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a b s t r a c t

Sepsis is an exaggerated systemic inflammatory response to persistent bacteria infection with high
morbidity and mortality rate clinically. β-arrestin 2 modulates cell survival and cell death in different
systems. However, the effect of β-arrestin 2 on sepsis-induced cardiac dysfunction is not yet known.
Here, we show that β-arrestin 2 overexpression significantly enhances animal survival following cecal
ligation and puncture (CLP)-induced sepsis. Importantly, overexpression of β-arrestin 2 in mice prevents
CLP-induced cardiac dysfunction. Also, β-arrestin 2 overexpression dramatically attenuates CLP-induced
myocardial gp130 and p38 mitogen-activated protein kinase (MAPK) phosphorylation levels following
CLP. Therefore, β-arrestin 2 prevents CLP-induced cardiac dysfunction through gp130 and p38. These
results suggest that modulation of β-arrestin 2 might provide a novel therapeutic approach to prevent
cardiac dysfunction in patients with sepsis.
& 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Sepsis, a significant clinical problem, is one of the leading
causes of death in intensive care units throughout the world [1].
Sepsis is the No.1 cause of morbidity and mortality in intensive
care units (ICUs), and about 60% of patients admitted to the ICU
have cardiac dysfunction [2–4]. When accompanied by heart
dysfunction, survival for sepsis is only 30% [1,2]. An average of
7.5 million incidences of severe sepsis are recorded in the United
States yearly, and the number is rising at a steady rate. The
prognosis of sepsis is different from person to person. However,
the mortality rate is nearly 40% in an advanced aged patient under
severe sepsis in spite of aggressive treatment [1,2]. Cardiac dys-
function plays a critical role in the high morbidity and mortality of
this condition [2–4]. Therefore, it is urgent to elucidate the me-
chanisms by which sepsis modulates cardiac dysfunction and
generate more efficient ways to improve the prognosis.

β-arrestin 2, a universally expressed member of arrestin family
in many tissues with especially high expression in nervous and
cardiovascular tissues [5–7], is an essential negative regulator of
the G-protein-coupled receptor (GPCR) signaling [5,7–9]. β-ar-
restin 2 not only facilitates G-protein associated 7 TMR
B.V. This is an open access article u
desensitization/internalization but also mediates intracellular
signal transduction independently [5,9]. In addition to these es-
tablished functions, β-arrestin 2 increasingly represents an active
line of investigation where β-arrestin 2 binds with various target
molecules and thus modulates a broad range of biological pro-
cesses [10–12]. Recent evidence has shown that β-arrestin 2 is
functionally involved in the regulation of immune responses by
modulating various signaling pathways [11,12]. β-arrestin 2 sti-
mulation protects against acute cardiac injury [13,14]. However,
the effect of β-arrestin 2 on cardiac function during sepsis is not
yet known.

The affinity between β-arrestin 2 and mitogen-activated pro-
tein kinases (MAPKs) exhibited in numerous cases of GPCR sig-
naling [15–18]. Others and we recently reported that β-arrestin
2 scaffolds MAPK components such as the MAP kinases extra-
cellular-signal regulated kinase (ERK) and c-Jun-N-terminal kinase
(JNK), leading to phosphorylation, activation and accumulation of
MAPKs in defined cellular compartments [15,18]. To examine the
mechanisms by which β-arrestin 2 modulates cardiac functions,
we focused on investigation of β-arrestin 2 to regulate glycopro-
tein 130 (gp130) and p38 MAPK signaling during sepsis.

In the present study, we demonstrated that overexpression of
β-arrestin 2 enhances survival and attenuates cardiac dysfunction
in septic mice. Additionally, β-arrestin 2 overexpression prevents
elevated levels of myocardial gp130 and p38 MAPK phosphoryla-
tion in polymicrobial sepsis.
nder the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Fig. 1. β-arrestin 2 TG mice are less susceptible to CLP-induced polymicrobial
sepsis. WT, β-arrestin 2 KO, and β-arrestin 2 TG mice (N¼15 per group) were
subjected to CLP and monitored up to 120 h. *Po0.05.
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2. Materials and methods

2.1. Experimental animals

Wild-type (WT) C57BL/6J mice were ordered from Jackson La-
boratory (Bar Harbor, ME). β-arrestin 2 knockout (KO) mice on a
C57BL/6 background were kindly provided by Dr. Robert Lefkowitz
(Duke University) and bred at East Tennessee State University
(ETSU) [18]. β-arrestin 2 over-expression (TG) mice were gener-
ated as previously described [19]. Briefly, full-length human β-
arrestin 2 cDNA from brain cDNA/λphage library was cloned into
pcDNA3 (BamHI-EcoRI) with HA tag (HindIII-BamHI) under the
control of a human cytomegalovirus (CMV) promoter. Then the
DNA constructions were injected into fertilized mice eggs with the
C57BL/6 J background. The integration of variable copies of a
transgene into the genomes of founder mice and their offspring
was verified. Real-time PCR analysis was used to check the mRNA
expression of the transgene. The genomic DNA primers used to
identify transgenic mice were β-arrestin 2, sense 5′-CAGCCAG-
GACCAGAGGACA-3′, antisense 5′-TGATAAGCCGCACAGAGTT-3′.
There is no difference between physical appearance, activity,
productivity and life span in WT, β-arrestin 2 KO, and β-arrestin
2 TG mice. Male and female mice aged 11–12-week were used in
survival and Western Blot analysis. Only male mice were utilized
in cardiac function analysis. All mice were maintained in the Di-
vision of Laboratory Animal Resources at ETSU, a facility accredited
by the Association for the Assessment and Accreditation of La-
boratory Animal Care (AAALAC). The ETSU Committee on Animal
Care approved all animal studies.

2.2. Cecal ligation and puncture (CLP) polymicrobial sepsis

CLP was performed to induce sepsis in mice as described in our
previous studies [20]. Briefly, mice were initially anesthetized by
5.0% isoflurane inhalation in 100% O2 in a closed chamber and then
maintained by 3% isoflurane inhalation during surgery. A small
incision was made in the anterior abdomen, and the cecum was
ligated 1 cm proximal to the terminal of cecum with a size 2-0
sutures. The cecal puncture was done with a 20-gauge needle and
the content was extruded from two holes. The abdomen was then
closed layer by layer. Mice without ligation and puncture were
served as control. Immediately following CLP or sham surgery,
40 ml/kg pre-warmed saline was administrated by intraperitoneal
injection.

2.3. Cardiac functional analysis

Cardiac function was detected by use of the SPR-839 instru-
ment (Millar Instruments, Houston, TX, USA) as described pre-
viously by us [21]. Briefly, a microtip pressure–volume catheter
(SPR-839; Millar Instruments, Houston, TX, USA) was inserted
through a 25-gauge apical stab into the LV to measure the steady-
state cardiac function. At the completion of the study, 10 mL of
hypertonic saline (15%) was injected into the right atrium to cali-
brate Vp, the parallel volume. The signals were continuously re-
corded at a sampling rate of 1000 s�1 using an ARIA pressure–
volume conductance system (Millar Instruments) coupled to a
Powerlab/4SP A/D converter (AD Instruments, Mountain View, CA,
USA). All pressure–volume loop data were analyzed with a cardiac
pressure–volume analysis program (PVAN3.4; Millar Instruments).
At the end of the functional analysis, the hearts were removed and
perfused for 2 min as Langendorff preparations to remove the
remaining blood before Western blot analysis.
2.4. Western blot analysis

Western blot analysis was performed according to established
protocols [18,22]. Briefly, proteins extracted from heart tissue lysis
were loaded to 10–15% SDS-PAGE, and then transferred to a ni-
trocellulose membrane (Bio-Rad). The blocking solution was
composed of 3% BSA dissolved in 1�TBS; blocking the membrane
for 1 h at room temperature. The membrane was incubated for 2 h
at room temperature in primary antibody and 1 h in secondary
antibody, both in 1.5% BSA dissolved in 1�TBS. The signals were
detected with the ECL system (Amersham Biosciences), and the
signals were quantified by scanning densitometry and computer-
assisted image analysis. Pan p38, phospho-p38, pan ERK, phospho-
ERK, pan JNK, phospho-JNK, pan STAT3, and phospho-STAT3 an-
tibodies were from Cell Signaling Technology (Beverly, MA). Pan
gp130, phospho-gp130, and GAPDH antibodies were obtained
from Santa Cruz Biotechnology (Santa Cruz, CA).

2.5. Statistical analysis

Comparisons of data from multiple groups were carried out
using one-way analysis of variance and Newman-Keuls multiple
comparison tests. Means were compared by Student’s t-test be-
tween two groups. All data were expressed as mean 7 SEM. The
Kaplan-Meier method was used to generate the survival curves,
and the significance of differences was ascertained using the Log-
rank (Mantel-Cox) test. Po0.05 was considered statistically
significant.
3. Results

3.1. Overexpression of β-arrestin 2 in mice enhances animal survival
following CLP

First, we investigated the effect of the multifunctional protein
β-arrestin 2 [5,18] on animal survival after sepsis. WT, β-arrestin
2 TG, and β-arrestin 2 KO mice were subjected to CLP, and mor-
tality were monitored for 120 h. As shown in Fig. 1, death occurred
with the highest frequency 18–24 h after sepsis. The survival rate
24 h after CLP was 40% for WT mice, 80% for β-arrestin 2 TG mice,
and 13.3% for β-arrestin 2 KO mice. At the end of the observation
period, the survival rates were 20% in WT, 53.3% in TG, and 6.7% in
β-arrestin 2 KO group. There were no deaths in sham control mice
(data not shown). These results suggest that β-arrestin 2 con-
tributes to animal survival following CLP.



Fig. 2. Overexpression of β-arrestin 2 in mice attenuates CLP-reduced cardiac output and stroke volume. We subjected WT, β-arrestin 2 KO, and β-arrestin 2 TG mice (N¼6
per group) to CLP or sham operations. At 6 h CLP, hemodynamic parameters were measured by cardiac functional analysis. (A) CO, cardiac output. (B) SV, stroke volume.
(C) HR, heart rate. CO, SV, and HR from KO and TG group after CLP and sham treatment were compared to WT CLP group. *Po0.01.
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3.2. β-arrestin 2 overexpression attenuates cardiac dysfunction in-
duced by CLP

3.2.1. Overexpression of β-arrestin 2 diminishes CLP-reduced cardiac
output and stroke volume

Very recently, it has been shown that sepsis induces cardiac
dysfunction [23]. However, it is not known whether β-arrestin
2 plays a role in sepsis-induced cardiac dysfunction. To evaluate the
effect of β-arrestin 2 on cardiac function following sepsis, we col-
lected hemodynamics parameters by pressure-volume loop mea-
surement 6 h after sepsis in WT, β-arrestin 2 KO, and β-arrestin
2 TG mice. As shown in Fig. 2(A), 67% of cardiac output was pre-
served in β-arrestin 2 TG mice while 32% was preserved in WT and
17% was preserved in β-arrestin 2 KO mice. We found the similar
results in stroke volume (Fig. 2(B)). However, the CLP had no sig-
nificant effect on mice heart rate (HR), except a slight decrease in β-
arrestin 2 KO group (Fig. 2(C)). Therefore, HR was most likely not
the main contributor to the decreased cardiac output in CLP groups.
The similar results were observed by echocardiography analysis
(data not shown). Taken together, overexpression of β-arrestin
2 attenuates sepsis-reduced cardiac output and stroke volume.

3.2.2. β-arrestin 2 overexpression attenuates CLP-reduced end dia-
stolic volume (EDV)

End-diastolic volume (EDV) represents the extent of ventricular
filling in sepsis-induced cardiac dysfunction. EDV decreased by
39.6% and 49.5% in WT and β-arrestin 2 KO mice after CLP (Fig. 3
(A)), respectively. Importantly, EDV decreased by only 16.6% in β-
arrestin 2 TG mice. Therefore, β-arrestin 2 overexpression sig-
nificantly blocks sepsis-reduced EDV. Neither sepsis nor β-arrestin
2 had an effect on LV end-systolic volume (ESV) (Fig. 3(B)). The
similar results were obtained by echocardiography analysis (data
not shown).
Fig. 3. β-arrestin 2 overexpression in mice diminishes CLP-reduced end diastolic volu
subjected to CLP or sham operations. Hemodynamic parameters were determined by ca
(B) ESV, LV end-systolic volume. EDV and ESV from KO and TG group after CLP and sha
3.2.3. Overexpression of β-arrestin 2 enhances left ventricular con-
tractility following CLP

We then measured left ventricle pressure-related parameters
after sepsis in WT, β-arrestin 2 KO, and β-arrestin 2 TG mice
(Table 1). End systolic pressure (ESP) was severely reduced in β-
arrestin 2 KO mice after sepsis (36 mmHg) as compared to sham
mice (71 mmHg). In contrast, ESP was slightly increased in septic
WT mice (105 mmHg) and maintained in β-arrestin 2 TG mice
(90 mmHg). However, the end diastolic pressure (EDP) was not
changed in CLP treated groups. In addition, β-arrestin 2 TG mice
showed less decrease in dP/dtmax and dP/dtmin after sepsis (de-
crease by 15% and 5%, respectively) compared to WT mice (de-
crease by 37% and 29%, respectively) and β-arrestin 2 KO mice
(decrease by 70% and 72% respectively).

3.3. Increased β-arrestin 2 expression in septic heart

To investigate the effect of β-arrestin 2 on septic heart, we first
examined the expression level of β-arrestin 2 in heart tissue after
sepsis. Although elevated cardiac β-arrestin 2 expression was ob-
served in both WT and β-arrestin 2 TG mice at 6 h after sepsis, β-
arrestin 2 expression was still higher in TG mice (Fig. 4). The in-
terference of β-arrestin 2 expression from non-residential cells
(blood cells, macrophages) in the heart was minimized by suffi-
cient saline rinse before and after tissue harvest.

3.4. Effect of β-arrestin 2 on the levels of phospho-gp130 and
phospho-p38 MAPK following CLP

Glycoprotein 130 (gp130), a common part of membrane-bound
receptor for IL-6 family, and an essential signal transducer, has
been considered to be involved in sepsis [24]. Hence, we studied
gp130 activation in the myocardium of β-arrestin 2 KO and
me (EDV). WT, β-arrestin 2 KO, and β-arrestin 2 TG mice (N¼6 per group) were
rdiac functional analysis 6 h after CLP as in Fig. 2. (A) EDV, LV end-diastolic volume.
m treatment were compared to WT CLP group. *Po0.05.



Table 1
Cardiac systolic and diastolic functions 6 h after cecal ligation and puncture.

Parameter WT KO TG

(P–V loop) Sham CLP Sham CLP Sham CLP

EF, (%) 6674.4 3776.5* 6673.8 2575.8‡,† 6373.6 5672.9§,†

ESP, mmHg 9177.2 10578.9* 71710.6* 3678.2‡,† 97711.1 9074.3†

EDP, mmHg 773.0 472.2 6 71.7 773.5 672.3 672.8
LVDevP, mmHg 9278.3 10477.8 7577.5* 3479.7‡,† 9779.3 8977.6†

dP/dtmax, mmHg/s 1020972342 63937469* 5647 71297* 17027377‡,† 978271333 832071311†

dP/dtmin, mmHg/s 914371200 652471107* 4713 7934* 13107367‡,† 78637794* 74687779
Ea (mmHg/μL) 4.270.68 14.772.73* 3.5 70.73 10.372.47‡,† 4.870.93 6.270.72†

Tau-Weiss (msec) 7.071.28 9.271.34 9.671.12 20.475.01‡,† 7.670.99 8.071.18

Values present with means (7S.D.). N¼6 for each group.
* Po0.05, versus WT-Sham;
† Po0.05 versus WT-CLP;
‡ Po0.05 versus KO-Sham;
§ Po0.05 versus TG-Sham. EF, ejection fraction; ESP, LV end-systolic pressure; EDP, LV end-diastolic pressure; LVDevP, LV developed pressure¼Pmax�Pmin.

Fig. 4. Figure 2.6 β-arrestin 2 expression in septic heart. The protein level of β-
arrestin 2 in saline rinsed heart tissue from mice 6 h hour after treated with Sham
or CLP were examined by Western blot with loading control GAPDH. Data are re-
presentative of at least three independent experiments. Values present means 7
SEM.). *Po0.05.

H. Yan et al. / Biochemistry and Biophysics Reports 7 (2016) 130–137 133
β-arrestin 2 TG and WT mice following CLP. Gp130 Ser782 phos-
phorylation at Ser727 was significantly enhanced in septic WT and
β-arrestin 2 KO mice compared with their control mice (Fig. 5(A))
at 6 h after CLP. Interestingly, the activation of gp130 was strik-
ingly decreased in β-arrestin 2 TG septic mice as compared with
WT and β-arrestin 2 KO mice.

Results showed p38 and gp130 can still be phosphorylated in in-
flammation-induced myocardial depression in the absence of β-ar-
restin 2, which is consisted with the impaired cardiovascular function
in both WT and β-arrestin 2 knockout mice. Results of β-arrestin
2 knockout suggested β-arrestin 2 was not an essential mediator in
the development of uncontrolled inflammation. Further than that, WT
level of β-arrestin 2 expression was unable to prevent the CLP-in-
duced stimulation of signaling transduction pathways mediated by
p38 and gp130. Only β-arrestin 2 overexpression before sepsis
showed positive results in anti-inflammation.

Phosphorylation of gp130 on Ser782 accelerated the inter-
nalization of membrane-bound gp130 [28]. Our results showed
correlated beta-arretin2 overexpression and phosphorylation of
gp130 in TG mice following sham treatment, which indicated a
ligand-independent regulation of IL-6 receptors by β-arrestin 2.
Our results suggested lowered threshold for the activation of
p38 due to overexpression of β-arrestin 2. Therefore, the mild
stimulation of sham treatment was able to moderately enhance
p38 phosphorylation in TG mice compared to WT and knockout
mice. The molecular mechanism between β-arrestin 2 and p38 is
unknown.

We recently reported that β-arrestin 2 inhibits Toll-like re-
ceptor 4 by targeting p38 in lipopolysaccharide-stimulated cell
culture studies [18]. The effect of β-arrestin 2 on p38 activation
(phospho-p38) in sepsis remains to be elucidated. In the present
study, we tested whether β-arrestin 2 in the myocardium of CLP
mice can modulate p38 activation. Fig. 5(B) shows that CLP-in-
duced sepsis significantly enhanced the level of phospho-p38 in
WT and β-arrestin 2 KO mice, compared with sham control. No-
tably, overexpression of β-arrestin 2 prevented CLP-enhanced
myocardial phospho-p38 levels.

3.5. The effects of β-arrestin 2 on signal transducer and activator of
transcription 3 (STAT3) phosphorylation after sepsis

To understand the signaling pathway downstream to gp130, we
then examined levels of phosphorylated STAT3 (Tyr705 and Ser727),
a possible effector of gp130 mediated signaling pathway in septic
myocardium [24].

Results showed that STAT3 phosphorylation at Tyr705 was
dampened in KO mice (Fig. 6), indicating β-arrestin 2 was required
in STAT3 Tyr705 phosphorylation. STAT3 Ser727 phosphorylation
was enhanced in all three genotypes after CLP including KO group,
suggesting the involvement of β-arrestin 2 independent in-
flammatory signaling pathways.

In consistent with increased gp130 phosphorylation in TG mice
with sham treatment, increased STAT3 phosphorylation on Ser727

was also observed.
However, STAT3 phosphorylation on Tyr705 was not elevated in

TG sham group.
The unbalanced STAT3 phosphorylation on two sites suggested

different signaling transduction pathways were involved.

3.6. The effects of β-arrestin 2 on ERK and JNK phosphorylation after
sepsis

As shown in result 3.4, β-arrestin 2 regulated p38 MAPK acti-
vation. To explore possible downstream effectors of β-arrestin
2 after CLP-induced myocardial dysfunction, we also examined the
phosphorylation level of ERK and JNK. Increased activation of both
ERK and JNK was observed after CLP-induced sepsis. However, the
results of phosphorylation were not correlated with the expression



Fig. 5. Overexpression of β-arrestin 2 in mice blocks CLP-induced the levels of gp130 and p38 phosphorylation. WT, β-arrestin 2 KO, and β-arrestin 2 TG mice (N¼6 per
group) were subjected to CLP or sham operations as in Fig. 2. After cardiac functional analysis, mice hearts were harvested and cellular proteins were prepared. The levels of
phosphorylation of gp130 (A) and p 38 (B) were determined by Western blot with specific antibodies. Representative results are shown above the graph. *Po0.05.
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level of β-arrestin 2 in both sham and CLP treated conditions
(Fig. 7). Therefore, at the time point of 6 h after CLP, ERK and JNK
were unlikely the downstream effectors of β-arrestin 2.
4. Discussion

Sepsis is a major clinical problem with more than a 40% mor-
tality rate [1,3]. Sepsis is the most important cause of morbidity
and mortality in intensive care units (ICUs), and about 60% of
patients admitted to the ICU have cardiac dysfunction [2–4,23].
Fig. 6. The effect of β-arrestin 2 on STAT3 phosphorylation in CLP-induced myocardial
subjected to CLP or sham operations as in Fig. 2. After cardiac functional analysis, mic
phorylation on site Tyrosine705 (A) and Serine727 (B) were determined by Western
*Po0.05.
Cardiac dysfunction plays a fundamental role in the high mor-
bidity and mortality of this condition [2–4,23]. Thus, it is urgent to
elucidate the mechanisms by which sepsis modulates cardiac
dysfunction and generate more efficient ways to improve the
prognosis. In this study, we have demonstrated that β-arrestin
2 plays a critical role in the regulation of sepsis-triggered cardiac
dysfunction through gp130 and p38 MAPK. Following sepsis,
overexpression of β-arrestin 2 in mice increases animal survival.
Importantly, β-arrestin 2 overexpression in mice abolishes sepsis-
induced cardiac dysfunction. The role of β-arrestin 2 in regulating
gp130 and p38 MAPK activation is significant, as β-arrestin
dysfunction. WT, β-arrestin 2 KO, and β-arrestin 2 TG mice (N¼6 per group) were
e hearts were harvested and cellular proteins were prepared. The levels of phos-
blot with specific antibodies. Representative results are shown above the graph.



Fig. 7. The role of β-arrestin 2 in CLP-induced ERK and JNK phosphorylation. WT, β-arrestin 2 KO, and β-arrestin 2 TG mice (N¼6 per group) were subjected to CLP or sham
operations as in Fig. 2. After cardiac functional analysis, mice hearts were harvested and cellular proteins were prepared. The levels of phosphorylation of ERK (A) and JNK
(B) were determined by Western blot with specific antibodies. Representative results are shown above the graph. *Po0.05.
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2 overexpression results in lower gp130 and p38 phosphorylation
after sepsis stimulation. Our results implicate that overexpression
of β-arrestin 2 may form the basis of a new strategy for the clinical
treatment of sepsis.

Increasing evidence suggests that β-arrestin 2 has the ability to
modulate inflammatory responses through a few mechanisms. For
instance, β-arrestin 2 modulates immune functions during the
development of allergic asthma [25]. Another prior study indicates
that β-arrestin 2 participates in the regulation of inflammatory
responses in sepsis [26]. In previous studies, sepsis was associated
with decreased cardiac output, decreased end diastolic volume or
diastolic diameter, and decreased ejection fraction (EF). Decreased
heart contractility was found 18 h as well after CLP using Millar
instruments for cardiac functional analysis [23]. In our study, WT
mice showed significant cardiac dysfunction 6 h after CLP, con-
sistent with results from these studies [23,27]. For example, EDV
were dramatically decreased in WT and β-arrestin 2 KO mice and
moderately reduced in β-arrestin 2 TG mice after CLP, with ap-
parently non-affected ESV (Fig. 3). However, 6 h after CLP is a re-
latively early time point, heart dysfunction may become more
deleterious at a later time point (e.g., 12 h). Eventually, both EDV
and ESV would be declined to undetectable levels when ap-
proached to mortality. With the highest mortality rate after CLP on
day one, the mice in β-arrestin 2 KO group would be expected to
show declined ESV at an earlier time point compared to the mice
in WT and β-arrestin 2 TG groups. Impaired vascular contractility
and decreased sympathetic tone in sepsis has been demonstrated
in several studies [3,27]. In this study, we also confirmed the in-
volvement of vascular factors by echo-cardiovascular measure-
ment before CLP and 6 h after CLP (N¼9) (data not shown). We
found decreased cardiac output after sepsis, most likely due to
combined cardiomyocyte dysfunction and decreased cardiac pre-
load. The decreased mortality and preserved cardiac function in β-
arrestin 2 overexpression mice suggests that agents increasing β-
arrestin 2 expressions may protect the cardiac and vascular system
from sepsis-induced injury. In the present study, we found that
overexpression of β-arrestin 2 increases animal survival in sepsis.
Notably, a new and novel role for β-arrestin 2 was revealed in the
prevention of sepsis-induced cardiac dysfunction. Thus, attenua-
tion of cardiac dysfunction might be an important mechanism by
which β-arrestin 2 enhances animal survival during sepsis. While
investigating the role of β-arrestin 1 in cardiac dysfunction in-
duced by sepsis is beyond the scope of the current study and it will
be elucidated in the future.

In this study, we examined phosphorylation of gp130, a key
signal transducer. We found that the levels of gp130 phosphor-
ylation in the myocardium were significantly decreased in β-ar-
restin 2 TG mice following CLP, while the opposite results were
observed in WT and β-arrestin 2 KO mice. Gp130 phosphorylation
at Ser782 is involved in the internalization of membrane-bound
gp130 [28]. Recent studies have shown that β-arrestin 2 function
as adaptors to connect the receptors to the cellular trafficking
machinery, such as scaffolding GPCRs activation [18,22], as well as
the signal transduction of non-GPCRs such as Toll-like receptors
[8,18,30,31]. The scaffolding protein β-arrestin 2 has been con-
ventionally associated with receptor internalization. β-arrestin
2 can scaffold different sets of molecules that determine different
and even opposite effects on the same signaling cascade depen-
dent on the receptor activated [29,30].

Our studies show that in the septic animal model, the over-
expression of β-arrestin 2 reduces phospho-gp130, which is as-
sociated with animal survival. Our results suggest a possible con-
nection between β-arrestin 2 and gp130 internalization. Our stu-
dies did not determine the specific membrane receptors that are
involved in the modulation of β-arrestin 2 phosphorylation gp130
in sepsis. While determining the exact membrane receptors is
beyond the scope of the current study and it will be investigated in
the future.

P38 and ERK, members of MAPKs family, are important cellular
protein kinases. They can be activated by a series of extracellular
signals and then induce cell responses, including cell proliferation,
differentiation, survival and apoptosis [22]. Activation of p38 and
ERK modulates different cell responses depending on stimulus
[22,31]. However, the effect of β-arrestin 2 on p38 and ERK acti-
vation in sepsis remain to be established. In the current study, we
observed that CLP significantly induced p38 phosphorylation in
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the myocardium in WT and β-arrestin 2 KO mice. Interestingly, the
level of phospho-p38 was significantly diminished in β-arrestin
2 TG mice following CLP. However, we observed that β-arrestin
2 was not involved in ERK phosphorylation in the myocardium
following CLP. In addition, the phosphorylation level of another
MAPK, JNK, was also examined, which showed no correlation with
β-arrestin 2 expression levels. Taken together, our results suggest
that β-arrestin 2 may specifically activate myocardial p38 during
sepsis.

Previous studies have suggested p38 as a crucial modulator for
gp130 Ser782 phosphorylation and internalization in the crosstalk
between IL-1β and IL-6 signaling pathways during inflammation
[28,32]. In acute inflammation of sepsis, overestimation of the IL-6
signaling pathway, which is mediated by gp130, could be nega-
tively regulated by the activation of p38. On the other side, p38
activation could be controlled by β-arrestin 2 in various condi-
tions. Without inflammation, stress-induced p38 activation could
be facilitated by the overexpression of β-arrestin 2, which might
serve as an explanation for moderately increased p38, gp130, and
STAT3 phosphorylation in the sham group of transgenic mice.
During sepsis, p38 activation could be achieved by β-arrestin
2 dependent as well as β-arrestin 2 independent pathways, fol-
lowed by accelerated gp130 phosphorylation/internalization and
STAT3 activation. However, we suspect an opposite function of β-
arrestin 2 on p38 activation, when the accumulation of β-arrestin
2 exceeds the threshold, which could serve as a signal or a direct
effector for the suppression of p38 activation. At 6 h after CLP, the
suppression of p38 action was first achieved in β-arrestin 2 trans-
genic mice. Although the network among p38, β-arrestin 2, and
gp130 could be complicated and variable in the development of
sepsis, evidence revealed from this work could be useful for future
studies.

In summary, the data presented herein demonstrated for the
first report, to the best of our knowledge, a key role for β-arrestin
2 in sepsis-induced cardiac dysfunction. The protective effects
could be mediated at least partially by down-regulation of gp130
and p38 activation in β-arrestin 2 TG mice. These findings im-
plicate the beneficial effect of β-arrestin 2 overexpression in sepsis
and open a novel promising target for the management of sepsis.
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