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Molecular simulations provide new insights into the role of the accessory
immunoglobulin-like domain of Cel9A
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a b s t r a c t

Cel9A from the thermoacidophilic bacterium Alicyclobacillus acidocaldarius belongs to the subfam-
ily E1 of family 9 glycoside hydrolases, many members of which have an N-terminal Ig-like domain
followed by the catalytic domain. The Ig-like domain is not directly involved in either carbohydrate
binding or biocatalysis; however, deletion of the Ig-domain promotes loss of enzymatic activity. We
have investigated the functional role of the Ig-like domain using molecular dynamics simulations.
Our simulations indicate that residues within the Ig-like domain are dynamically correlated with
residues in the carbohydrate-binding pocket and with key catalytic residues of Cel9A. Free energy
perturbation simulations indicate that the Ig-like domain stabilizes the catalytic domain and may
be responsible for the enhanced thermostability of Cel9A.

Published by Elsevier B.V. on behalf of the Federation of European Biochemical Societies.
1. Introduction

The growing importance of renewable fuels in displacing fossil
fuels, providing energy security and reducing the risks associated
with global warming, has spurred intense research into methods
for conversion of lignocellulosic, non-food feedstocks, such as corn
stover and switchgrass, into potentially low-carbon biofuels [1].
Existing biomass pretreatment processes typically rely on some
combination of chemical and mechanical treatments at high tem-
peratures and extremes of pH to break down the plant cell walls
and liberate polysaccharides [2]. The next step in the biofuel con-
version process involves the addition of enzymes, generally called
cellulases and hemicellulases, to hydrolyze the liberated polysac-
charides into monomeric fermentable sugars. It is desired to gener-
ate cellulases that can operate efficiently in the pretreatment
chemical environments, such as extremes of pH and temperature,
in order to reduce costs associated with the current approach of
treating the effluent before saccharification. Thus, protein engi-
neering for enhanced activity of cellulases that can tolerate higher
lf of the Federation of European Bi
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temperatures and extremes in pH is an important field of ongoing
research within the biofuel and enzymology scientific communi-
ties. There are examples of extremophilic cellulases in nature that
possess unique structural components that may serve to stabilize
the cellulase while maintaining activity at higher temperatures
or extremes in pH. A fundamental understanding of the role of
these auxiliary domains will provide insight into how cellulases
are stabilized while maintaining activity at higher temperatures.
These structural motifs may serve as a template for further enzyme
engineering efforts of cellulases isolated from other environments
and families.

Members of the glycoside hydrolases (GH) family have a mod-
ular architecture composed of one or two catalytic domains con-
nected to several kinds of accessory domains. These accessory
proteins include carbohydrate-binding domains (CBMs) [3], which
enhance the association of the catalytic domains with insoluble
carbohydrates, immunoglobulin-like (Ig-like) domains [4], and
fibronectin-like domains [5]. While there is increasing structural
information on the existence of these domains, their function
and role in the enzymatic cycle remain open questions. Improved
understanding of the structural and functional relationship be-
tween cellulases and these accessory domains provides informa-
tion that may suggest an approach to rationally engineering
ochemical Societies.
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cellulases for industrial hydrolysis of cellulose in extreme temper-
ature and pH environments.

For example, Cel9A from the thermoacidophilic bacterium
Alicyclobacillus acidocaldarius (Aa_Cel9A) (Fig. 1-top) has a temper-
ature optimum of 70 �C and a pH optimum of 5.5 [6]. Aa_Cel9A be-
longs to the subfamily E1 of family 9 of glycoside hydrolases, many
members of which have an N-terminal Ig-like domain followed by
the catalytic domain (CD). The function of the Ig-like domain has
not been determined; however, deletion of the Ig-like domain re-
sults in a complete loss of enzymatic activity in a related cellobio-
hydrolase, CbhA from Clostridium thermocellum [7]. Our
experiments also show that deletion of the Ig-like domain results
in significantly decreased recombinant protein expression.

We have investigated the role of the Ig-like domain in stabilizing
Aa_Cel9A and the correlation of its motions with motions of the cat-
alytic domain using molecular dynamics (MD) simulations using
the recently solved crystal structure of Aa_Cel9A [8] and an in silico
Aa_Cel9A mutant in which the Ig-like domain was removed. Using
MD simulation we have investigated: (1) the presence or absence of
correlated motions between active site atoms and those within the
Ig-like domain, (2) the effect that the Ig-like domain has on the ori-
entation of catalytic residues in the active site, and (3) the contribu-
tions of the Ig-like domain to protein stability.

2. Theory and method

Aa_Cel9A is represented in atomic detail using the AMBER force
field ff03 [9]. Initial coordinates for our simulations were taken
Fig. 1. Crystal structure of Aa Cel9A (top, generated by using Pymol [21] program)
and map of residue correlations of wt-Cel9A based on molecular dynamics
simulations (bottom).
from the recently solved 2.3 Å structure (PDB ID 3EZ8) of Aa_Cel9A
[8]. Simulations were carried out both the wild-type Aa_Cel9A and
on a truncated wild-type Cel9A structure, in which the IG domain
residues (residues 7–87) were deleted from the wild-type struc-
ture. The protein was immersed in a pre-equilibrated solvent box
of TIP3P water molecules [10], which extended to 10A beyond
the outermost protein atoms on both sides of the x, y, z-axes. The
SHAKE method was used to constrain all bonds involving hydrogen
atoms. The cutoff radius of non-bond interactions was set to be
12 Å. The Particle Mesh Ewald summation method [11] was used
to calculate the electrostatic potential. The entire simulation sys-
tem of WT Aa_Cel9A contained 528 amino acid residues, 2 Ca2+

ion, 1 Zn2+ ion, 15 Na+ ions and 13746 water molecules, for a total
of 49289 atoms. The truncated Aa_Cel9A contained 448 amino acid
residues, 2 Ca2+ ions, 1 Zn2+ ion, 15 Na+ ions and 11156 water mol-
ecules, for a total of 40267 atoms. The charges of all the chargeable
residues were set to their ionizable states at pH 7. Each system was
energy minimized for 1000 steps and then equilibrated for 200 ps,
in the NVT ensemble, over which the temperature was increased
gradually up to 300 K. This was followed by another 500 ps of
unconstrained dynamics using a Nose–Hoover constant pressure
(P = 1 bar) and temperature (NPT) simulations were carried. The
time step is chosen to be 2 fs. After 1 ns equilibrium state, 10 ns
simulations were carried out in production runs and data are col-
lected for analysis. The coordinates were saved every 500 steps
(1 ps). In total, 10000 frames were saved for further analysis.

The PTRAJ Module of AMBER 9 package was used to analyze our
MD simulation results. For each trajectory, the amino acid residues
in every frame of the MD trajectory were aligned to the heavy atom
positions of their crystal structure to remove the overall transla-
tion and rotation. Later, the Root mean-square deviations (RMSD)
of main chain atoms (Ca, C, N) in the catalytic domain (residue
81-to in full protein) were calculated.

The residue cross-correlation maps for WT Aa_Cel9A and the
catalytic domain of Aa_Cel9A were also calculated using the PTRAJ
module in AMBERTOOLS. The normalized fluctuation covariance
matrix Cij is defined as

Cij ¼
hDr1 � Drji

hDrii2hDrii2
� �1=2 ð1Þ

where i and j are any two residues, Dri and Drj are displacement
vectors of i and j. If Cij = 1 the fluctuations of i and j are completely
correlated (same period and same phase), if Cij = �1 the fluctuations
of i and j are completely anti-correlated (same period and opposite
phase) and if Cij = 0 the fluctuations of i and j are not correlated.

Energy landscape theory provides a framework for the descrip-
tion of the kinetic and thermodynamic mechanisms of protein
folding [12,13]. Because of the importance of adequately sampling
the potential energy surface, coarse grained models (also called
simplified models) have been used in simulations of protein fold-
ing [14–17]. Here a coarse grained force field within the Molaris
[18,19] software package was used to explore the free-energy land-
scape of the WT Aa_Cel9A and Ig truncated mutant. A brief descrip-
tion of the refined model system follows. In the refined model, the
potential energy surface of the simplified model is written as

Usimplified ¼ Umain þ Umain�side þ Uside�side þ Uself
solvation ð2Þ

where Umain describes the potential energy for the main chain,
which is a standard part of the MOLARIS software package. Uside�side

describes the interaction between the side chains and is based on an
‘‘8–6” potential. The Umain�side term describes the interaction be-
tween the effective side chains and the main-chain atoms, and
Uself

solvation accounts for the change in the solvation energy of each of
these groups upon moving from water to its protein site.
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The free energy surface was evaluated using the FEP/US method
as in previous study [19] as a function of radius of gyrations (Rg)
and sorting the results in two well-defined parameters, the Rg

and RMSD of the catalytic domains. The starting points for the
free-energy landscapes were taken as relaxed structures of the
simplified model after 200 ps relaxation. A force constant of
100 kcal/mol/Å was applied to the Rg of the catalytic domain only
and the catalytic domain was forced to unfold by increasing its
Rg along 21 frames each of which was simulated for 60 ps at
300 K and with a step size of 1 fs. It is worth pointing out that in
the two sets of simulations on both the WT and the truncated mu-
tant, the force constants are only applied to the catalytic domain.
Thus the comparison of the free energy of unfolding is between
the catalytic domains. For the case of the WT the interactions with
the Ig-like domain are present, and for the truncated mutant these
interactions are absent.
3. Results

The role of molecular motions and in particular correlated
molecular motions in Aa_Cel9A function was investigated by cal-
culating the correlation coefficients among all pairs of residues in
WT Aa_Cel9A across the MD simulation. The residue correlation
map, along with the crystal structure of Aa_Cel9A, is shown in
Fig. 1. The degree of correlation refers to the correlation between
fluctuations of a pair of atoms around the average structure. The
correlation values vary from �1 (anti-correlated) to 0 (completely
uncorrelated) to 1 (fully correlated).

The residue cross-correlation map provides a view of consider-
able through-space correlations that are not obvious prima facie
from analysis of a static crystal structure. In our study, the major
focus is the long-range dynamic correlation between the Ig-like do-
main residues and the cel9A catalytic domain. From Fig. 1, there
are several residues in catalytic domain that have strong positive
correlation (Cij > 0.4, also see the supporting Table S1 in Supple-
mentary result) with Ig-like domain residues, including GLN432,
ARG433, ALA435, ASP436, GLY440, ALA441, HIS388 PRO389,
PHE390 and GLY391 (colored yellow in Aa_Cel9A 3D structure).
This indicates that the Ig-like domain and those residues move in
concert in WT Aa_Cel9A. This observation is consistent with previ-
ous studies of crystal structures, because these residues are part of
interface between residues in the Ig-like domain and residues in
the catalytic domain [8]. These results also indicate that this region
is composed of a rigid protein–protein binding surface.

As seen in Fig. 1, several regions exhibited anti-correlated
motions (Cij < �0.2, also see the supporting Table S1). The amino
acid residues in these regions are PRO223, LEU224, ASP225,
THR226, ARG227, PRO228, GLU229, ASP230, ASP231, HIS461,
HIS462, PRO464, ALA467, ASP468, GLU515, VAL516, ALA517,
TRP520, ASN521 and SER522. Regions 223–231 and 461–468 rep-
resent two loops in the WT Aa_Cel9A structure. Structurally these
two loops are very close to each other even though they are dis-
tant in amino acid sequence space. The observation of anti-corre-
lated motions between these two loops and the Ig-like domain
indicates that the global motion of Ig-like domain and catalytic
domain are linked and may be required for binding specificity
and activity. Alignment of the crystal structure of Cel9A with sim-
ilar cellulases shows that the residues located at 223–231 and
461–468 are likely involved in the cellulose binding, either con-
ferring specificity or promoting activity. It has also been specu-
lated from protein crystallography data [20] that the Ig-like
domain common to glycosyl transferases and galactose oxidase
might be involved in carbohydrate binding in these enzymes.
Our finding of correlated motions between the Ig-like domain
and these putative cellulose-binding loops provides compelling
evidence for the existence of concerted domain motions as a
mechanism for controlling Aa_Cel9A activity.

Based on the crystal structure and earlier biochemical studies of
homologs, it is proposed that GLU515 within Aa_Cel9A acts as a
proton donor in the inverted hydrolysis reaction (Scheme 1) [8].
The proton on the GLU515 side chain initially forms an H-bond
with the O of the glycosidic bond between two glucose monomers.
The proton is then transferred to the O atom in a concerted transi-
tion state (Scheme 1, middle).

In this reaction, proper orientation of the GLU515 side chain is
critical for enzyme function. To investigate the effect of the pres-
ence of the Ig-like domain on GLU515 conformations, we calcu-
lated its side chain v1 and v2 angles over the course of our last
4 ns MD trajectories (4000 trajectories) of both the WT and the
truncated Aa_Cel9A mutant. The angular distributions are plotted
in Fig. 2. The v1 and v2 angles in the crystal structure of WT Cel9A
are �163� and 168�, respectively.

As seen in Fig. 2A, the v1 angle in WT Aa_Cel9A has a single
peak in its distribution, with an angular distribution centered on
�160�. However, in the truncated mutant, the v1 angle distribution
shows a bimodal pattern with the peaks centered on �160� and
�80�. As shown in Fig. 2B, the v2 angle for WT GLU515 has a broad-
er range of available conformations and is more flexible in the case
of the truncated mutant. MD simulations show that in the trun-
cated mutant the catalytic residue GLU515 resides adopts confor-
mations. Because the orientation of GLU515 is essential for
catalytic activity, the increased conformational heterogeneity of
the GLU515 side-chain in the mutant may in part be responsible
for the loss of catalytic activity in the absence of the Ig-like domain.

It is also interesting to note that correlated motions also exist
between the Ig-like domain and the region containing residues
515–522, an a-helical region in the active site. As discussed, resi-
due GLU515 has intrinsic preferences for certain backbone dihedral
values that place the side chain in an orientation that is required
for catalysis. Our results showing correlated motions between
the Ig-like domain and the 515–522 helix imply that these long-
range correlated motions may affect catalysis by controlling the
GLU515 side-chain orientations and may help explain why
removal of the Ig-like domain reduces overall enzyme activity.

From the residue correlation maps, the Ig-like domain residues
themselves are strongly positively correlated with each other. To
determine the extent to which the high correlation values are over-
estimated due to the Ig-like ‘‘dangling” around the larger catalytic
domain, an MD simulation was performed on the Ig-like domain
only. While the correlation patterns are mainly retained, the corre-
lations in the free Ig-like domain are smaller and thus were over
estimated in the cross-correlation analysis of the full-length Cel9A.

Another possibility for the presence of the Ig-like domain at the
N-terminus of the Aa_Cel9A is to stabilize the catalytic domain by
limiting motions that lead to unfolding of the protein. To study
whether the catalytic domain is stabilized by the presence of the
Ig-like domain, we used a simplified folding model and Umbrella
Sampling/free energy perturbation (UM/FEP) [19] to study the
unfolding free energy landscapes of the Aa_Cel9A catalytic domain
both with (WT) and without its Ig-like domain (mutant). The free
energy of the protein configurations was explored as a function
of two well defined parameters: the radius of gyration (Rg) and
the root mean square deviation (RMSD). Fig. 3 plots the contours
of the free energy required to move from one (RMSD, Rg) conforma-
tion to another and represents the free energy of unfolding. The
RMSD is calculated only on the catalytic domain aligned to the
crystal structure of the Cel9A catalytic domain.

Comparison of the two profiles also shows that for each (Rg

RMSD) pair the free energy of unfolding is higher for the WT than
for the mutant, indicating that more energy is required to increase
the radius of gyration (unfold) of the WT Aa_Cel9A catalytic



Scheme 1. Hydrolytic reaction catalyzed by Aa_Cel9A. E515 is the proton donor in the hydrolysis reaction.

Fig. 2. GLU515 side chain v angle distribution for the WT and mutant Aa_Cel9A without the Ig-like domain.

Fig. 3. Free energy landscapes for the truncated Aa Cel9A mutant without it’s Ig-like domain (A) and the WT Aa_Cel9A (B). The units are in kcal/mol.
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domain (�400 residues) with the Ig-like domain attached than it
does to unfold the truncated Aa_Cel9A. The surfaces of both the
WT and the truncated mutant have similar ranges of backbone
RMSD in their folded structure, indicating that the unfolding free
energy profiles are measures of the energy required to move
among similar states, and are thus different due to the presence
or absence of the Ig-like domain. The differences between the
unfolding free energy landscapes suggest that the N-terminal
Ig-like domain stabilizes the fold of the Aa_Cel9A catalytic domain,
suggesting the Ig-like helps maintain the correct fold of the cata-
lytic domain and may facilitate the thermostability of Aa_Cel9A.

4. Discussion

In summary, we have employed computational modeling to
gain molecular level insights into the role of the N-terminus Ig-like
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domain in the recently solved structure of Cel9A from the thermo-
acidophilic bacterium A. acidocaldarius. Experimental studies of
truncated mutants [20] of a Cel9A homolog and crystal structures
analysis of Aa_Cel9A [8] suggest that one function of the Ig-like do-
main might be to stabilize the catalytic domain. We applied two
approaches (standard MD simulations and biased unfolding simu-
lations) to model WT Aa_Cel9A and a mutant without the Ig-like
domain. Our results indicate that the Ig-like domain (1) stabilizes
the catalytic domain, playing an important role in keeping the cat-
alytic domain folded in the correct conformation; (2) has strongly
correlated internal motions, indicating that at higher temperatures
the presence of the Ig-like domain enhances stability and enables
the recovery of its properly folded conformation after perturbation,
which may allow it to serve as a conduit for release of the energy
and stresses caused by the hydrolysis reaction; (3) has correlated
motions with several regions in the catalytic domain, including
the key catalytic residue GLU515 and two loop regions (residues
223–231, and residues 461–468) that are responsible to cellulose
binding.

This work suggests that one of the critical functions of the Ig-
like domain is to ensure that the catalytic domain is properly
folded, and to assists in maintaining the proper orientation of
key active site and catalytic residues. The correlated motion be-
tween the Ig-like domain and the catalytic domain controls the
motions of the two loops (PRO223 to ASP 231) and (HIS461 to
ASP468), which are colored blue in Fig. 3, and are involved in car-
bohydrate binding. This may be a general feature of Ig-like domain
in the GH family. These results may enable the engineering of cel-
lulases that are more robust and stable under industrial processing
conditions.
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