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A monotone form of L'Hospital’s rule is obtained and applied to derive
inequalities between the arithmetic—geometric mean of Gauss, the logarithmic
mean, and Stolarsky’s identric mean. Some related inequalities are given for
complete elliptic integrals.  © 1994 Academic Press, Inc.

1. INTRODUCTION

For positive x and p, the arithmetic mean, the geometric mean, the
logarithmic mean, and the Gauss arithmetic—geometric mean (AGM), are
defined by

x+
A(x, y)=—2—y, G(x, ¥)= /0,
x—y

Lix, y)= x#y, L(x, x)=x,

log x —log y’
AG(x, y)=1lim x, =lim y,,

where Xo=x, yo=y and X,,,=A(Xy ¥u) Yuy1=G(X,, y,). We study
some generalizations of these given, e.g., in [8].

A very extensive bibliography on the AGM appears in [6]. The books
{23, 14] are excellent references for general properties of means.
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Next, the Stolarsky mean is defined by
x"—y” 1/{p—1)
S, (x, )=[———] . p#O,1,
A TE S
with
Solx, ) =I}in§) S,(x, y)=L(x, y)

and

Si(x, y)=1im §,(x, y)=e” ' (x*y )" =1(x, y).
p—1

The mean I(x, y) is known as the identric mean.
We also need the t-modification of a mean defined by

M, (x, y):M(x” yl)l/” IER\{O},

for M=A, G, AG, and L. Clearly M, (x, y)=M,y, x), M _,(1/x, 1/y)-
M, (x, y)=1, and M, = M. Hence it is enough to study only the case ¢ > 0.
It is well known that for each x, y > 0, the means A,(x, y) and S,(x, y) are
continuous increasing functions of ¢ [7, 26]. We first obtain a similar result
for L, and AG,, making use of the following variant of L’'Hospital’s rule,
which should also be of general interest, cf. [23, p. 106].

1.1. LemMa (Monotone Form of L’Hospital’s Rule). For a<b, let f, g
be continuous on [a, b] and differentiable on (a, b) and let g’ never vanish on
(a, b). If [/ g" is (strictly) increasing (respectively, decreasing) on (a, b), then
so are (f(x)—f(a))/(g(x)— g(a)) and (f(x)—f(b))/(g(x)—g(b)).

1.2. THEOREM. For x, y positive and distinct,

(1) L,x, p)is a continuous and strictly increasing function of t from
(0, 00 ) onto (\/xy, max{x, y}),
(2) AG,(x, y) is a continuous and strictly increasing function of t from

(0, o0) onto (\/E, max{x, y}).

There are several inequalities between these means. From the definition
it is clear that G(x, y) < AG(x, y) < A(x, y) and L! = S'"'S,. The
inequality G(x, y)< L(x, y) is given in [16, 18,19, p. 21]. Very recently,
the inequality

L(x, y) < AG(x, y)

appeared in [21]. The next result gives majorants for AG in terms of L, I,
and A.
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1.3. THEOREM. For x, y positive and distinct,
(1) AG(x, y)<Ly(x, y)=[A(x, y) L(x, y)]"
(2) AG(x, y)<(n/2) L(x, y).
(3) AG(x, y)<I(x, y)<A(x, y).
(4) AG(x, y)<Ap(x, y)
As a consequence we obtain, e.g., the inequalties
G(x, y)<L(x, y) < AG(x, y)<I(x, y) < A(x, y) (1.4)
for all x, y positive and distinct.
We recall the Gauss identity [2, 8,19, 227,

AG(1, r’)%’(r)=g, (1.5)
for rin [0, 1) and r'=./1—r% As usual, ¥ and & denote the complete
elliptic integrals [17] given by

! dx
H(r)=
Jo \/(1 —x2)1 —r’x?)

1— 2
é’(r)=£: = rdx, £ =6()

Thus in view of (1.4) and (1.5), Theorems 1.2 and 1.3 give inequalities for
these elliptic integrals. See [12, 9, 11, 28] for recent extensions of (1.5) and
[15, 24] for other recent results on the AGM. Note that in [1, 17.3.1] the
argument of #'(r) is written as r°.

s A=),

(1.6)

2. ProOFs

2.1. Proof of Lemma 1.1. By the intermediate value property
[5, Theorem 5.16] for derivatives, it follows that g'(x) never changes its
sign on (a, b). Suppose that g'(x) is positive and f’'(x)/g'(x) is strictly
increasing. By the Cauchy mean value theorem {5, Theorem 5.117], for each
x in (a, b), there is a y in (g, x) such that

f(x)—f(a)zf’(y)<f’(X)
g(x)—gla) g'(») gy

which yields
d [f(x)—f(a)]w

2 et

g(x)—gla)

The other cases are proved similarly. ||

409/183/1-11
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22. LemMa. (1) f(r)=(Er)+roH(n))/ (1 +r) is strictly decreasing
from (0, 1) onto (1, (%n/2)).

(2) gin=—=r)A (r)log(l/r') is strictly decreasing from (0, 1)
onto (1, (n/2)).

(3) h(rY=(rA(r)Y*/log(1/r') is strictly increasing from (0, 1) onto
((n?/2), ).

(4) F(ry=(rlogr)/(r—1)—2log(1+ \/;) is strictly decreasing from
(0, 1) onto (log(e/4), 0).

(5) G(r)=(1+ \/r—’)z H(r) is strictly increasing from (0,1) onto
(21, o0).

(6) H(r)=(rlogr)/(r—1)—log(1+r) is strictly increasing from
(0, 1) onto (0, log(e/2)).

Proof. From [8, Theorem 1.2(d)], f(r)=&[(1 —r'}(1 +r')] and (1)
follows. For (2), let g,(r) and g,(r) denote the numerator and denominator
of g(r), respectively. Then [17, 710.00] g (r)/g5(r)= f(r), and the result
follows from (1) and Lemma 1.1. Next, for (3), let 4,(r) and h,(r) denote
the numerator and denominator of 4(r), respectively. Then [17, 710.00-02]
Ry(rVFL D 2 2°(r) (r), which is easily shown to be increasing from (0, 1)
onto (n4/2, a0), so that (3) follows by Lemma 1.1. The assertion (4) follows
by differentiating and using the elementary inequality log x < (x — 1)/\/;,
for all x> 1. For (5), if we apply Landen’s transformation [8, Theorem -

1.2(b)] twice, we get
G(r)=4x" [(1—\/;)2];
14/

hence the result follows. Finally, (6) follows by writing H(r) as a quotient
and applying Lemma 1.1. |}

2.3. Remark. There is a slight error in [8, Exercise 2(b), p. 16]. In the

identity
H(x) = 4 X[(l—.“/l—x“>z]’
(14/x)? 1+ J1—x*
the expression \71——? should be corrected to ./x’, where x'=./1 —x2.

The next result is an immediate consequence of Lemma 2.2.

2.4. COROLLARY. Forrin (0,1), r'=/1—r?
Ery+rA(r) =
ev)rr AV Lt 1
[< 147 < 2’ (1)
(A—=ryx(r) =
I<———x<,
= Tog(l/r) "2 2)
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2

5 < (r () flog(1/r'), 3)
me <2 (r)(r'y" b, 4)

2.5. Proof of Theorem 1.3 (1). Assuming 0<x <y, divide by y and
put r'=x/y. By the Gauss identity (1.5) the inequality reduces to
Corollary 2.4 (3). |

2.6. Proof of Theorem 1.3 (2). Assuming that 0 < x <y, setting x/y =r,
0<r<1, and using (1.5), the inequality follows immediately from
Corollary 2.4(2). |

2.7. Proof of Theorem 1.3 (3). By homogeneity we may assume that
x=1 and 0 <y < 1. Then the first inequality follows from Corollary 2.4(4)
and the second inequality follows from Lemma 2.2(6). |}

2.8. Proof of Theorem 1.3 (4). Assuming 0 < y < x, setting r'= y/x and
using (1.5), the result follows from Lemma 2.2(5). |

29. Proof of Theorem 12 (1). Continuity is obvious. Assuming
O<x<y, put wu=y/x and v=wu' and let f(t)=L,x, y). Denote
A(t)y=log((v — 1)/(log v)) and g(r)=log f(7)—log x. Then

h
(1) =log /() log x="1,

and

(log u) F(v)
h(t)y=——"—-,

(1) Go)
where F(v)=vlogv—v+1, and G(v)=(v—1)logv. Then F(1)=F'(1)=
G(1)=G'(1)=0, and F"(v)/G"(v) =v/(v + 1). Hence by Lemma 1.1, g(r) is
increasing and so f(¢) is increasing. Next as ¢ tends to 0, by L’Hospital’s
Rule,

viogv—v+1

o—1)logs o&#)

lim g(t)=lim () = lim

t—0 t—0 v—1
v

=(l lim — =1 X

o 0 i 7= o8

Hence

lim log f(z) =log x + log \/;=log,/xy,
10
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so that

fim (1) = /.

t—0
Finally,

v
T S
Jim, ¢(0)= lim h(0) =loglu) lim =23 =log u

and lim, , . f(¢}=y. 1

2.10. Proof of Theorem 1.2 (2). Continuity is clear. Assuming 0 < x < y,
let f(t)=AG,x, y), r=x/y and u'=r". Then t= (log{1/u'))/(log(1/r)) so
that

log y—log f(1) log(2X (u)/n) g(u)

log(1/r) log(1/u')  h(u)’

where h(u) =log(1/u’) and g(u)=log(2H (u)/n). (Note: If ¢ increases from
0 to oo, then u increases from 0 to 1). Then by [17, 710.00-02]

Ru) A k(W)
gu)y &—WyH g (u)

where
X =X (u), &=E&u), ho(w)=u?x, giw)y=&6— (')A

Next by [17, 710.00-04]

h; _ ' 2.%/
0y Sorx
gi(u) (')t
which is increasing, since & — (u')*2f" is increasing and (w')?¢ is

decreasing [17, 710.04; 3, 2.2(3)]. Hence applying Lemma [.1 twice we see
that h(u)/g(u) is increasing. Now first

fim 209 _ i P00 _ oy 1)

= = =2
w=0g(u) u-og'(u) w-ogi(u)

Next as ¢ goes to infinity (i.e., u goes to 1),

hw) . K@)
o )~ I
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Consequently, f(¢) is increasing and
lim f(1)=/xy,  lim f()=y. §
2.11. CorOLLARY. For each x, y,1>0, x# y, we have

Jxy<L/(x, y)<AG(x, y)<max{x, y}.

The first inequality is sharp as t tends to 0, while the last inequality is sharp
as t tends to co.

2.12. THEOREM. For re (0, 1), we have

log <;) <A (r)/&(r)<log (;)

Proof. Let f be defined on [0, 1] by f(0)=0, f(1)=log(4/e), and

H(r)—&
710y =tog(ry + =T
for 0<r< 1. Then
(K —8)
f(r)~7>0

on (0, 1). Thus f is strictly increasing on [0, 1]. Hence 0 < f(r) <log(4/e)
on (0, 1), and the result follows. [}

Since &(r)e (1, (n/2)) for all re (0, 1) it follows by [3, 2.3] that
H(r)<Zlog <3>
2 r

These two facts together with Theorem 2.12 show that the inequality in
Theorem 2.12 is quite sharp.

2.13. THEOREM. For all positive x, y
A(x, ¥) SAG(xX?, y*)/AG(x, y) < As(x, y),

with equality iff x=y.

Proof. The first inequality appears in {10, Proposition 2.6], but we
give here an alternative proof. By symmetry and homogeneity we may
assume that x<y=1. If we put r'=x in Lemma 2.2(2) we see that the
function

(1 —x) oA (x)/[log(1/x)]
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is strictly increasing from (0, 1) onto (1, n/2). In particular since x > x2, this
gives

A (x)> [(1+x)/2] H"(x?)

as desired. Next, writing in terms of elliptic integrals (cf. (1.5)), the second
inequality is equivalent to

H(x) < Ay(1, x) A7 (x)

which by the Landen transform [8, Theorem 1.27] can be written as

2
A< A" (1 +xx2>/A2(l, x),

or also as

2x 2x
’ < 1 .
VEA ) \/1+x21/<1+x2>

This inequality is true since the function f(u)= \/; A'(u) is increasing on
(0, 1), by [3, Theorem 2.2(3)]. |

3. SHARPNESS OF RESULTS

A natural question is whether we can sharpen the earlier inequalities by
replacing a mean M by its r-modification M, and then adjusting the
parameter ¢ optimally. First, let us point out that the inequality

G(x, y)SL/(x, p)<AG(x, y)<A(x, y)

for all ¢t >0 and all x, y > 0 follows directly from (1.4). Note that G,= G for
all t>0.

3.1. THEOREM. The inequality in 1.3(4) is sharp in the sense that § cannot
be replaced by any smaller constant.

Proof. Since for t>0 and small x>0

2
X X 3
AG(1—x, 1)=1—3—7=+0(x")
x (1-0)x

2
A(l—x1)=1->~— +0(x%),

8
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we see that the inequality AG(1 —x, 1)< A4,(1 —x, 1) holds for small x only
ifr=4 B

In view of Theorem 1.3 (3) it is natural to ask if the inequality AG <7
can be improved to a better one of the form AG < S, with p<1. Indeed
since

Sl/z(x, J’)=A1/2(x; ¥ (3.2)

it follows that 4G < S, holds. Since we know that 4,=G<L=_5, we
may ask if 4,< S, for pe (0, ]. The next theorem provides an answer.

3.3. THEOREM. Let x, y be positive and distinct. Then
Sp1(x, ) SA,(x, ), (1)
Jor pe[1, o) with equality iff p=1,
Sp+1(x, ¥)>4,(x, p), (2)
for each pe (0, 1),
S,(x, y) <A (x, y)< S, 44(x, p), (3)

for pe [, 1] with equality on the left iff p= 1% and on the right iff p=1, and
finally

Ay (%, y) <S,(x, y), (4)

Sor pe (0, §).

Proof. The cases of equality are clear and we only prove strict
inequalities. We may clearly assume that y=1 and x> 1. We have

xPr1—1 xP+1

Spa(x, 1)”=m, Ay(x, 1) = 3

Let
Sx)=(p—=1D)(1=x"*")+(p+1)(x* —x).

Then f(1)=0and /'(x)=(p+1)[—(p—1)x"+px"~1=1]. Now f'(1)=0,
and

S1(x)=plp+ Dp-1D(1—x)x"~2
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If p>1 then f"(x) <0, hence f'(x) < f'(1)=0, so that f(x)< f(1})=0 and
part (1) is proved. Next if pe (0, 1), then f"(x}) > 0, hence f'(x)> f'(1})=0,
so that f{x)> f(1)=0 and (2) follows.

The second inequality in (3) follows from (2), since 4,(x, y)=S,(x, y).
To prove the first inequality in (3) observe first that S, ,(x, y)=4,,(x, y)
is obvious by (3.2) while

Sl(x’ }’)=I(x, J’)<A(x, y)

was proved in Theorem 1.3(3). Assume next that pe (3, 1). Then S,(x, 1) <
A, (x, 1), iff §y,,(u, 1)< A(x, 1), where u = x?. But this is clearly true since
1/p<2and so Sy,(x,1)<S,(u, 1)=A4(u, 1) by [26]. Finally to prove (4),
let pe(0,1) and u=x”. Then Sy(x, 1)>A,(x, 1), iff Sy,(u,1)>A4(u,1),
which is clearly true, since 1/p > 2, so that §,,,(u, 1)> S,(u, 1) by [26]. |

In view of Theorem 1.3(2) we may ask if AG > L, for some > 1.
3.4, THEOREM. The inequality AG =L, holds if and only if te(0,1].

Furthermore, for each te(l,3) there exists an x,€(0,1) such that the
inequalities,

AG(1, x)<L,(1,x), L(1,1—x)<AG(1,1—x),

hold for all xe(0, xy). Furthermore, for t>1, L,(1,x)/AG(], x)—
as x — 0,

Proof. To prove the last assertion, we observe that by [19, (6.10-8) and
(8.3-16)] for t>1

L(x,1) 2 _1/,( 1)11/1
——————} ] —
AG(x,1) = ng -

as x — 0. This also proves the first assertion. For the second assertion, let
l<t<2 Now

2
AG(=x, )=1-2-2 1 0(xY),

27 16
Lil—xD=1-2+22 ¢ o)
A TRUEIT TR Y Y

for small x> 0. The second assertion follows from these expansions. |

Further results relating S, and 4, with ¢=(p+1)/3 were obtained by
K. B. Stolarsky [27].

3.5. Remark. Theorem 3.4 is due to B. C. Carlson. He has kindly
informed us that Theorem 3.3, except the first inequality in (3), can also be



INEQUALITIES FOR MEANS 165

derived from Theorem 4 in [20]. Other kinds of inequalities for means
occur in [13].

Finally, we give a recent result due to Borwein and Borwein [10] which
provides an extremely sharp majorant for AG(1, x) for x close to 1. Recall
from the introduction that the inequality L(x, y)< AG(x, y) appears
in [21].

3.6. THEOREM [10]. The inequality AG(x, y)< Ls,(x, y) holds for all
x, y>0.

3.7. Remark. Lin [25] has proved that the inequality L < 4, holds if and
only if re[3}, «v). Consequently, for s,t€(0, 0), we have L <A, iff
0<s<3r. In particular, we see that L;,<A4,, and hence Theorem 3.6
improves Theorem 1.3(4).

3.8. Open Problems. (1) Is it true that AG,> L for some te (0, 1)?

(2) Several conjectures about the behavior of AG(1, x) as x—0
are given in [4, 3.227]. We now recall one of those conjectured inequalities

written in terms of % °(r) for re(0, 1) and r' = /1 —r%:

f(r)<log(1 +i)—<log5—f) (1—r).
r 2
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