 

k(u, y) (zl), etc., and z, is algebraic over k(u, y) (zl, . . . , z,_ 1). This implies that X is 

observable. The rest of the proof is classical in the theory of algebraic extensions. We 

note that, by the primality of I(%), and the fact that d is a characteristic set of I(%), 

the differential polynomials in d which introduce zi, . . ..z., are irreducible over the 

fieldsk(u,y),k(u,y)(z,), . . ..k<u.y)(zi, . , z, _ 1), respectively; hence, the degrees of 

k<a,y)(z,), k<u,y)(c,,G . . ..k<a.y)(z,, . . ..z.) over k<u,y) are given by di, 
d2.d 1, . . . , d, . ... . d2. dI , respectively. This completes the proof. 

Remark 5.4. Note that Theorem 5.3 carries with it the relativity of the concept of 

observability, i.e., if we need to test the observability of any variables with respect to 

any others, then the theorem contains an indication to a way to perform that test by 

ranking these variables conveniently. 

5.3.1. Observability and minimal realization 
It could have been thought that the minimality of a realization is equivalent to the 

controllability and observability of that realization. This is not so. The point is that 

the minimality of a realization of an ordinary system is equivalent to its observability 

only. Let us proceed to prove this. 

We assume that the components of the input are independent, i.e., they are 

differential indeterminates. 

Recall (see [6]) that the order o(X) of an irreducibile ordinary system FF is 

defined to be the (nondifferential) transcendence degree tr di,,, k(u,y) of k(u,y) 

over k(u). 

A realization 

i 

ii =fi(xv u), l<i<n, 

yj=hj(x,u), lGj<P 

of X is said to be minimal if the number of components n of x is equal to ~(57). 

Let the above equations be a realization of %. We have 

n=tr d” k(u)k<u)(x)=trd &> k<u, Y, x> = tr d ;<u,y>W~y,~)+4~t^). (*I 

The second and third equalities in (*) are clear. Let us prove the first one. With 

respect to any ranking of k{ U, Y, X > such that the derivatives of U and X all are 

lower than the components of Y, and these derivatives are orderly ranked, the 

equations of the above realization are readily a characteristic set of k(u, y,x). By 

Lemma 4.2, the equations 

Zi;i=fi(X,U), 1 Qi<n 
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form a characteristic set of k (u, x). This proves that there is no nontrivial (nondif- 

ferential) algebraic relation between the xi’s, i.e., the xi)s are algebraically independent 

over k(u). 

We have just shown the following theorem. 

Theorem 5.5. A realization of an irreducible ordinary system is minimal if and only if it 
is observable. 

5.3.2. On universal external trajectories 
Recall that the universal external trajectories of X are the specializations of u and 

y for which there exist expressions of the respective minimal polynomials of the 

components of z whose denominators are not annulled by these specializations of 

u and y. Universal inputs of X would be readily obtainable from a characteristic set of 

X if the minimal polynomials of the components of z are such. This is wanting. 

However, we have the following partial result. 

Theorem 5.6. Let a ranking of k{ U, Y, Z} be fixed such that any derivative of the 
components of U and Y is lower than any component of Z. If 3 is observable and 
possesses an orthonomic characteristic set &, then the universal external trajectories of 
X are characterized by means of the initials of the elements of S? which introduce the 
components of Z, respectively. 

This theorem is quite an immediate consequence of the previous one. 

5.4. Invertibility 

We refer to [6] for an algebraic theory of invertibility. We recall that the invertibil- 

ity of an irreducible system X (with k(X) = k(u, y,z), u=(ul, u2, . . . , u,), 

y=(y,,y,, . . ..Yp). z=(z1,z29 ...t z,)) reads as the equality of the differential output 

rank of X and the (differential) dimension of X. The following theorem is a new test of 

invertibility based on the construction of a characteristic set of the defining differential 

ideal of X. 

Theorem 5.7. Let a ranking of k{ U, Y, Z} be fixed such that the derivatives of the 
components of Y are all lower than the components of V and Z. Let & be a character- 
istic set of I(X). X is invertible if and only if the system of parametric indeterminates of 
p defined by & is a subset of Y. 

This is quite an immediate consequence of Lemma 2.17. 
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