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Abstract 

In recent years, Unmanned Aerial Vehicles (UAV), have been increasingly utilized by both military and civilian 
organizations because they are less expensive, provide greater flexibilities and remove the need for on-board pilot support. 
Largely due to their utility and increased capabilities, in the near future, swarms of UAVs will replace single UAV use. 
Efficient control of swarms opens a set of new challenges, such as automatic UAV coordination, efficient swarm 
monitoring and dynamic mission planning. In this paper, we investigate the problem of dynamic mission planning for a 
UAV swarm. A centralized-distributed hybrid control framework is proposed for mission assignment and scheduling. The 
Dynamic Data Driven Application System (DDDAS) principles are applied to the framework so that it can adapt to the 
changing nature of the environment and the missions. A prototype simulation program is implemented as a proof-of-
concept of the framework. Experimentation with the framework suggests the effectiveness of swarm control for several 
mission planning mechanisms.  
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1. Introduction 

Unmanned Aerial Vehicle (UAV), or as it is usually called, drone, is an aircraft which does not require an on 
board pilot. The control of a UAV is usually performed either in an autonomous way by an on-board computer, 
or in a manual way by an operator remotely in a ground station. The history of using UAVs in warfare can be 
dated back to World War I [1], but only since the last decade has there been a large scale use of UAV 
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deployments in various military and civilian operations, such as anti-terrorism, remote area surveillance and 
hazardous environment monitoring.  

Compared with traditional piloted airplanes, UAVs are less expensive and can be made into much smaller 
sizes to increase their flexibilities. Pilot safety is no longer a concern. As their costs reduce and their 
capabilities improve, it is foreseen by many organizations that in the near future, swarms of UAVs will replace 
single ones for more complicated missions in more uncertain and possibly hostile environments [2]. Currently, 
a UAV is operated by at least one ground operator, sometimes more. This pattern cannot scale as the number of 
UAVs in a swarm increases rapidly. So, more intelligent command and control approaches and systems are 
required to let ground pilots "fly the swarm" instead of individual UAVs.  

During a swarm's operation, its member UAVs' status, as well as the external environment, change over 
time. So it is important that the swarm adapts to these changes and adjusts its behaviors accordingly. The 
Dynamic Data Driven Application System (DDDAS) paradigm, as proposed by Darema [4], is a means to 
inject runtime data into system models or simulations to achieve more accurate analysis and more precise 
controls. In this paper, we extend our previous UAV studies [5][6][24][25], leverage intelligent agent and 
workflow techniques [7], and further apply our related work for configuration and resource allocation in 
computing environments [8][9][10]. These past studies, in this paper, are applied with DDDAS principles to the 
swarm mission planning problem and we propose a centralized-distributed framework for mission assignment 
and scheduling. In the framework, a central controller is responsible for assigning tasks in a mission to different 
UAVs based on its latest knowledge about the swarm. Upon receiving the task assignment, the UAV tries to 
schedule the new task into its local task queue in order to minimize total task completion cost. Since the central 
controller does not have real time information about the swarm, it incorporates the status information sent from 
the swarm and utilizes this information to update its swarm model for future task assignments. To evaluate the 
proposed framework, a prototype simulation framework is implemented.  

The rest of this paper is organized as follows. In Section 2, related research work in the area of UAV swarm 
control and mission planning are discussed. Formal definitions of the terms used in this paper are provided in 
Section 3. Also in Section 3 is the descriptions of the proposed mission planning framework. In Section 4, the 
architecture and implementation of the simulation framework are explained. Initial experimental results are also 
presented. In Section 5, we summarize our work and give a brief preview of future works.  

2. Related Work 

The new challenges imposed by UAV swarms have attracted many researchers since the last decade. New 
simulation models, command and control mechanisms and simulation tools have been developed to tackle 
issues in different aspects of the swarm. MASON [12] is a general purpose multiagent simulation library that is 
utilized by our previous work, along with the Matlab based UAV simulator MultiUAV2 [13]. In [11], a swarm 
simulator is implemented in Java for target searching. Garcia et al. in [14] introduced a multi-UAV simulator 
implemented on top of a commercial flight simulator called X-Plane. Russell et al. in [15] presented a parallel 
swarm simulation environment utilizing an existing parallel emulation and simulation tool called SPEEDS. 
Gaudiano et al. in [16] proposed an agent-based UAV model and different decentralized strategies for swarm 
control in search and destroy missions. A similar cooperative search problem is also discussed in [17], but in a 
civilian usage scenario. The problems of path planning and vehicle routing are investigated in [18] using multi-
objective evolutionary algorithms. In [19], the cooperative searching problem is discussed for the purpose of 
detecting moving and evading targets in a hazardous environment. [20] investigates the Automatic Target 
Recognition (ATR) problem in UAV control and proposed a distributed strategy for UAV swarms. The task 
allocation problem is discussed in [21] and [22] using different methodologies. There are also applications 
using a UAV swarm to monitor and detect wild fire hotspots [23].  
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3. DDDAS driven Swarm Mission Planning 

3.1. Definitions 

In this subsection, formal definitions of the terms used throughout the rest of this paper are given.  

3.1.1. UAV Swarm 
A swarm consists of a group of UAVs. Let S = {v1, v2, ... , vn} denote a swarm, and n = |S| denote the number 

of UAVs in the swarm. We assume that the number of UAVs is a constant number during runtime. A UAV has 
the following properties: 

1. Speed, currently constant speed is assumed. But different UAVs can have different speeds; 
2. Maximum capacity, could be fuel, battery power, etc. 
During the swarm's mission, for any given time t, each UAV has a state, defined as vi(t). A state contains the 

following information: 
1. Current position of the UAV. We assume that all UAVs fly on the same altitude, so the current position 

contains x and y coordinates; 
2. Current heading of the UAV; 
3. Residual capacity; 
4. Measured capacity consumption rate, the UAV's maximum capacity and this value together determine 

how long the UAV can stay in the operation area before having to return to base. This measurement may 
change overtime. 

5. A list of tasks assigned to this UAV. 
A swarm's state consists of two parts. One part includes the collection of its UAV s states, the other part is a 

collection of mission states for all missions scheduled on the swarm. Here we consider a long endurance swarm 
capable of finishing multiple missions. 

3.1.2. Missions and Tasks 
A mission is a high level description of the objective that the swarm needs to accomplish. A mission consists 

of one or more tasks specifying the detailed steps of the mission. Let MS = {T, D} denote the mission, where T 
is the set of tasks in the mission, {t1, t2, ... , tk}, and D is the dependencies between different tasks. In D, {ti, tj} 
means that task tj has a dependency on task ti, i.e., tj must wait for ti to complete in order to start. If we consider 
each task as a node, and the dependency relationship between two tasks as a directed edge, then a mission can 
be represented by a directed graph. In this paper, we consider missions that can form a Directed Acyclic Graph 
(DAG).  

After a mission is scheduled on a swarm, there is a state associated with it for any given time t. A mission's 
state is a 3-tuple MSt = {C, P, W} where C is the set of completed tasks, P is the tasks that are in progress, and 
W is the tasks that are waiting to be finished. A mission is considered completed when P = W = {}, and C = T. 
Table 1 gives a quick reference to the symbols used in this paper.  

Table 1. Nomenclature 

Symbol Description 

S A UAV swarm. 

vi The ith UAV in the swarm. 

vi(t) The state of the ith UAV at time t. 

n Total number of UAVs in the swarm. 
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MS A mission. 

T The set of tasks in the mission. 

ti The ith task. 

D The set of task dependencies in the mission. 

{ti, tj} A task dependency pair specifying task tj has a dependency on task ti.  

MSt The state of a mission at time t. 

C The set of completed tasks in the mission state. 

P The set of in-progress tasks in the mission state. 

W The set of not-started tasks in the mission state. 

M Scheduling mapping from the set of tasks to the swarm. 

3.2. A DDDAS driven Hybrid Framework for Swarm Mission Planning 

Based on the above definitions, we consider the following problem: 
Given a swarm S, either with or without existing missions, and a new mission MS, schedule the mission on 

the swarm so that the total mission cost is minimized.  
The scheduling process produces a mapping, M, from the set of tasks to the set of UAVs. The mapping 

specifies which task is assigned to which UAV. For example, {t1, v2} means UAV 2 gets task 1.  
The mission cost is the sum of all its tasks' costs. The cost of a task is different for different types of tasks. 

But generally, it consists of the travelling cost and the task completion cost. The former is the cost for a UAV 
to travel to the task location from its current location, while the later is the cost for the UAV to carry out the 
task.  

Let k denote the total number of missions assigned to a swarm, and N is the total number of UAVs in the 
swarm, the problem can be written as the following: 

c(MSi k  (1) 

f(ui)     

In (1), c(MSi) is the cost of mission MSi. f(ui) is the residual capacity of the ith UAV after it completes all 
assigned tasks. The constraint is that every UAV must have enough capacity to finish all assigned tasks. 

To solve this problem, we propose a centralized-distributed hybrid framework which combines global task 
assignment and local task scheduling. There are two major components in the framework. The first is a central 
controller, and the other is the UAV swarm. The central controller in the base station is responsible for 
assigning tasks in a mission to UAVs, while each UAV that gets a task locally schedules how to finish it. 

In order to obtain the latest knowledge about the swarm, the central controller periodically sends status 
inquiries to all UAVs. Upon receiving such inquiry, a UAV will generate a status message and send it. The 
message contains the following fields: 

1. Current location of the UAV; 
2. Residual capacity, in percentage of the UAV's maximum capacity; 
3. Calculated capacity consumption rate; 
4. Estimated final location after all of its tasks are completed; 
5. Estimated final residual capacity after completing all of its tasks. 
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In addition to this status message, the UAV also sends a task completion message to the central controller 
every time it finishes a task so that the latter can update the mission information and trigger new task 
assignment actions.

Figure 1 shows how DDDAS principles are integrated into our control framework. The central controller is 
the application system as in the DDDAS paradigm, while the simulation swarm is the external data source and
different kinds of messages sent from UAVs are the measured data about the real world. Such data is
dynamically injected into the running controller to update its knowledge about the swarm and the missions. It 
then uses this updated knowledge to perform new task assignment or reassignment actions. 

Fig 1. The DDDAS-driven control framework for swarm mission planning

Since tasks in a mission have dependencies among each other, they cannot be all assigned at the same time. 
So the central controller needs to decide which tasks are ready to be assigned. A ready task is the one that 
doesn't have any predecessor tasks or all of its predecessors have been finished. As a task is completed, other 
tasks that are dependent on it may become ready. The central controller monitors the status of each mission and 
assigns tasks to UAVs as they become ready. For each ready task, the central controller selects the assignment 
target UAV by the following steps:

1. Calculate, for each UAV, the cost of completing ti. The central controller will use its latest knowledge
about the swarm to estimate the cost of finishing ti. This cost is different for different UAVs, because
UAVs are on different locations and may or may not have existing tasks. There are two different 
situations:
1.1. The UAV doesn't have scheduled tasks. In this situation, the cost is the traveling cost from UAV's

current location to task location plus the task's completion cost. The capacity used for comparison is
the UAV's current capacity;

1.2. There are scheduled tasks on the UAV already. In this case, the estimated final location and
estimated final residual capacity values will be used to calculate the task cost. 

2. The calculated task cost is compared to the UAV's residual capacity. If the former is greater than or 
equal to the latter, the UAV is selected as a candidate for task assignment;

3. Sort the calculated costs and choose the UAV with the smallest cost value as the candidate for ti. 
The task assignment gives a task to a UAV, but it does not specify how this task should be scheduled on the

UAV. To be more specific, the central controller does not specify whether the new task should be executed
immediately or after all existing tasks are completed. The UAV controls this decision. There are several
possible scheduling policies:

1. First Come First Serve (FCFS): the new task will be executed after all earlier tasks are completed;
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2. Insertion based policy: if there are no scheduled tasks on the UAV, the new task will start execution 
immediately. Otherwise the UAV will schedule the new task based on the following equation: 

Let l0 denote the location of UAV ui when the new task tm arrives. Let Ti = {t1, t2, ... , tk} be the set of 
scheduled tasks on ui, and Li = {l1, l2, ... , lk} denote the locations for scheduled tasks and lm denote the location 
of task tm. Let os denote the cost of the old (current) schedule, and ns the cost of the new schedule which 
includes tm. Let function D(li, lj) denote the Euclidean distance between locations li and lj, and C(ti) denote the 
completion cost of task ti. The cost of the new schedule, ns, can be calculated as: 

ns = min(os + D(lk, lm) + C(tm), min(os - D(li, li+1) + D(li, lm) + D(lm, li+1) + C(tm  (2) 

In the above equation, the first part of the outer min operation is the cost to place the task after all scheduled 
tasks. The inner min operation tries to find a place among the scheduled tasks to insert the new task so that the 
total new cost is minimized. The index i that produce the min total cost is the place to insert the task. If the first 
part of the outer min operation is smaller, then tm will be executed after all currently scheduled tasks.  

3. Traveling Salesman Problem (TSP): the scheduling problem can also be modeled as a TSP problem.  
The nodes (cities) are the UAV's current location, locations of all scheduled tasks, and the new task's 

location. The cost of a link is the Euclidean distance between two locations. And the starting point is the UAV's 
current location. Since TSP is known to be NP-hard, many heuristics have been proposed to approximately 
solve this problem. A simple heuristic is the nearest neighbor. At each step, the heuristic chooses the unvisited 
city that is nearest to the current city as the next destination.  

4. Adaptive Policy: This policy simply uses all the other policies to calculate task costs and pick the policy 
that produces the minimum cost each time the UAV needs to perform a task scheduling.  

A sorted task list is produced after the scheduling process, which represents the completion order of the 
tasks. The UAV then follows the task list to complete all tasks. In addition to the scheduling, the UAV will also 
update its estimated final location after all scheduled tasks (including the newly arrived task) are completed and 
the corresponding estimated final residual capacity. This local scheduling process is repeated every time a new 
task is assigned to the UAV.  

Since the capacity consumption rate of a UAV varies overtime, it is possible that a UAV receives a new task 
then inserts the task into its current schedule, but discovers later that the schedule cannot be completed with its 
residual capacity. To address this situation, during the swarm operation, every UAV that has been assigned 
tasks periodically tests the feasibility of its current schedule. The feasibility of a schedule is whether the UAV 
has sufficient residual capacity, based on current calculated capacity consumption rate, to finish all tasks in its 
schedule. If the UAV decides that it is infeasible to complete the current schedule, it will remove tasks from the 
end of the schedule until it becomes feasible. The removed tasks are sent back in a task reassignment request to 
the central controller. After receiving such request, the central controller will reassign those tasks to other 
UAVs.  

4. Simulation Framework 

A simulation framework is built as a proof-of-concept of the proposed DDDAS driven mission planning 
framework. The framework is implemented as a multithread Java program, and both the central controller and 
all UAVs are represented by threads. Communications between the central controller and UAVs are 
implemented as messages. These messages either require the recipient to take an action, such as the new task 
message, or contain the latest information about the sender, such as the status return message. Table 2 contains 
descriptions of all messages used in the framework. We can see that a participant of the framework, either a 
UAV or the controller, can become both message sender and receiver. Each participant also has two message 
queues, one for incoming messages and the other for outgoing ones.  
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Each UAV is under the governance of a control loop. The loop body has the following steps: 
1. Retrieve messages from the inbound message queue; 
2. Process received messages based on their types; 
3. If there are tasks scheduled on the UAV, test the feasibility of the schedule; 
4. Send messages in the outbound message queue to their receivers; 
5. Update the internal state of the UAV, including its location, heading, and residual capacity.  
Steps 2 and 3 may trigger the generation of outbound messages. At the beginning of a simulation run, each 

UAV is given a list of randomly generated default waypoints to follow, thus forming a default trajectory. If a 
new task is assigned and scheduled on the UAV, it will leave the default trajectory for the task location. After 
all scheduled tasks are completed, the UAV will choose the nearest default waypoint and return to that location 
to resume its default trajectory.  

Similar to the UAV, the central controller also has a control loop with the following steps: 
1. Receive messages from inbound message queue; 
2. Process received messages based on their types; 
3. Send out all outbound messages; 
4. Send status inquiry messages to all UAVs. 
The central controller incorporates the latest information contained in the received messages into its 

knowledge about the swarm and all missions. When new mission arrives, the central controller uses the mission 
planning process discussed in Section 3.2 to select a best UAV candidate.  

Figure 2 shows the GUI of the framework, implemented using Java Swing. The left part of the GUI has the 
mission output area on top and the control buttons at the bottom. The framework visualizes missions by 
displaying their tasks and task dependencies as DAGs. Each task node also has a color indicating the task 
status, shown in Table 3. In Figure 2, two missions, M1 and M2, with a total of 13 tasks, are given to the 
central controller for planning and execution. And task T1 in mission M1 has been completed, task T2 is being 
executed by one of the UAVs, while task T3 has been scheduled on a UAV and is waiting to be executed. 

At the bottom left of the GUI are the control buttons, provided for the convenience of framework users to 
allow them to take a closer look at the swarm and the missions. The Start button starts a new simulation. The 
Stop button terminates a running simulation. After the simulation is stopped, the JFreeChart [26] library will be 
utilized to generate simulation report charts, as shown in Figure 3. The left part of Figure 3 is a pie chart 
showing how many tasks are completed by each UAV in the swarm, while the bar chart on the right part shows 
the total traveling distance of each UAV. The Pause button in the control button area is used to pause/resume 
the simulation. The button text will switch from "Pause" to "Resume", and vice versa, after being clicked to 
indicate the intended control action.  

The top area of the GUI's right part is the swarm display area. The framework visualizes in this area all 
UAVs in the swarm, their default waypoints and all tasks scheduled on these UAVs. A UAV is represented by 
a small solid triangle on the GUI. The capacity of the UAV is shown by a small solid rectangle near the UAV. 
The color of the rectangle changes from green to yellow to red as the residual capacity diminishes. The default 
waypoints of a UAV are visualized by small solid squares connected by directed dashed lines. The task 
waypoints are also represented by small solid squares, but they are connected by undirected solid lines. The 
colors of UAVs, tasks and waypoints are randomly selected during simulation to differentiate each other. The 
area below the swarm display area is used for textual output of simulation information, such as task assignment 
results, task and mission completion results, and simulation termination message.  
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Table 2. Communication messages between different participants of the framework 

Message Type From To Description Action on Recipient 

New Mission Users Controller Users send new missions to the controller for 
mission planning and task assignment.  

Start a mission planning process. 

New Task Controller UAV The controller assigns a new task to a UAV. Start a task scheduling process. 

Status Inquiry Controller UAV The controller requests a status update from a 
UAV. 

Generate a status return message. 

Status Return UAV Controller The UAV sends its latest status information to 
the controller as a reply to its status inquiry. 

Incorporate the latest status of the UAV 
into the controller's information base. 

Task 
Completion 

UAV Controller The UAV informs the controller about the 
completion of a task. 

Search for additional ready tasks and 
assign them to the UAVs. 

Task 
Reassignment 

UAV Controller The UAV requests the controller to initialize a 
task reassignment for some of the tasks on the 
UAV.  

Select another UAV and sends the task 
to it.  

Table 3. Task colors and their indicated task status 

Task Color Task Status 

Black Task hasn't been assigned yet because its predecessors have not completed. 

Red Task has been assigned to the UAV, but has not been scheduled on the UAV. 

Yellow Task has been scheduled on the UAV. 

Blue Task is currently being executed by the UAV. 

Green Task has completed. 

 

Fig. 2 Screenshot of the simulation framework in execution with 3 UAVs and 2 missions 
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Fig. 3. A pie chart (left) and a bar chart (right) generated by the framework 

5. Conclusion and Future Work 

UAVs will continue to have an important role in current and future military and civilian operations. As 
multiple UAVs are organized into a swarm, new challenges need to be addressed and new command and 
control techniques be developed to effectively manage the swarm. To facilitate efficient mission planning for 
UAV swarms, in this paper we proposed a centralized-distributed hybrid framework. The framework applies 
DDDAS principles to dynamically incorporate latest swarm information into the mission planning process. A 
central controller assigns ready tasks in the mission to UAVs that have the minimum estimated costs. The 
UAVs then locally schedule those tasks into their task queues based on different policies. As a proof-of-
concept, a multithread simulation framework is implemented in Java.  

In the future, we plan to extend our work significantly. First, an expressive mission specification language 
will be developed so that framework users can describe mission input more easily and naturally. Secondly, we 
plan to incorporate more realistic aspects of UAV flight into the framework, such as collision avoidance and 
variable speed. We also plan to add more scenarios from real world swarm operations into the framework, such 
as communication lost between a UAV and the central controller, and task failure on UAVs. Thirdly, we are 
planning to convert the framework into an open source project so that other researchers in the community can 
try it out and give us their comments and suggestions. 
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