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SUMMARY

The host endolysosomal compartment is often mani-
pulated by intracellular bacterial pathogens. Salmo-
nella (Salmonella enterica serovar Typhimurium)
secrete numerous effector proteins, including SifA,
through a specialized type III secretion system to
hijack the host endosomal system and generate
the Salmonella-containing vacuole (SCV). To form
this replicative niche, Salmonella targets the Rab7
GTPase to recruit host membranes through largely
unknown mechanisms. We show that Pleckstrin ho-
mology domain-containing protein family member
1 (PLEKHM1), a lysosomal adaptor, is targeted by
Salmonella through direct interaction with SifA. By
binding the PLEKHM1 PH2 domain, Salmonella uti-
lize a complex containing PLEKHM1, Rab7, and the
HOPS tethering complex to mobilize phagolysoso-
mal membranes to the SCV. Depletion of PLEKHM1
causes a profound defect in SCV morphology with
multiple bacteria accumulating in enlarged struc-
tures and significantly dampens Salmonella prolifer-
ation inmultiple cell types andmice. Thus, PLEKHM1
provides a critical interface between pathogenic
infection and the host endolysosomal system.

INTRODUCTION

Salmonella enterica (henceforth Salmonella) is a facultative

intracellular pathogen that causes acute gastroenteritis or life-

threatening systemic infections (enteric fever) in humans. After
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host cell invasion, it resides within membrane-bound Salmo-

nella-containing vacuoles (SCVs) and injects virulence factors

into the cell cytosol to regulate host proteins, including the

small GTPase Rab7 and the lysosomal protein marker LAMP1

(Gorvel and Meresse, 2001; Méresse et al., 1999; Patel and

Galán, 2005; Ramsden et al., 2007). As part of the endolysoso-

mal membrane network, Rab7 activation is achieved by HOPS

complex and other guanine-nucleotide exchange factors such

as Mon/Ccz1 (Nordmann et al., 2010; Peralta et al., 2010). Sal-

monella proliferates within this newly established intracellular

niche protected from the immune competent cytosol of the

host cell. By contrast, upon SCV membrane rupture, Salmo-

nella can be marked with ubiquitin or diacylglycerol resulting

in the autophagic elimination of cytosol-exposed bacteria (Bir-

mingham et al., 2006; Gomes and Dikic, 2014; Shahnazari

et al., 2010). Central to the survival of the bacteria inside the

host is the maintenance of the integrity of the SCV and forma-

tion of Salmonella-induced filaments (Sifs), which require a

continuous supply of membranes. The Rab family of small gua-

nine nucleotide-binding proteins are crucial regulators of mem-

brane trafficking within the cell, and Rab effector proteins

including kinases, tethering factors, and motor proteins play

important roles in the pathogenesis of microbial infections

(Stenmark, 2009). For instance, Gram-negative bacteria such

as Salmonella hijack Rab7 function to modify SCV maturation

(Méresse et al., 1999) and to facilitate dynein-mediated centrip-

etal displacement of Salmonella toward the microtubule orga-

nizing center (MTOC) (Guignot et al., 2004; Harrison et al.,

2004). Rab7 is targeted by multiple intracellular pathogens,

including Coxiella burnetti (Berón et al., 2002) and Helicobacter

pylori (Papini et al., 1994), but is actively blocked by Myco-

bacterium tuberculosis, which remain in an early endosomal

compartment positive for Rab5 (Via et al., 1997). Thus, a

diverse array of strategies aid pathogen manipulation of the
nc.
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Figure 1. PLEKHM1-PH2 Domain Regulates

PLEKHM1-Rab7 Interaction

(A) GST-Rab7-precipitated interaction partners

ranked with a descending order of normalized H/L

ratio. H/L ratio > 2 was regarded as regulated

GTP versus GDP (red line). Rab7 interaction part-

ners are highlighted (blue = known; orange =

PLEKHM1).

(B) Samples from the pulldowns carried out in (A)

were tested for the presence of endogenous

PLEKHM1 using an antibody raised against aa

626–642 of human PLEKHM1 protein.

(C) Sequence alignment of hRILP (aa 294–308),

hFYCO1 (aa 1,114–1,128), and PLEKHM1 PH2

from multiple species. The conserved KML (aa

720–722 PLEKHM1) motif is highlighted.

(D) Coimmunoprecipitation of either GFP alone or

GFP-Rab7 WT with PLEKHM1-WT-FLAG or mu-

tants. All blots and images are representative of at

least n = 3 experiments. See also Figure S1 and S2

and Tables S1 and S2.
host endolysosomal system to create a suitable intracellular

niche for replication and survival.

Salmonella effector proteins, such as Salmonella-induced fila-

ment protein A (SifA), are translocated into the host endomem-

brane system and cytosol mediating membrane recruitment to

the growing SCV (Beuzón et al., 2000; Stein et al., 1996). One

SifA effector, SifA and kinesin-interacting protein (SKIP), inter-

acts directly with SifA and Rab9 (but not Rab7) via its pleckstrin

homology (PH) domain, is required for kinesin recruitment and

Salmonella pathogenesis, and SifA through SKIP depletes host

cells of lysosomal degradative enzymes by inhibiting Rab9-

dependent retrograde trafficking of mannose-6-phosphate re-

ceptors (Boucrot et al., 2005; Diacovich et al., 2009; Dumont

et al., 2010; Jackson et al., 2008; McGourty et al., 2012; Ohlson

et al., 2008). SifA has been suggested to recruit Rab7 via uncou-

pling Rab7 fromRab7-interacting lysosomal protein (RILP); how-

ever, no direct interaction between SifA and Rab7 has been

shown (Harrison et al., 2004; Jackson et al., 2008), indicating

that another factor may be involved in linking SifA with Rab7

function.

We therefore set out to identify interactions between SifA and

host proteins for the recruitment of Rab7. In a stable isotope la-

beling of amino acids (aa) in cell culture (SILAC)-based mass

spectrometry (MS) analyses, we found PH and RUN-domain

containing protein 1 (PLEKHM1) as a specific interactor of

active Rab7 GTPase as well as HOPS complex (McEwan

et al., 2015). We show that PLEKHM1 is a direct target of Sal-

monella, interacting with SifA through the second PH domain

(PH2). The SifA-PLEKHM1 interaction is required by the path-

ogen to recruit endolysosomal membrane pools that are

essential for the growth of the SCV and proliferation in primary

cells and tissues from infected mice. Furthermore, reconstitu-

tion with wild-type (WT) PLEKHM1 rescued SCV morphology,
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while SifA interaction mutants displayed

abnormal ‘‘bag-like’’ SCVs similar to

those observed after PLEKHM1 HOPS

or Rab7 depletion. These findings indi-

cate that PLEKHM1 regulates SifA-

dependent Salmonella vacuole dynamics in concert with the

HOPS complex and Rab7.

RESULTS

PLEKHM1 Is an Adaptor for Rab7
To screen Rab7 interaction partners in a dynamic and compara-

tive way, we performed a SILAC-based MS analysis. Purified

GST-tagged Rab7, preloaded with either GDP (inactive) or

GTPgS (active), was incubated with (Arg0 and Lys0) LIGHT-

or (Arg10 and Lys8) HEAVY-labeled HeLa cell lysates, respec-

tively (Figure S1A available online). Subsequent MS analysis

revealed a total of 203 interacting proteins (161 quantified),

with 17 displaying heavy/light (H/L) ratios R2 (Figure 1A, red

line; Rab7.GTP enriched). We found PLEKHM1 as a preferential

interacting partner of GTPgS-loaded Rab7 (Figurse 1A, S1B, and

S1C; Table S1; H/L ratio 3.7), along with other knownRab7-inter-

acting proteins (Figure 1A; Blue), including FYCO1 (Pankiv et al.,

2010), Vps35 (Seaman et al., 2009), and Rubicon (Sun et al.,

2010; Tabata et al., 2010) (Figure 1A). Using an antibody raised

against human PLEKHM1, we confirmed that endogenous

PLEKHM1 is enriched specifically in the Rab7.GTPgS fraction

(Figure 1B). We found that PLEKHM1 specifically interacted

with Rab7 but not Rab9 or other late endocytic or recycling

Rabs (Figure S2A).

In mapping the interaction between PLEKHM1 and Rab7, only

regions of PLEKHM1 that contained both the PH2 domain and

C1/ZnF were able to coprecipitate and colocalize with Rab7,

while neither domain in isolation was able to do so (Figures

S2B and S2C). Sequence analysis of the PH2 domain revealed

a highly conserved Lys-Met-Leu (KML) motif (Figure 1C; Table

S2) that was essential for the interaction and colocalization

with Rab7 (Figures 1D and S2D). Moreover, using GST-RILP to
1, January 14, 2015 ª2015 Elsevier Inc. 59



precipitate the active (GTP-bound) fraction of Rab7 (Figure S2E)

(Sun et al., 2009), we observed stabilization of endogenous

Rab7.GTP only in PLEKHM1-WT but not in Rab7-interaction

(-DKML or -DC1/ZnF) mutant cells (Figure S2F). In agreement,

depletion of PLEKHM1 led to a reduction of Rab7.GTP levels

by approximately 60% (Figures S2G and S2H). This indicated

that Rab7 interaction with PLEKHM1 is essential for preserving

active pools of Rab7 in cells.

PLEKHM1 Localization at the Lysosome Is Dependent
on Both Rab7 and HOPS
To gain a better understanding of PLEKHM1 function, we per-

formed MS analysis of PLEKHM1 interaction partners and iden-

tified multiple components of the homotypic fusion and vacuole

protein sorting (HOPS) complex (McEwan et al., 2015). These in-

teractions indicated that PLEKHM1 acts as a specific adaptor

molecule for Rab7-HOPS complex and that PLEKHM1 might

be mutually regulated in such a trimeric complex. We therefore

wanted to address how PLEKHM1 positioning at the lysosome

may be affected in the absence of HOPS and Rab7.

Stable overexpression of PLEKHM1-GFP in U20S cells

induced the formation of enlarged, clustered vesicles that were

positive for both Rab7 and LAMP2 (Rab7+/LAMP2+) and formed

two distinct subpopulations: a tightly associated cluster of vesi-

cles at the perinuclear region (Figure 2Ai) and individual or pairs

of vesicles localized toward the cell periphery (Figure 2Aii). These

vesicles may represent subpopulations of lysosomes at different

states of activation, as lysosomes traffic toward the cell periph-

ery under nutrient-rich conditions and toward the perinuclear

regions during starvation (Korolchuk et al., 2011). Next, to

confirm these were lysosomes, we performed a pulse chase

experiment using fluorescently labeled dextran. Cells were incu-

bated with Alexa 647-labeled dextran and allowed it to traffic to

the lysosomes (>3 hr). Next, we pulsed for 15 min with Alexa 555

dextran; washed and replaced the growth media; and allowed

the experiment to proceed for 0, 30, 60, and 180 min prior to fix-

ation of cells (Figure S3A). We observed a time-dependent in-

crease in Alexa555 dextran staining of PLEKHM1 vesicles,

particularly at the later time points (180 min) indicating trafficking

to the lysosome, whereas the dextran647 colocalization did not

vary greatly over time, indicating its presence in the lysosome

(Figures S3B–S3D). Thus, we propose that PLEKHM1 resides

mainly on the lysosomes with LAMP2 and Rab7.

Next, transient siRNA-mediated depletion of Rab7 (Figure 2B;

siRab7) caused a profound dispersal of the PLEKHM1-positive

vesicles and significantly ablated the colocalization with

LAMP2 (Figures 2B and 2E) with only a few small PLEKHM1/

LAMP2 puncta evident (Figure 2B, ROI enhancement, arrow

heads). Loss of hVps41, a component of HOPS complex, frag-

mented PLEKHM1 vesicles into smaller punctate structures

and also affected PLEKHM1 colocalization with both Rab7 and

LAMP2, but not as severely as Rab7 depletion (Figures 2C and

2E). Silencing of exogenous and endogenous PLEKHM1 caused

a dispersal of both Rab7 and LAMP2 signals, with the latter form-

ing smaller vesicles (Figure 2D; Table S3), indicating that the

enlarged lysosomes observed were induced by PLEKHM1 over-

expression. Furthermore, depletion of Rab7 (Figure 2F) or muta-

tion of the Rab7 interaction surfaces (Figure S3E) diminished

PLEKHM1 coprecipitation with hVps41, indicating a depen-
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dency on Rab7 for hVps41 interaction. Taken together, these

data suggest that PLEKHM1 primarily interacts with Rab7 and

depletion of either Rab7 or HOPS complex disturbs PLEKHM1

localization at the lysosome.

Salmonella Intracellular Proliferation Requires
PLEKHM1
Salmonella vacuole biogenesis is dependent upon the endo-

cytic-like maturation of a spacious vacuole to one localized at

the MTOC, which retains LAMP1/LAMP2 and CD63 proteins

and extrudes large filamentous extensions, or Sifs (Figure S4A)

(Dumont et al., 2010; Guignot et al., 2004; McGourty et al.,

2012; Méresse et al., 1999; Steele-Mortimer et al., 1999).

Ruptured SCVs allow Salmonella to hyperproliferate in the host

cytosol (Figure S4A). Thus, we tested the effect of PLEKHM1

depletion on Salmonella proliferation using colony-forming units

(cfu) as a measurement of intracellular proliferation. Salmonella

infection of shCntrl HeLa cells resulted in continuous intracellular

growth, with approximately 15-fold increase at 24 hr postinfec-

tion (p.i.) (Figure S4B); however, shRNA depletion of PLEKHM1

resulted in a statistically significant 2- to 2.5-fold diminished Sal-

monella growth (Figures 3A and S4B) that mirrored by Rab7

depletion (Figure 3B; siRab7#2 and siRab7#3). Consistently,

we observed similar levels of decreased Salmonella proliferation

in primary Plekhm1�/� mouse embryonic fibroblasts (MEFs)

(Figure 3C) and Plekhm1�/� primary macrophages derived

from the peritoneal cavity (Figure 3D) compared to Plekhm1+/+

cells, respectively. We then tested whether genetic loss of

Plekhm1 in mice affected in vivo proliferation. Next, age-

matched Plekhm1+/+ and Plekhm1�/� mice were infected with

WT Salmonella (SL1344) by intravenous injection, and the livers

and spleens were harvested 5 days p.i., and cfu counts were

analyzed. Intravenous infection of Plekhm1�/� mice resulted in

a moderate, but statistically significant, decrease in Salmonella

proliferation in both the spleen and liver of infected animals,

compared to congenic C57BL/6 mice (Figures 3E and 3F). Over-

all, these results confirmed that PLEKHM1 is a regulator of Sal-

monella proliferation in multiple cell types and is required for

efficient infection of mice.

PLEKHM1 and SifA Form a Functional Complex in
Infected Cells
Next, we sought to understand how PLEKHM1 influences Sal-

monella proliferation in cells. Overexpression of PLEKHM1 re-

vealed that PLEKHM1 localizes with LAMP1 to distinct regions

of the SCV during infection (Figure 4A, arrow heads). SifA is an

essential, SCV localized, bacterial effector protein for Salmonella

virulence, Sif formation, and SCV integrity (Jackson et al., 2008;

Ohlson et al., 2008) and is essential for systemic infection (Beu-

zón et al., 2000; Stein et al., 1996). PLEKHM1 shares a similar

domain structure to SKIP, which was previously shown to

localize and interact with SifA (Diacovich et al., 2009). Sur-

prisingly, we found that PLEKHM1, similar to SKIP, could coloc-

alize with 2xHA-epitope-tagged SifA (S12023-2HA-SifA) at the

SCV (Figure 4B; ROI, arrow heads) and with SifA that was not

associated with the SCV but present on vesicles (Figure 4B,

open arrows). We could coprecipitate PLEKHM1 and endoge-

nous Rab7 with 2xHA-SifA from an infected PLEKHM1-inducible

cell line at 16 hr p.i. (Figure 4C) but not from noninfected cells.
nc.



Figure 2. PLEKHM1, Rab7 and Vps41 Coordinate Lysosome Tethering

(A–D) (A) U2OS PLEKHM1-WT-GFP (green) cells were treated with either nontargeting controls siRNA (siCntrl) or siRNA against Rab7 (siRab7; [B]), hVps41

(siVps41; [C]), or PLEKHM1 (siPLEKHM1, [D]). Endogenous LAMP2 (red) Rab7 (magenta) and DAPI (nucleus, blue) were stained. Boxed regions are shown as

enhanced region of interest (ROI). Scale bar 10 mm

(E) Pearson’s correlation coefficient analysis of PLEKHM1/Rab7 and PLEKHM1/LAMP2 of (A)–(C). Mean ± SEM of n = 150 cells per condition. ***p <

0.0003.

(F) Immunoprecipitation of hVps41 and PLEKHM1 from HEK293T cells transfected with siCntrl or siRab7 and PLEKHM1-WT-GFP plus Flag-hVps41. Antibodies

to GFP (PLEKHM1), Flag (hVps41), Rab7, and Vinculin were used. See also Figure S3 and Table S3.
Therefore, we hypothesized that PLEKHM1, SifA, and Rab7

formed a trimeric complex in cells. Concordantly, SifA only co-

precipitated with Rab7 in the presence of PLEKHM1-WT and

not with any mutant of PLEKHM1 that fails to interact with

Rab7 (DPH2, DKML, or DC1/ZnF; Figure 4D). Thus, PLEKHM1

and SKIP (PLEKHM2) may represent a class of related proteins

being used by Salmonella, through SifA, to manipulate the endo-

lysosomal system.
Cell H
PLEKHM1 Interacts Directly with SifA
Next, we were interested to test whether PLEKHM1 interacted

with SifA. PLEKHM1 readily coprecipitated with SifA but

not the related protein SifB (Figure 5A). Indeed, full-length

maltose-binding protein (MBP)-tagged PLEKHM1 purified

from E.coli lysates interacted directly with GST-tagged SifA

and GST-GABARAP (McEwan et al., 2015) but not GST alone

or GST-SifB (Figure 5B). Thus, PLEKHM1 interacts directly
ost & Microbe 17, 58–71, January 14, 2015 ª2015 Elsevier Inc. 61



Figure 3. Loss of PLEKHM1 Inhibits Salmo-

nella Proliferation

(A) shCntrl and shPLEKHM1 (shPLEK#1 and

shPLEK#2) HeLa cell lines were infected with WT

Salmonella (SL1344), lysed at 2 and 24 hr p.i., and

bacterial colonies were counted on selective agar

plates. Cfu counts normalized to 2 hr p.i. Mean of

n = 3 independent experiments ± SD. **p = 0.0037;

*p = 0.0158 compared to shCntrl. Unpaired t test.

(B) SL1344 Salmonella proliferation in HeLa cells

at 24 hr p.i. and 72 hr after Rab7 depletion using

two different siRNAs. Cfu shown as fold change

compared to 2 hr p.i. Error bars represent mean ±

SD of n = 3 independent experiments. **p < 0.005;

*p < 0.02. Unpaired t test.

(C) Cfu counts (fold 2 hr p.i.) of Plekhm1 WT

(Plekhm1+/+) and Plekhm1 knockout (Plekhm1�/�)
primary MEFs. Error bars represent mean ± SD of

n = 3 independent experiments. **p = 0.0028; un-

paired t test

(D) Macrophages derived from the peritoneal

cavity (PDM) of Plekhm1+/+ (blue circle) and

Plekhm1�/� mice (red triangle) infected with Sal-

monella (SL1344) grown overnight to saturation

and cfu measured at 24 hr p.i. Results expressed

as fold change from 4 hr p.i. Single shapes repre-

sent macrophages from individual mice. **p =

0.003 unpaired t test.

(E and F) (E) Plekhm1+/+ C57BL/6 (blue circle)

or congenic Plekhm1�/� (red inverted triangle)

littermate mice were intravenously infected with

approximately 1,300 cfu WT Salmonella SL1344

and sacrificed at day 5 p.i. Ten animals were used

per condition. Spleens (E) and livers (F) were iso-

lated and the cfu measured. Statistical analysis

with unpaired t test where p < 0.05 was deemed

significant. p = 0.0036 (E); **p = 0.0083 (F). See also

Figure S4.
with SifA. Indeed, the PLEKHM1-SifA interaction was depen-

dent upon the second PH domain of PLEKHM1 (PH2; Fig-

ure 5C), and the N-terminal domain of SifA (aa 1–140; Fig-

ure S5A). In addition, interaction with the N-terminal domain

of SifA could be out-competed to a certain degree with

increasing concentrations of SKIP, indicating that PLEKHM1

and SKIP interact with SifA through a similar surface (Fig-

ure S5B). Coexpression of both SKIP and PLEKHM1 in the

absence of SifA showed little overlapping colocalization (Fig-

ure S5C), suggesting that they operate in functionally distinct

compartments. Site-directed mutagenesis of the PH2 domain

identified three residues, E729, T730, and R769, that when
62 Cell Host & Microbe 17, 58–71, January 14, 2015 ª2015 Elsevier Inc.
mutated to alanine disrupted PLEKHM1

interaction with SifA (Figures 5D and

S5D). Importantly, neither E729A nor

R769A mutations affected PLEKHM1-

Rab7 interaction or colocalization (Fig-

ures S6A–S6C), despite their proximity

to the KML motif. Thus, the SifA (E729

and R769) and Rab7 (‘‘KML’’ motif,

aa 720–722) interaction regions of

PLEKHM1-PH2 domain represent mutu-

ally exclusive surfaces that may facilitate
simultaneous binding of both Rab7 and SifA. Therefore, we

generated a molecular model of the complex containing

PLEKHM1-PH2 domain and both SifA and Rab7. To generate

our model, we used the SKIP-PH-SifA structure (PDB:

3CXB), the Sec3-PH domain (PDB:3A58) complexed with

Rho GTPase, and phosphatidylinositol via two distinct sur-

faces, Rab7 alone (PDB: 1T91) and Rab7:RILP (PDB: 1YHN),

which was superimposed on the Rho GTPase structure. Using

the information at hand, we hypothesized that the PLEKHM1-

PH2 (magenta/blue; center) can interact simultaneously with

both SifA (right) and Rab7 (left). K720 of the PH2 domain is

orientated toward the corresponding RILP K304 binding site



Figure 4. PLEKHM1 Localizes with SifA in Proximity to the SCV

(A) PLEKHM1 shRNA-depleted cells were transiently transfected with shRNA-resistant PLEKHM1-WT-2xFlag, infected with GFP-expressing WT Salmonella

(SL1344), fixed at 20 hr p.i., and stained with Anti-PLEKHM1 (PLEKHM1;Red) and anti-LAMP1 (magenta). DAPI (blue) and GFP-Salmonella (green) is shown in the

merged image. Boxed regions are enhanced in the panels labeled ROI. Arrows indicate structures of interest. Scale bars 10 mm (large cells) and 2 mm (ROI).

(B) Salmonella expressing 2xHA-tagged SifA (pACYC-sifa-2HA)-infectedMyc- PLEKHM1 HeLa cells at 14 hr p.i. stained for the presence of Myc-PLEKHM1 (red)

and HA(SifA; magenta). Enhancements of boxed regions shown for clarity. Arrows indicate structures of interest. Scale bars 10 mm.

(C) Immunoprecipitation of 2xHA-SifA from noninfected or Salmonella-infected PLEKHM1-2xFlag HeLa Flp-In T-REx 14h p.i. Anti-Flag (PLEKHM1), anti-Rab7,

and anti-HA was probed. HA-SifA was only detected in the precipitated fraction due to low levels of expression.

(D) Immunoprecipitation of GFP-Rab7-WT with Myc-SifA in the presence or absence of PLEKHM1-WT-Flag or PLEKHM1 Rab7 interaction mutants (PLEKHM1-

DKML, -DPH2 or -DC1/ZnF). Samples were probed for the presence of PLEKHM1 (Flag), Myc (SifA), and GFP (Rab7).

Cell Host & Microbe 17, 58–71, January 14, 2015 ª2015 Elsevier Inc. 63



Figure 5. PLEKHM1 Interacts with SifA through Its PH2 Domain

(A) Coimmunoprecipitation of either Plekhm1-2xFlag or SKIP-2xFlag cotransfected GFP alone, GFP-SifA, GFP-SifB, or GFP-Rab7 from uninfected HEK293T

cells. GFP was precipitated using anti-GFP trap beads.

(B) GST pull-down of recombinant MBP-tagged PLEKHM1-6xHIS with GST alone, GST-SifA, GST-SifB, and GST-GABARAP.

(C) Coimmunoprecipitation Myc-SifA with PLEKHM1 domain deletion mutants.

(D) Immunoprecipitation of Myc-tagged SifA (WT) from noninfected HEK293T cells with PLEKHM1-WT-Flag, PLEKHM1-E729A-, or PLEKHM1-R769A-

Flag.

(E) PLEKHM1-PH2 was modeled on the SKIP-PH (PDB: 3CXB), and the Sec3-PH domain (PDB:3A58) interaction with the GTPase Rho and phosphati-

dylinositol via two distinct surfaces. Rab7 alone (PDB: 1T91) and Rab7:RILP (PDB: 1YHN) interaction was overlaid on the Rho GTPase structure. PLEKHM1-

PH2 (magenta/blue; center) can potentially interact with both SifA (right) and Rab7 (left). K720 is orientated toward the corresponding RILP K304 binding site

on Rab7 (boxed region; inset), and the C-terminal tails of Rab7 and SifA are orientated in the same direction for insertion into the same membrane. See also

Figures S5 and S6.
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on Rab7 (boxed region; inset), and the E729 and R769 of

PLEKHM1 show corresponding interactions with the SifA-

SKIP interaction surface (Figure 5E). Thus, we propose that

PLEKHM1-PH2 domain can directly interact with both Rab7

and SifA to facilitate recruitment to SCVs and/or Sifs.

PLEKHM1 Regulates Membrane Biogenesis of the
Salmonella-Containing Vacuole
Based on the above results, we hypothesized that PLEKHM1

may act as an adaptor platform for the regulation of SCV mem-

brane dynamics.

HeLa shCntrl and shPLEKHM1 cells were infected with GFP-

expressing Salmonella (SL1344-GFP), fixed at 20 hr p.i., and

labeled for the SCV marker protein LAMP1. Control cells dis-

played large Salmonella microcolonies with 75.5% ± 2.0% of

Salmonella residing within individual LAMP1 vacuoles with

extended Sifs (Figures 6A and 6C). In contrast, more than

70% of GFP-Salmonella-infected, PLEKHM1-depleted cells

displayed multiple Salmonella (R4) within a single enlarged

vacuole characterized by a ring of LAMP1 (Figure 6B) and

significantly fewer Sifs compared to control cells (Figure 6C).

Indeed, no individual LAMP1-positive vacuoles were discern-

able by optical z stack analysis (Movie S1) or by electron micro-

graph (EM) images of infected shPLEKHM1 cells (Figure 6Dii,

boxed area and arrows), compared to the tightly associated

individual vacuoles in shCntrl cells (Figure 6Di, boxed area

and arrows). Quantification of random EM sections showed

approximately 63% ± 3.8% of shPLEKHM1-infected cells

had >4 Salmonella per vacuole, compared to 34% ± 6.9%

in shCntrl cells (Figure 6E). Live imaging of GFP-Salmonella-in-

fected mCherry-LAMP1 expressing shCntrl, shPLEKHM1, or

siRab7 HeLa cells revealed that the ‘‘bags’’ were generally

static and showed very little movement, and no Sifs could be

seen emanating from the Salmonella microcolony (Figures

S7B and S7C; Movies S3 and S4), in stark contrast to the

extensive and highly dynamic Sif networks present in the

shCntrl HeLa (Figure S7A; Movie S2).

The regulation of PLEKHM1 localization and function is tightly

linked to that of Rab7 and HOPS complex, as already indicated

above. In accordance, depletion of Rab7 (Figure 6G), hVps41

(Figure 6H), hVps39 (Figure 6I), or hVps11 (Figure 6J) all resulted

in a similar phenotype of altered SCV morphology (i.e., a bag of

multiple Salmonella contained within a ring of LAMP1). These

findings indicate that PLEKHM1 regulates Salmonella vacuole

dynamics in concert with the HOPS complex and Rab7, all of

which are essential for maintaining the normal integrity of the

SCV compartment.

PLEKHM1 PH2 Domain Mutants Influence Salmonella

Proliferation and Vacuole Morphology
Finally, we wanted to assess whether the PLEKHM1-PH2

domain mutations that influence the interaction with SifA are

relevant for Salmonella proliferation and vacuole formation. We

expressed shRNA-resistant PLEKHM1-WT, -DPH2, -E729A,

-T730A, and -R769A in shRNA-depleted PLEKHM1 cells and

performed gentamycin protection assays and confocal micro-

graph analysis of the SCV at 24 hr p.i. In PLEKHM1-WT-express-

ing cells, we observed PLEKHM1 colocalization with LAMP1 at

distinct regions of the SCV (Figure 7A, closed arrowheads) and
Cell H
also to the remnants of Sifs (Figure 7A, open arrows). However,

none of the PH2 domain mutants colocalized with LAMP1 at the

SCV, and the characteristic ‘‘bag’’ of Salmonella was evident in

all the mutants (Figures 7B–7D; quantified in Figure 7F; T730A

data not shown). In the gentamycin protection assays, Salmo-

nella proliferation in PLEKHM1-DPH2-reconstituted cells was

approximately 50% reduced compared to PLEKHM1-WT,

similar to the effect of PLEKHM1 depletion (Figure 7E). Thus,

PLEKHM1 is a lysosomal adaptor protein that lies at a critical

juncture between the host lysomembrane system and the Sal-

monella proliferative niche that when disrupted affects both pro-

liferation and SCV morphology.

DISCUSSION

The Salmonella effector protein SifA is essential for the formation

of Sifs (Stein et al., 1996) and themaintenance ofSalmonella vac-

uoles (Beuzón et al., 2000). Accordingly, Salmonella lacking SifA

are more frequently found in the host cytosol; although the un-

derlying mechanism is not known, the bacteria are potentially

released from the SCV due to membrane rupture. As SifA is

critically involved in the formation of the membrane-consuming

filamentous structures (Sifs), it is suggested that SifA somehow

utilizes and redirects endogenous membrane sources for SCV

biogenesis. One potential SifA target represents Rab7 as Sif for-

mation depends on Rab7 function (Méresse et al., 1999). Yet,

how SifA impinges on membrane trafficking events controlled

by Rab7 remained enigmatic.

Herein, we characterized PLEKHM1, a multifunctional endo-

cytic adaptor protein that can directly interact with the small

GTPase Rab7, components of the HOPS complex, and Salmo-

nella effector protein SifA. Formation of this complex would

ensure a feedforward loop that would rapidly amplify GTP

loading of Rab7 by HOPS complex at the membranes.

PLEKHM1 was identified in complex with Rab7-GTP with known

effectors like RUBICON, and loss of PLEKHM1 led to reduced

Rab7-GTP in cells. Critically, all of these interactions intersect

at the endolysosomal compartment, as loss of PLEKHM1

causes gross morphological changes in the SCV and limits the

intracellular proliferation of Salmonella.

Cells harbor an intricate machinery for orchestrating the traf-

ficking of cellular cargo to ensure that they end up in the right

place at the right time—whether this is at the plasma membrane

or degradation in the lysosomes. The large Rab family of small

guanine nucleotide-binding proteins as well as the HOPS com-

plex have a crucial role in regulating this process (McEwan

et al., 2015). They can interact with effector proteins such

as kinases, adaptors, tethering factors, and motor proteins,

contributing to processes such as vesicle budding at the plasma

membrane and transport, sorting of cargo, and fusion of vesicles

such as endosome/lysosome or autophagosome/endosome/

lysosome fusion (Balderhaar and Ungermann, 2013; Stenmark,

2009). Our study provides insights into how Salmonella (but

potentially also other pathogens) hijacks the endogenous mem-

brane trafficking machinery—represented by Rab7 and the

HOPS complex—to establish a proliferative intracellular niche

following cell invasion.

To date, the role of the HOPS complex in mammalian sys-

tems has been poorly addressed, while the majority of our
ost & Microbe 17, 58–71, January 14, 2015 ª2015 Elsevier Inc. 65



Figure 6. PLEKHM1 Depletion Causes Abnormal Salmonella-Containing Vacuoles

(A and B) (A) shRNA control or shPLEKHM1 (B) HeLa cells were infected with GFP-expressing WT Salmonella (SL1344-GFP; green) stained for endogenous

LAMP1 (red) and DAPI (blue). Scale bar 10 mm.

(legend continued on next page)
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knowledge stems from studies carried out in yeast. Although

these studies led us to a vivid understanding of the molecular

architecture of this complex and how it is organized in yeast

(reviewed in Balderhaar and Ungermann, 2013), the complex

composition in higher organisms is not yet fully elucidated.

Specifically, despite clear evidence of Vps39 directly interact-

ing with Rab7 (Ypt7) (Bröcker et al., 2012), there are conflicting

reports of hVps39 interacting with Rab7 (Caplan et al., 2001;

Rink et al., 2005) and RILP (Caplan et al., 2001; van der Kant

et al., 2013). Conspicuously, yeast does not have any

PLEKHM1 or RILP homologs, strongly suggesting that the

mammalian system has potentially evolved so that HOPS can

function in conjunction with Rab7-adaptor proteins in various

endocytic pathways. Recently, there have been several func-

tional studies addressing the role of mammalian HOPS com-

plex and its adaptors. For example, a genetic screen identified

67 different mutations within all six HOPS complex genes that

conferred a resistance to infection by the hemorrhagic-fever-

causing Ebola virus, notably characterized by an arrest of viral

membrane fusion and inhibition of escape from the lysosomal

compartment (Carette et al., 2011). In addition, RILP has also

been shown to interact with HOPS complex, and overexpres-

sion of HOPS-deficient binding mutants reduced Ebola virus

infectivity by half (van der Kant et al., 2013). Currently, little is

known of any involvement of HOPS complex during the Salmo-

nella infection cycle. We provide evidence for a functional syn-

ergism between PLEKHM1, HOPS, and Rab7 in regulating the

SCV. The absence of any of these components causes

substantial deformation of the SCV and limited proliferation of

multiple Salmonella within a single, enlarged vacuole. Interest-

ingly, the lack of Sifs does not appear to completely inhibit the

growth of Salmonella in a vacuole and may represent a func-

tional redundancy for this structure with regards to overall sur-

vival in the cell.

The unique ability of PLEKHM1 is to act as a protein interaction

platform coupling different pathways to the Rab7/HOPS com-

plex. The Salmonella effector protein SifA apparently hijacks

this hub by direct binding to PLEKHM1. SifA is a critical virulence

factor that promotes continuous membrane exchange with the

late endosomal/lysosomal compartment (Beuzón et al., 2000;

Dumont et al., 2010; Méresse et al., 1999). SifA loss results in

SCV membrane rupture and consequent exposure to the host

cytosol due to the uncoordinated recruitment of effector proteins

by SopD2 and SseJ (Ruiz-Albert et al., 2002; Schroeder et al.,

2010), triggering the ubiquitin-dependent recruitment of the au-

tophagic machinery to cytosolic Salmonella (Cemma et al.,

2011; Rogov et al., 2013; Thurston et al., 2009; Wild et al.,
(C) Representative of images of Sif (left) and bag (right) structures and quantificatio

DAPI (blue) staining is shown. Arrows indicate relevant structures. Infected cell

percentage of total infected cells. Error bars indicate mean ± SEM; n = 3 indepe

(D) Representative EM images from shCntrl (left) or shPLEKHM1 (shPLEK#2) HeLa

vacuoles of interest. Scale bar 1 mm.

(E) Quantification of (D) 200 cell profiles per random section. Each infected cell obs

to four bacteria or vacuoles containing greater than four bacteria. Error bars indi

compared to shCntrl.

(F–J) (F) Representative confocal micrographs of siCntrl, (G) siRab7-, (H) siVps41

(green), stained with anti-LAMP1 (red) and DAPI (blue). Images are representative

labeled ROI. Arrows indicate structures of interest. Scale bars 10 mm.

See also Figure S7.
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2011; Zheng et al., 2009). Previously, it was unclear how SifA

and other effectors coordinate membrane delivery and fusion

with the SCV. For example, SifA is responsible for Rab7 recruit-

ment but does not bind to it directly (Harrison et al., 2004), and

RILP is absent from Sifs (Harrison et al., 2004); neither does it

interact with SifA (Jackson et al., 2008). SKIP does bind to

SifA, is essential for Salmonella pathogenesis, and, interestingly,

interacts with Rab9 but not Rab7 (Boucrot et al., 2005; Diacovich

et al., 2009; Dumont et al., 2010; Jackson et al., 2008; Ohlson

et al., 2008). As such, SifA utilizes SKIP to subvert the Rab9-

dependent retrograde trafficking of mannose-6-phosphate re-

ceptors and detoxifies lysosomes (McGourty et al., 2012).

Recently, the HOPS subunit Vps41 together with LAMP1/2 and

VAMP7 have been shown to act as a transport system for lyso-

some-associated membrane proteins (Pols et al., 2013). Impor-

tantly, these LAMP1 carriers act independently and in parallel to

mannose-6-phosphate receptor transport (Pols et al., 2013).

Indeed, Rab7 localized to these carriers, but it is unclear if

Rab7 effector proteins are also present (Pols et al., 2013). How-

ever, these carriers would provide a clear source of membrane,

devoid of M6PR, for the expanding SCV. The PLEKHM1/

Rab7/HOPS complex is thus clearly essential for dynamic SCV

compartment morphology, perhaps through the recruitment of

membranes for SCV growth.

The formation of Sifs requiresmultipleSalmonella effector pro-

teins, including SifA, SseF, SseJ, SopD2, SseG, and PipB2 (Bru-

mell et al., 2002a; Kuhle et al., 2004), and the network can be

distinguished by several different types of tubular networks—

including Salmonella-induced SCAMP3 tubules (Mota et al.,

2009) and LAMP1-negative tubules (Schroeder et al., 2010).

Interestingly, a recent report showed high-resolution EM images

of the SCV and the emanating Sif structures (Krieger et al., 2014),

which revealed two distinct types of Sif; a double membrane and

a single membrane (Type 2 and Type 1, respectively). PLEKHM1

could directly impinge on the formation of both types, as we do

not see any Sifs in PLEKHM1-depleted cells. Alternatively, the

absence of PLEKHM1/Rab7/HOPS may inhibit the partitioning

of the SCV during bacterial replication. Therefore, the identified

role of PLEKHM1 opens up a paradigm on how Salmonella

manipulate the endolysosomal compartment: on the one hand

detoxifying lysosomes through SifA/SKIP/Rab9 and on the other

via the recruitment of the lysosomal membrane machinery by

SifA/PLEKHM1/Rab7/HOPS, providing a stable intracellular pro-

liferative niche.

In conclusion, this study provides a link between the impor-

tant Salmonella effector protein SifA and Rab7-dependent bio-

genesis of Sifs and membrane dynamics. These observations
n of structures after 24 hr p.i. in shPlek and shCntrl HeLa cells. LAMP1 (red) and

s were scored to have either Sif or ‘‘bag’’ structures and were expressed as

ndent experiments. ***p < 0.001; unpaired t test compared to shCntrl.

cells imaged at 20 hr p.i. Boxed area shown as enhancement. Arrows indicate

ervedwas assigned to one of the following categories: vacuoles containing one

cate mean ± SEM; n = 3 random sections from independent blocks. *p < 0.03

-, (I) siVps39-, and (J) siVps11-depleted HeLa cells 20 hr p.i. with SL1344-GFP

of n = 3 independent experiments. Boxed regions are enhanced in the panels
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Figure 7. PLEKHM1 PH2 Domain Mutants Affect Salmonella Proliferation and Vacuole Morphology

(A–D) HeLa cells depleted of PLEKHM1 (shPLEK#1) were transiently reconstituted with shRNA-resistant PLEKHM1-WT (A), -DPH2 (B), E729A (C), and R769A (D);

infected with SL1344-GFP WT Salmonella; and the SCVs were analyzed by confocal microscopy. Images shown are representative z stack reconstructions of

infected cells. Scale bar 10 mm unless otherwise stated.

(E) Proliferation of Salmonella in shPLEKHM1 cells transiently overexpressing PLEKHM1WT and PH2 domain mutant. Cfu counts calculated as fold 2 hr p.i. and

expressed as a percentage of shCntrl HeLa cells. n = 4 mean ± SD.

(F) Quantification of percentage cells with Salmonella ‘‘bag’’ structure of (A)–(D). n = 60 cells per condition. Mean ± SD. ***p < 0.002, Student’s t test compared to

PLEKHM1-WT-expressing cells.

(G) Proposed model of how Salmonella recruit PLEKHM1/Rab7/HOPS by SifA to the SCV.
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might also be relevant to the pathogenesis of other intracel-

lular bacteria that reside in the pathogen-inhabited compart-

ments like Legionella spp., Chlamydia spp., Coxiella spp., Bar-

tonella spp., Francisella spp., and many others. Thus,

targeting of PLEKHM1 might be a potential strategy to inter-

fere with the intracellular growth of pathogenic bacteria in

the host cells.

EXPERIMENTAL PROCEDURES

Salmonella Infections

HeLa cells were plated at 33 105 cells in 6-well plates in Dulbecco’s modified

Eagle’s medium (DMEM) with 10% FCS and antibiotics (penicillin and strepto-

mycin). After 18 hr, media were changed to antibiotic-free medium, and cells

were transfected with the indicated plasmids using Genejuice (Novagen). In-

fections with Salmonellawere performed 24 hr after transfection. An overnight

(stationary) culture of Salmonella was diluted 1:33 and bacteria were grown at

37�C for 3 hr until the OD600 was typically 1.5–2.0. Salmonella (SL1344 and

S12023) infection was performed at a multiplicity of infection of 100. Salmo-

nella were allowed to invade cells for 20 min. Afterward, media were replaced

by DMEM containing 100 mg/ml gentamycin for 1 hr and replaced with DMEM

containing 10% FBS and 20 mg/ml gentamycin. For cfu counts, cells were

lysed in buffer (PBS with 0.1% Triton X-100) and plated on agar plates. For mi-

croscopy studies, cells were fixed in 4% paraformaldehyde for 20 min at room

temperature, followed by washing with PBS containing 20 mM glycine, and

processed for immunofluorescence. For siRNA experiments, HeLa cells

(2.5 3 105) were transfected with siRNA using Lipofectamine RNAi Max

(Thermo), and infection was performed 48–72 hr after knockdown. Macro-

phages were infected with an overnight (stationary) culture of SL1344 for

40 min. Mice were infected with some 500 cfu SL1344 in 100 ml PBS by tail-

vein injection and sacrificed 6 days p.i. For reconstitution experiments, shRNA

PLEKHM1-depleted HeLa cells were transfected with shRNA-resistant

PLEKHM1-WT and PH2 domain mutants as indicated, 24 hr prior to infection.

Cells were infected as above and either fixed for immunofluorescence analysis

or lysed for cfu counts.

Mouse Strain and In Vivo Infections

Plekhm1 gene trapmice (B6;129S5-Plekhm1Gt(OST201689)Lex/Orl; LEXKO-0354)

were acquired from Lexicon Pharmaceuticals through the Wellcome Trust Ac-

cess to Mutant Mouse Resources (UK). These mice had been generated by

retrovirally transducing 129SV embryonic stem cells with a neomycin cassette

targeted between exons 1 and 2 of Plekhm1 gene. The mice were subse-

quently backcrossed ten generations into C57BL/6. Heterozygous mice

(Plekhm1+/�) were mated and embryos isolated at embryonic day 13.5

(E13.5). Isolated MEFs were then infected at typically low passages (P3–P5)

cells. Genotypes were confirmed both by genotyping, using primers designed

specifically overlapping genetrap insertion (KO), and by western blot. Infection

of mice was carried out by intravenous injection of 1,300 cfu Salmonella (strain

SL1344), mice were sacrificed 5 days p.i., their spleens and livers harvested,

cfu counts analyzed. All animal experiments were approved (license 2239,

Kantonales Veterinäramt Basel-Stadt) and performed according to local

guidelines (Tierschutz-Verordnung, Basel-Stadt) and the Swiss animal protec-

tion law (Tierschutz-Gesetz).

Transmission Electron Microscopy

(1) Preparation of Cells

Cell culture media was removed and cell fixed in 4% paraformaldehyde and

0.1% glutaraldehyde in 0.1 M PHEM buffer for 3 hr at room temperature. Cells

were washed and incubated with 50 mM glycine/100 mM PHEM for 10 min,

washed in 1% BSA in 100 mM cacodylate buffer, and pelleted. PFA was

removed with 100 mM cacodylate buffer and cells subsequently fixed in

2.5% glutaraldehyde for 1 hr at room temperature. The resulting pellet was

divided and incubated 1 hr at room temperature with 1% osmium in 100 mM

cacodylate buffer. Samples were washed with deionized water and en bloc

stained with 1%uranylacetate for 1 hr at room temperature in the dark. Graded

dehydration in ethanol was followed by embedding in Epon resin and ultrathin

sections of ca. One hundred nanometer thicknesses were cut using an EM
Cell H
UC7 ultramicrotome (Leica AG, Wetzlar, Germany) and poststained using

2% uranylacetate and Reynolds lead citrate.

(2) Transmission Electron Microscopy

Three individual blocks of both shControl and shPLEKHM1 cells were

sectioned and evaluated by TEM. From each block, one random 100 nm

was analyzed using a Zeiss TEM operated at 80 kV. The random sections

were screened in a systematic boustrophedonical way using a magnification

of 1,0003. A total of 200 cell profiles were analyzed per random section.

Each cell observedwas assigned to one of the following categories: no Salmo-

nella-containing vacuoles, vacuoles containing one to four bacteria, vacuoles

containing five to ten bacteria, and vacuoles containing >10 bacteria.

MEF Generation

Plekhm1 knockout mice were generated by Lexicon genetics using retroviral

insertion of a genetrap between exons 1 and 2 of mouse Plekhm1 gene. Em-

bryos were isolated from a Plekhm1 heterozygous breeding at day E13.5. Em-

bryos were dissected, trypsinized, and grown to confluence. Genotypes were

confirmed both by genotyping using primers designed specifically overlapping

genetrap insertion (KO) and bywestern blot. Infections were carried out at typi-

cally low passages (P3–P5) cells.

Statistical Analysis

Results were analyzed using unpaired Student’s t test using Graphpad (Prism)

software.

Detailed experimental procedures can be found in the Supplemental

Information.

SUPPLEMENTAL INFORMATION

Supplemental Information includes seven figures, three tables, four movies,

and Supplemental Experimental Procedures and can be found with this article

online at http://dx.doi.org/10.1016/j.chom.2014.11.011.
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