
Efficient and Type-Safe Generic Data Storage

Sjaak Smetsers1 Arjen van Weelden1 Rinus Plasmeijer1

Institute for Computing and Information Sciences,
Radboud University Nijmegen, The Netherlands

Abstract

In this paper we present an elegant method for sequentializing arbitrary data using the generic language
extension of the functional programming language Clean. We show how the proposed operations can be
used to store values of any concrete data type in several kinds of IO containers (such as files or arrays
of characters), and how to manipulate stored data efficiently. Moreover, by extending stored data with
encoded type information, data manipulation will be type-safe. Defining these operations generically has
the advantage that specific instances for user defined data types can be generated fully automatically.
Compared to traditional sequentialization methods (or to common data manipulation, using relational data
bases) our operations are an order of magnitude faster.

Keywords: Polytypic/generic programming, functional programming, data storage/sequentialization, type
inference

1 Introduction

Databases are commonly used for the efficient storage and retrieval of data. Effec-
tively, they are optimized to store (large) tables in a very efficient way. For a large
class of applications this type of storage is adequate enough. However, traditional
databases are commonly not suited for storing recursive data structures, such as
linked lists or binary trees, or even more complex data types like abstract syntax
trees. In functional languages these algebraic data structures are very common.
One would like to have the ability to store these algebraic data types efficiently in
some database system as well. Efficient storage not only requires fast input/output
operations but also the ability to update stored data selectively, i.e. without the
necessity to read in and write back the complete data structure. For example, one
would like to inspect the elements of a stored tree individually and update them
destructively, or, re-balance the spine of the tree without retrieving/copying the
elements. Furthermore, the signature of the stored data should be encoded in the

1 Email: S.Smetsers@cs.ru.nl, A.vanWeelden@cs.ru.nl, R.Plasmeije@cs.ru.nl

Electronic Notes in Theoretical Computer Science 238 (2009) 59–70

1571-0661/© 2009 Elsevier B.V. Open access under CC BY-NC-ND license.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2009.05.007

mailto:S.Smetsers@cs.ru.nl
mailto:A.vanWeelden@cs.ru.nl
mailto:R.Plasmeije@cs.ru.nl
http://www.elsevier.com/locate/entcs
http://creativecommons.org/licenses/by-nc-nd/3.0/

database, such that at run time the type safety of the data read in from the database
is guaranteed.

In this paper we will show how such efficient and flexible data manipulations can
be realized using generic or polytypical programming techniques. With a generic
function one can specify operations that work for (almost) any type. A generic func-
tion is basically defined inductively on the structure of user-defined types. Equality
and map are basic examples of functions that can be defined generically. Other
well-known examples are (de)serialization functions like print and parse (resulting
in a string representation of data), and (un)compress (using an efficient binary rep-
resentation of data). To apply a generic function on a specific type, an instance of
the generic function for that type is needed. The Clean compiler will generate this
instance fully automatically, but the programmer explicitly has to ask for it via a
derive statement.

All proposed IO operations in this paper are specified generically. The presented
generic functions are written in Clean (see [2]). Due to some language specific lim-
itations, the presented functions cannot be converted directly to Generic Haskell.
There are some syntactic differences between Haskell and Clean. The major differ-
ences will be explained on-the-fly; for a complete comparison between Clean and
Haskell we refer to [1].

2 Generic Programming

Specifying generic functions resembles defining a type class and its instances. The
main difference is that a generic compiler can derive most of the instances automat-
ically, given a minimal fixed set of instances for three (generic) type constructors.
The derivation of instances is based on the fact that any algebraic data type can be
expressed in terms of eithers (for distinguishing the constructors), pairs (for repre-
senting the argument types of each constructor), and units (for representing 0-ary
constructors).

This generic type representation, developed by Hinze [6], is used by Clean as
well as by Generic Haskell, and is encoded by the following Clean types:

:: EITHER2 a b = LEFT a | RIGHT b; :: PAIR a b = PAIR a b; :: UNIT = UNIT

To define a generic function, the programmer specifies its signature and provides
instances for the generic types (EITHER, PAIR, and UNIT). As an example we define a
generic packing program, taken from [9]. The basic idea of this program is simple:
given a value, we construct a compact representation of that value in which data
constructors are represented by as few bits as possible. E.g. for a simple binary
tree this means that we distinguish leafs from internal nodes using a single bit. To
abstract from the concrete container that is used to store the packed value, we first
introduce
class GWrite io where writeC :: Char *io→*io

2 Defines a new data type in Clean, Haskell uses the data keyword.

S. Smetsers et al. / Electronic Notes in Theoretical Computer Science 238 (2009) 59–7060

Clean uses uniqueness types to express sharing properties of objects. A ∗ indicates
that the corresponding object will be unique or single-threaded which means that
there exist no further references to it. This allows the object to be updated destruc-
tively. Hence, in Clean one can use explicit environment passing (the io argument
in the example) instead of monads for incorporating side-effects.

We assume that writing separate bits is not directly supported. Hence, we keep
track of some additional information for collecting bits until we have a complete
byte that can be written. This is all hidden in the abstract data type CSt used in
the function compressBit :: Bool (CSt *io) → (CSt *io) | GWrite io 3 The packing function
itself is straightforward:

generic gCompress a :: a→ (CSt *io) → (CSt *io) | GWrite io

gCompress {|UNIT|} x = id

gCompress {|PAIR|} cx cy (PAIR x y) = cy y o 4 cx x
gCompress {|EITHER|} cl cr (LEFT l) = cl l o compressBit False
gCompress {|EITHER|} cl cr (RIGHT r) = cr r o compressBit True
gCompress {|OBJECT|} co (OBJECT x) = co x
gCompress {|CONS|} cc (CONS x) = cc x

Unlike instances for ordinary classes, we define type instances for gCompress using
the special parentheses {| |} . Moreover, the actual number of arguments of each
instance depends on the arity (actually the kind) of the used type constructor.
For example, the instance for PAIR as well as for EITHER are supplied with two extra
parameters that can be used to compress the arguments of these types. Finally,
the (auxiliary) types OBJECT and CONS, were added to the set of generic types in Clean
to give access to concrete information about the original type definition (via OBJECT)
and data constructors (via CONS). In this example this information is not used, but
in section 5 it plays a crucial role.

The generic instances for other types that are actually used inside a program
are automatically derived. For example, if one needs an instance of gCompress for the
following Tree type

:: Tree a = Leaf | Node a (Tree a) (Tree a)

it suffices to declare derive gCompress Tree. For certain types, such as function types
and abstract types, the generic function cannot be derived automatically. The
programmer can, however, define specialized instances for these types explicitly.

In contrast to Generic Haskell, the implementation of generics in Clean is based
on type classes. Each generic function gives rise to a collection of so-called kind
indexed type classes, i.e. classes of which the signatures are obtained from the type
of the generic function via kind indexing [2]. These generic type classes can be used
as any other type class. Therefore, they are allowed in contexts of type signatures
or can be applied in expressions like any other overloaded operation.

3 Clean separates argument types by whitespace, instead of →, and uses a | to announce context restrictions.
In Haskell this would be written as (GWrite io) ⇒ · · ·.
4 The operator o is function composition.

S. Smetsers et al. / Electronic Notes in Theoretical Computer Science 238 (2009) 59–70 61

3 Basic generic IO operations

In this section we will introduce two generic functions, write and read, that serve
as a basis for defining our set of general data storage operations. In essence, the
write function is an ‘aligned’ version of gCompress as defined in the previous section:
for the representation of constructors write always uses one byte whereas gCompress

represented constructors by a bit sequence of variable size. Besides the class GWrite

for writing, we define the class GRead for reading characters from an IO container.

class GRead st where readC :: *io→ (Maybe Char, *io)

Two instances of both GWrite and GRead are predefined:
instance GWrite GString, GFile; instance GRead GString, GFile

The types GString and GFile are basically strings (arrays of characters) and files.
Objects of these can be created (opened) and released (closed) by using the following
functions
openString :: *String →*GString; closeString :: *GString→*String
openFile :: !String !*World→ (Maybe *GFile, *World); closeFile :: !*GFile !*World→*World

In Clean the (unique) World type is special: it has only one inhabitant which, in
essence, encapsulates the complete status of the machine. This world-object corre-
sponds to the hidden state of the IO monad in Haskell, and is used, for instance, to
perform I/0.

The basis of our generic sequentialization operations are two generic functions:
generic write a :: Int a *io→*io | GWrite io
generic read a :: Int *io → (Maybe a, *io) | GRead io

The integer parameter is an auxiliary argument. In case a constructor is writ-
ten/read, this argument contains the number of that constructor (i.e. the construc-
tor’s position in the corresponding algebraic type definition). However, for top level
calls the value of this argument is ignored: we will usually supply 0 as a default
argument.

Suppose we want to use these operations to sequentialize a tree. The values
stored in the tree are elements each consisting of an (integer) key and a record
containing names and email addresses of persons.

:: Elem a 5 = { key :: Int, rec :: a }
:: Person = { name :: [Char] , email :: [Char] }

We can now use the operations on a tree object as defined in the previous section
by first declaring the necessary generic instances:

derive write Tree, Elem, Person, [] ; derive read Tree, Elem, Person, []

To store a tree of 4 records (created by createTree) to the file fname we simply write:
writeTreeToFile fname world

� (Just file, world) 6 = openFile fname world

5 Record types in Clean are surrounded by { and }.
6 This is not a cyclic letdefinition: the # introduces a new scope for id’s on the LHS.

S. Smetsers et al. / Electronic Notes in Theoretical Computer Science 238 (2009) 59–7062

= closeFile (write{|�|}7 0 (createTree 4) file) world
where

createTree size = foldl (λl k→Node {key = k, rec = record k} l Leaf) Leaf [1..size]

record k
� 8 kl = fromString (toString k)
= {name = [’John Doe’]++kl, email = [’john.doe’]++kl++[’@cs.ru.nl’]}

The generic implementations of read and write (used to generate instances for
concrete types) are rather straightforward. As with gCompress, each constructor is
represented by a number corresponding to the constructor’s position in the type
definition. Because write is almost identical to gCompress, we restrict ourselves to
the definition of read. The instance for the OBJECT case takes care of reading the
constructor’s id. To get the bits of this id in the right order (such that the EITHER

alternative can choose the correct LEFT or RIGHT branch on the basis of the least
significant bit) they are swapped first before passing them to the continuation.

read {|UNIT|} _ io = (Just UNIT, io)
read {|EITHER|} read_a read_b i io

| i bitand 1 �= 0 = read_b (i >> 1) io >>= RIGHT
| otherwise = read_a (i >> 1) io >>= LEFT

read {|PAIR|} read_a read_b _ io
= case read_a 0 io of (Just x, io) →read_b 0 io >>= PAIR x

(Nothing,io) → (Nothing, io)
read {|OBJECT of {gtd_num_conses}|} read_a _ io

= case readC gtd_num_conses io of
(Just cn, io) →read_a (swap cn gtd_num_conses) io >>= OBJECT
(_, io) → (Nothing, io)

read {|CONS|} read_a _ io = read_a 0 io >>= CONS

(>>=) (mb, io) f = case mb of Just x→ (Just (f x) , io); Nothing→ (Nothing, io)

4 Updatable data storage

One of the main disadvantages of the proposed IO operations is that they do not
allow updates of existing data without reading in and writing back all the original
information. Particularly, when large amounts of data are involved this can be
very inconvenient or even unacceptable. In this section we present an extension of
our library with so-called chunks. Chunks can be seen as references to data still
residing in the IO container. By wrapping data in a chunk, the user indicates that
this information remains in the container when the data structure containing this
wrapped data is read into the application. As soon as this data is really needed
it can be read explicitly via a special chunkValue operation. Moreover, and this is
possibly the most important improvement, it can be selectively updated, using the
updateChunk operation. Hence, this chunk mechanism provides selective read/write
access to data without the requirement of reading/writing the entire data structure.

The implementation of chunks requires that the IO streams provide random
access. This is achieved via an extra type class:

7 write{|*|} denotes the overloaded write operation for kind *.
8 Clean supports let-before (#) to increase readability.

S. Smetsers et al. / Electronic Notes in Theoretical Computer Science 238 (2009) 59–70 63

class GIO io | GWrite io & GRead io where
position :: *io→ (Int, *io); seek :: Int *io→*io

The contexts GWrite and GRead are added for convenience. Chunks and the signatures
of the operations on chunks are defined as follows.

:: Chunk a; :: *CHS io 9

openChunks :: *io→ (Bool,Chunk a,CHS *io) | GIO io
closeChunks :: (CHS *io) →*io
newChunk :: a (CHS *io) → (Chunk a, CHS *io) | write{|�|} a & GIO io
chunkValue :: (Chunk a) (CHS *io) → (a, CHS *io) | read{|�|} a & GIO io
updateChunk :: (Chunk a) a (CHS *io) →CHS *s | write{|�|} a & GIO io

The type Chunk for representing chunk objects is abstract. The other abstract type,
called CHS, is used to allocate new chunks and to sequentialize the other chunk
operations. By making this type unique, single threadedness is guaranteed, hence
in-place updates can be performed safely. The operation openChunks first inspects the
container to determine whether or not it is empty. In case of an empty container, a
new empty chunk (the so-called root chunk) is created. Otherwise, the root chunk of
the container is read. The boolean result value indicates which of these possibilities
occurred.

To illustrate the use of these operations we return to our Tree example. The idea
is to wrap the stored records in chunks so that they will be left in the container
when the tree data structure is read in.

First, we inject the tree built by createTree with chunks. By using a generic state
map this can be specified easily in just a few lines of code.

addChunks :: (a (Elem b)) (CHS *c) → (a (Elem (Chunk b)) , CHS *c) | write{|�|} b & GIO c &
gMapLSt {|*→*|} a

addChunks tr io = gMapLSt {|*→*|} addChunk tr io where
addChunk {key,rec} 10 io = let (ch, nio) = newChunk rec io in ({ key = key, rec = ch }, nio)

The generic function gMapLSt from the standard Clean library maps a state transition
function (in this case addChunk) over the tree tr. The effect of applying addChunks is
that the original records are stored in the IO container and the tree is updated
with references to these records. Note that addChunks is overloaded in gMapLSt {|*→*|}
which means that it actually can be applied to any data type of kind *→*. The tree
structure itself is stored in the root chunk. The complete program looks as follows:
writeChunkTreeToFile fname world

� (Just file, world) = openFile fname world
(ok, chunk, chunks) = openChunks file
(ch_tree, chunks) = addChunks (createTree 100000) chunks

= closeFile (closeChunks (updateChunk chunk ch_tree chunks)) world

The tree constructed by createTree above is completely out of balance: all elements
are stored in the right branches. The use of chunks enables us to re-balance the
tree without touching the stored records. This can be achieved as follows (we left
out the open and close operations which are the same as in the previous example).

9 An abstract data type in Clean. The * before CHS indicates that any CHS-object must always be unique.
Therefore, the * can then be omitted in the rest of the code.
10{f,g} denotes the (lazy) selection of the fields f and g from the record argument.

S. Smetsers et al. / Electronic Notes in Theoretical Computer Science 238 (2009) 59–7064

Below, balance takes an arbitrary tree and converts it into a balanced one.

(unbal_tree, chunks) = chunkValue chunk chunks
chunks = updateChunk chunk (balance unbal_tree) chunks

Obviously, after balancing the tree we now can quickly find a particular record and
update its contents directly via an updateChunk.

5 Type-safe IO operations

Another serious disadvantage of the sequentialization method from the previous
section, and in fact of almost any compress/uncompress, pack/unpack, or read/show
operation, is that the written information is untyped. Structures written as trees
can be read back as lists sometimes leading to a crash or maybe without being
noticed. In this section we will show how to extend our IO operations such that
they are type safe. Note that this problem cannot be solved statically, the data
in underlying IO containers (strings, files etc) is untyped. We have to add type
information about the actual data to the data that is stored. But all our operations
are defined in a generic way. How do we dynamically derive types of objects such
that this information can be stored in the container and retrieved from it when it
is re-opened for reading?

The solution is to use generics again. Remember that the generic compiler is
able to construct a version of a generic function for any concrete type. Unfortu-
nately, the concrete type on which a generic function is applied is not known. The
reason is that generic functions are defined on type constructors, not on concrete
types. In both the generic definition on type OBJECT and type CONS we can inspect
a representation of the type definition corresponding to the actual type construc-
tor and concrete data constructor on which the generic function is applied. We
therefore have to define a generic function type that uses these type definitions to
construct a representation of the actual type. For non recursive types the construc-
tion is straightforward. Recursion however, requires a more subtle approach. The
main problem with recursion is that, in order to derive an exact representation of
the actual type, one has to traverse the generic representation of that type in such
a way that all type information is indeed collected without getting into a infinite
loop.

As a starting point for our description we define the signature of type as follows:

generic type a :: (Maybe a, Type)

:: TypeCons :== String
:: TypeVar :== Int

:: Type = TVar TypeVar | TApp TypeCons [Type] | TArr Type Type | TBas BType | TEmp

Type is used for representing types as values. We use integers and strings to identify
type variables and type constructors, respectively. The auxiliary TEmp constructor is
intended to be used as an initial or default value. Note that, although we are only
interested in the type, we are forced to use the generic type variable a in the type
signature. The use of Maybe allows us to deliver Nothing as a concrete dummy value.

S. Smetsers et al. / Electronic Notes in Theoretical Computer Science 238 (2009) 59–70 65

In the library itself, this result is used to construct a default value of the requested
type which can, for instance, be used to initialize new objects.

Before explaining the working of the generic type construction we illustrate its
use. The aim is to define a type safe version of our basic generic IO operations.
We first introduce a wrapper type to include type information in the type of the IO
container, together with a function for constructing such a container. This function
also takes care of the type checking.

:: *GStream a io = { state :: io }
openStream :: *io→ (Bool, GStream a *io) | GIO io & type{|�|} a
openStream io

� (m, t) = type{|�|}
io = forceType io m

| isEmptyIO io
= (True, { state = write{|�|} 0 t io })
� (maybe, io) = read{|�|} 0 io
= (isJust maybe && fromJust maybe == t, { state = io })

where
forceType :: (GStream a *io) (Maybe a) →GStream a *io
forceType io y = io

isEmptyIO checks whether io is empty. In that case the type representation (yielded
by the generic type function) is written to the container. If the io is not empty, read
tries to read the type of the data that has been stored previously, and compares it
to the requested type. forceType is just an auxiliary function connecting the value
type of the stream to the value type of m. Without forceType there would be no
connection between those two, leading to a (static) internal overloading error. All
other operations are simple wrappers.

writeValue :: a (GStream a *io) →GStream a *io | GIO io & write{|�|} a
writeValue val io=:{state} = { io & state = write{|�|} 0 val state }
readValue :: (GStream a *io) → (Maybe a,GStream a *io) | GIO io & read{|�|} a
readValue io=:{state} = let (v, nst) = read{|�|} 0 state in = (v, { io & state = nst })
closeStream :: (GStream a *io) →*io
closeStream {state} = state

The next small program shows how our example tree (this time without chunks)
can be read from a file. Note that the additional Stream layer makes the type safety
checks completely invisible.

readTree :: String *World→ (Maybe (Tree (Elem Person)) ,*World)
readTree tree_file world

� (Just file, world) = openFile tree_file world
(ok, stream) = openStream file

| ok � (val, stream) = readValue stream
= (val, closeFile (closeStream stream) world)
= (Nothing, closeFile (closeStream stream) world)

To adjust readTree such that it can read a possibly completely different structure it
suffices to change the result type only. The fact that readTree indeed reads a tree of
the specified type is completely determined by that type and not by the code.

The question that remains is how to define type such that it will derive proper
types. As usual, we have to provide instances for our predefined generic type con-

S. Smetsers et al. / Electronic Notes in Theoretical Computer Science 238 (2009) 59–7066

structors. This time, however, the alternative for OBJECT plays a crucial role. As said
before, one of our main concerns is not getting into an infinite computation. To
illustrate the danger, we start with the instance of type that will be generated for
lists by writing derive type [] . The structure of this generated function, say type_List,
is completely determined by the definition of the list type.

:: List a = Nil | Cons a (List a)

type_List type_a = bimap (type_OBJECT (type_EITHER
(type_CONS type_UNIT) (type_CONS (type_PAIR type_a (type_List type_a)))))

The function bimap takes care the conversions between list object and its generic rep-
resentation. The precise structure of this function is irrelevant to this presentation.
If, on the right-hand side of type_List, each instance function would directly call its
continuation this would finally lead to a call of type_List itself and thus to an infinite
computation. To prevent this we supply type with an auxiliary history argument
containing a description of the subsequent calls done so far. The idea is to mark an
edge in the (directed) calling graph that leads form a data constructor C to a type
constructor T , say via C’s nth argument, by the formal type belonging to that ar-
gument. E.g. in the above list example the recursive call to type_List will be marked
with List (TVar n), i.e. the formal type of Cons’ second argument. The number n of
the type variable is supposed to be fresh, i.e. not used before. Assigning such fresh
numbers to new variables requires an additional argument for type maintaining the
variable counter.

When entering type_List it is checked whether the corresponding calling edge
already occurs in the history. If so, the function returns immediately. Otherwise the
underlying type is constructed by calling the continuation. However, in some cases
a single traversal of a type is not sufficient to derive a type completely. Consider
for example the following definition of an alternating list.

:: AList a b = ANil | ACons a (AList b a)

To obtain the representation of, for example, AList Int Char the instance of type for
AList has to pass through type_AList twice. Our ‘cycle detection mechanism’ auto-
matically takes care of that. The latter also counts for more complex types like

:: Rose a = Rose a (List (Rose a))

and even for non-uniform recursive data types, such as the following rather exotic
type definition

:: Exot a = ENil | ECons a (Exot (Exot a))

The fresh variables are not only used for creating auxiliary unique markers but
also for the construction of the requested type. Pieces of this type are collected little
by little and connected to each other via unification. This requires instantiation
of data constructor types each time a new type constructor is encountered. All
this is taken care of by the instance of type for OBJECT. One further detail of our
implementation is that unification is not performed on–the–fly but deferred until
all information about the type has been gathered. For this reason, all type equations

S. Smetsers et al. / Electronic Notes in Theoretical Computer Science 238 (2009) 59–70 67

resulting from the encountered dependencies are collected, and solved at the end of
the type construction process. All this leads to the following signature for type.

:: History :== [TYPE] ; :: Marker :== Type
:: TypeSt = { fresh :: Int, equa :: [(Type,Type)]}
generic type a :: Type History Marker TypeSt→ (Maybe a, TypeSt)

The first argument of type is the type requested by the context. As soon as an
instance of type produces a concrete type, the equation of this type and the requested
one is added to the list of equations. For example, the instance of type for Int is
defined as:
type {|Int|} rt history mark ts = (Nothing, { ts & equa = [(rt, TBas BInt) : ts.equa]})

¿From the explanation above, it should be clear that the instance for OBJECT is much
more involved than the previous one for Int. Due to space limitations it is omitted,
so are the almost trivial definitions for UNIT, EITHER and PAIR.

The generic type function is not suited for being used by programmers. First of
all, there are several arguments that are only used internally. Secondly, it does not
yield a type but a set of equalities that still have to be solved. We can hide this
implementation specific information by using the following wrapper.

defaultType :: (Maybe a, Type) | type{|�|} a
defaultType

� fv = TVar 0
(m, ts) = type{|�|} fv [] TEmp { fresh = 1, equa = [] }
subst = unify ts.equa {TEmp \\ _← [0 .. ts.fresh]}

= (m, Subst fv subst)

We use the (fresh) variable 0 as requested type for the top call of type. Both history
and (recursion) marker are empty, indicated by [] end TEmp respectively. After calling
type, the collected equations are passed to unify. This standard unification algorithm
takes a list of type equations as well as a substitution as input and produces a new
substitution solving those equations. We represent the substitution by an array
of types in which type variables are used as indices. We start with an empty
substitution which then will be updated (destructively) by unify. To obtain the final
type this unifier is applied to variable 0.

6 Related Work

To the best of the authors knowledge the use of generic programming techniques
for the creation of a type safe destructive database system is new.

Serialization and de-serialization are standard examples in any introductory pa-
per on generic or type driven programming techniques [8,7,10]. Data which is se-
rialized in such a way can be stored and retrieved from persistent memory, but it
lacks the ability to destructively update substructures. This is an absolutely neces-
sary feature for any real world database system. Instead of using generic techniques
one can of course also use the overloading mechanism [14]. However, this has the
disadvantage that the programmer has to provide the proper instances for reading
and writing of data explicitly.

S. Smetsers et al. / Electronic Notes in Theoretical Computer Science 238 (2009) 59–7068

In [5] a persistent storage for Haskell is presented. The basic idea is to extend
the application memory with a persistent memory. When data is (explicitly) shifted
from one memory to another, the internal representation of data in the application
is converted to the external representation in the storage, and backwards. For the
conversions support of the run time system is needed. Destructive updating is not
provided, but when structures are modified, sharing is maintained in the storage in
the same way as it is common in the application memory. The approach cannot be
used to exchange data between different applications.

In Amber [4], CAML [11] and Clean [12] one can store and retrieve values of any
type by wrapping them into a Dynamic. A Dynamic contains both a representation
of a value and a representation of it’s type. This method does enable the type safe
exchange of data between applications, but one needs support from the compiler
and run time system to be able to check the type consistency and take care of the
conversions. In Clean it is even possible to exchange functions between applications
[15]. Part of the run time systems is a dynamic linker which can extend a running
executable with additional functionality by loading the corresponding code needed
for the evaluation of new functions. However, none of the Dynamic approaches
provide support for destructive updates.

7 Conclusions

In this paper we have presented a set of generic IO operations that are flexible,
efficient and type-safe. They are flexible because with a simple derive statement data
of any concrete type can be stored and retrieved. They are efficient because data
structures can be partially read in and stored data can be updated destructively.
They are type safe because a representation of the concrete type of the data that
is written is stored as well. This type is checked against the type of data requested
by the reader, before the data structure can be read in.

We have tested the operations with fair-sized data sets (100,000 records) and
the efficiency appeared to be sufficient for most cases. However, if performance is
critical the overhead introduced by the common generic code generation scheme can
be fully eliminated by using the extended fusion technique described in [3]. The
resulting code appears to be very efficient. Our tests showed that our system can
be one to two orders of magnitude faster than standard sequentialization methods
or data base implementations.

Our system has been integrated in the iTask Workflow System [13]. It allows the
high level specification of interactive workflows from which a multi-user web-based
workflow system is generated fully automatically. In a workflow system, storage
and retrieval of information plays a vital role. However, a programmer specifying a
workflow in the iTask system does not have to worry anymore about the low level
details commonly attached to database access. Any type of information can now
be stored and retrieved automatically making use of our generic read and write
functions. In this way database access can be completely hidden for the workflow
programmer. It furthermore enables the definition of re-usable workflow schemes

S. Smetsers et al. / Electronic Notes in Theoretical Computer Science 238 (2009) 59–70 69

on a high level of abstraction. In this way one can focus on the specification of the
actual workflow. Without our generic data storage approach this would not have
been possible.

References

[1] Peter Achten. Clean for Haskell98 Programmers. Technical report, Computing Science Institute,
Faculty of Mathematics and Informatics, University of Nijmegen, The Netherlands, 2007. http://www.
st.cs.ru.nl/papers/2007/CleanHaskellQuickGuide.pdf.

[2] Artem Alimarine and Rinus Plasmijer. A generic programming extension for clean. In Thomas Arts
and Markus Mohnen, editors, Proceedings of the 14th International Workshop on Implementation
of Functional Languages, IFL 2001, pages 257–278, Stockholm, Sweden, September 2001. Ericsson
Computer Science Laboratory.

[3] Artem Alimarine and Sjaak Smetsers. Optimizing generic functions. In Dexter Kozen, editor, The 7th
International Conference, Mathematics of Program Construction, number 3125 in LNCS, pages 16 –
31. Stirling, Scotland, UK, Springer, July 2004.

[4] Luca Cardelli. Amber. In Guy Cousineau, Pierre-Louis Curien, and Bernard Robinet, editors,
Combinators and functional programming languages : Thirteenth Spring School of the LITP, Val
d’Ajol, France, May 6-10, 1985, volume 242. Springer-Verlag, 1986.

[5] A. Davie, K. Hammond, and J. Quintela. Efficient persistent haskell. In Draft Proc. 10th International
Workshop on the Implementation of Functional Languages (IFL ’98), pages 183–194, 1998.

[6] Ralf Hinze. Generic Programs and proofs, 2000. Habilitationsschrift, Universität Bonn.

[7] Ralf Hinze. A new approach to generic functional programming. In The 27th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pages 119–132. Boston, Massachusetts,
January 2000.

[8] P. Jansson and J. Jeuring. PolyP - a polytypic programming language extension. In POPL ’97: The
24th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages 470–482.
ACM Press, 1997.

[9] Patrik Jansson and Johan Jeuring. Polytypic data conversion programs. Science of Computer
Programming, 43(1):35–75, 2002.

[10] Ralf Laemmel and Simon Peyton Jones. Scrap your boilerplate: a practical approach to generic
programming. In Proc ACM SIGPLAN Workshop on Types in Language Design and Implementation
(TLDI 2003), pages 26–37, Charleston, January 2003. ACM.

[11] Xavier Leroy. The Objective Caml system – release 3.08; Documentation and user’s manual. Institut
National de Recherche en Informatique et en Automatique, July 2004.

[12] M.R.C. Pil. Dynamic types and type dependent functions. In Kevin Hammond, Tony Davie, and
Chris Clack, editors, Implementation of Functional Languages (IFL ’98), volume 1595 of LNCS, pages
169–185. Springer Verlag, 1999.

[13] Rinus Plasmeijer, Peter Achten, and Pieter Koopman. iTasks: Executable Specifications of Interactive
Work Flow Systems for the Web. In Proc. of the 2007 ACM SIGPLAN Intern. Conf. on Functional
Programming, pages 141–152. ACM, Oct 1-3 2007.

[14] Andr Santos and Bruno Abdon Monteiro. A persistence library for haskell. In SBLP’2001 - V Simpsio
Brasileiro de Linguagens de Programao, May 2001.

[15] Martijn Vervoort and Rinus Plasmeijer. Lazy dynamic input/output in the lazy functional language
Clean. In Ricardo Peña and Thomas Arts, editors, The 14th International Workshop on the
Implementation of Functional Languages, IFL’02, Selected Papers, volume 2670 of LNCS, pages 101–
117. Springer, September 2003.

S. Smetsers et al. / Electronic Notes in Theoretical Computer Science 238 (2009) 59–7070

http://www.st.cs.ru.nl/papers/2007/CleanHaskellQuickGuide.pdf
http://www.st.cs.ru.nl/papers/2007/CleanHaskellQuickGuide.pdf

	Introduction
	Generic Programming
	Basic generic IO operations
	Updatable data storage
	Type-safe IO operations
	Related Work
	Conclusions
	References

