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A technique is developed for determining space complexity in on-line computation. It is 
shown that each of the following functions requires linear space: (i) the conversion of binary 
numbers into ternary numbers, (ii) the multiplication of integers and (iii) the translation of 
arithmetic expressions in infix notation into Polish notation. 

1. INTRODUCTION 

In the past few years much research has been carried out in an attempt to obtain 
nontrivial lower bounds on the computational complexity of some specific problems. 
In such investigations off-line Turing machines and on-line Turing machines are the 
machine models most commonly used. In the case of off-line computation, there are 
presently large gaps between known upper and lower bounds on the requisite time 
and space for a number of well-known problems. For example, it is not known that 
any of the recognition problems of context-free languages, the path-finding problem 
of digraphs, the multiplication of integers, etc., requires more than log n space (where 
n is the length of input). For multiplication, log n space is sufftcient [6]. Techniques 
known to be applicable to obtaining a lower bound in off-line computation are quite 
limited: diagonalization argument and crossing sequence argument. On the other 
hand, in the case of on-line computation, some information-theoretic techniques and 
other methods are applicable and nontrivial low level lower bounds for some specific 
problems have successfully been obtained. Hartmanis and Shank [4, 51, for example, 
studied the recognition problem of prime numbers and showed it requires linear 
space. Lewis et al. [ 71 proved that the recognition problem of a particular context- 
free language necessitates linear space, while Gallaire [3] showed that for some other 
context-free language recognition, the problem requires n*/(log n) time. 

The purpose of this paper is to develop a technique for determining space 
complexity in on-line computation. We shall deal mainly with (i) the recognition 
problem of a set of natural numbers, (ii) the multiplication of integers, and (iii) the 
problem of translating arithmetic expressions in infix notation into Polish notation. 
The only restriction imposed is that Turing machines used to compute them must be 
on-line Turing machines. 
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From the results of (i), it follows that the space complexity of the recognition 
problem of a set of natural numbers depends on the positional representation (e.g., 
binary, ternary, decimal). Specifically, we show the existence of a set A of natural 
numbers with the following properties: If each member of A is represented as a 
ternary string, i.e., a ternary number, A is a regular set and hence recognizable in 
O(1) space, while if each member of A is represented as a binary number the 
recognition problem of A requires linear space, i.e., cn space for some constant c. The 
immediate implication of this result is that the conversion of binary numbers into 
ternary numbers requires linear space. 

Note that on-line computation with S(n)-space may be considered off-line if 
S(n) > n. 

It is also shown that any on-line Turing machine which computes the 
multiplication of integers requires linear space. It is easy to see that the multiplication 
can be carried out in O(n) space. Hence, linear space is both necessary and sufficient 
for on-line integer multiplication. In passing, we note that Fischer and Stockmeyer 
[2] showed that integer multiplication can be computed within O(n(log n)’ log log n) 
time and O(n) space by an on-line Turing machine. 

The existence of a language C over (0, 1) is shown which has the following 
properties: C can be accepted by a log n space bounded nondeterministic on-line 
Turing machine, but any deterministic on-line Turing machine which accepts C 
requires linear space. Hence, in the case of on-line Turing machine, nondeterministic 
machines are more powerful than deterministic machines with respect to space. 

Finally we show that the translation of arithmetic expressions in infix notation into 
Polish notation requires linear space. 

2. PRELIMINARIES 

In studying computational complexity one must specify what computing model the 
discussion will be based on. Throughout this paper we choose the model of an on-line 
Turing machine defined below. 

DEFINITION. An on-line Turing machine is a Turing machine with a one-way 
read-only input tape, a one-way write-only output tape and a finite number of semi- 
infinite two-way storage tapes. 

Our investigation is devoted entirely to the study of space complexity in on-line 
computation. Throughout we shall always assume that a Turing machine is an on-line 
Turing machine. 

DEFINITION. Let Z, and Z, be alphabets. Let f be a function from Z;,* to 2; and 
S be a function from N to N, where N is the set of nonnegative integers. Then f is 
S(n)-space computable if there exists a Turing machine M with 2, and Z2 as input 
and output alphabets, respectively, and for every input w E .Z: of length n, M scans 
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no more than S(n) cells on any storage tape and halts in a finite number of steps with 
f(w) as its output. Moreover, a subset A of 2$ is S(n)-space recognizable if the 
characteristic function c, of A (i.e., Z, = (0, 1 }) is S(n)-space computable. 

The following are immediate consequences of definitions. A set A E Z* is 0( 1) 
space recognizable if and only if A is a regular set. Let A c Z: and B c Zf. Suppose 
that A is S,(n) space recognizable and B is S,(n) space recognizable. Then A U B 
and A n B are (S,(n) + S,(n))-space recognizable. 

DEFINITION. Let f and S be as above. Then f is said to require S(n) space if for 
any Turing machine M computing f, there exists a constant c > 0 such that M scans 
more than cS(n) cells for some input of length n for infinitely many n. In other 
words, f requires S(n) space if and only if f is not S’(n)-space computable for any 
function S’: N-+ N such that 

Moreover, a set A requires S(n)-space if its characteristic function cA requires S(n) 
space. 

The next definition is standard. 

DEFINITION. Let Z, and Z2 be alphabets. For subsets A c .Z: and B G ET and a 
function f: Z: -9 Z2 , * A is said to be reducible to B with respect to f if for any w E 2Y: 

wEA iff f(w)E B. 

LEMMA 1. Let A E ZT and B E .?YT. Suppose that A is reducible to B with respect 
to f, and f: CT --+ Z$ is S,(n)-space computable and B is S,(n)-space recognizable. If 
for some constant c, 1 f(w)] < c 1 w 1, then A is (S,(n) + S,(cn))-space recognizable. 

Let r be an alphabet, and A be a subset of r *. Let the equivalence relation GZ over 
r* be defined by: x z y if and only if, for all z in r*, xz is in A exactly when yz is in 
A. For each x in r*, let E(x) be the equivalence class of x. Let S, be the function of 
N into N defined by 

S,(n) = I( x E r*, 1x1 < n)l, 

where, for a set X, (X .I denotes the cardinality of X. 

LEMMA 2. Let A be u subset of r *. Then A requires log S,(n) space. 

Proof: Suppose A is recognizable by a Turing machine M of space complexity 
S(n) for some S: N-P N such that 

S(n) =-J 
F!!it log S,(n) ’ 
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Let M have s states and t storage tapes. Let r be the cardinality of the storage tape 
alphabet. Since M is S(n)-space bounded, for any input word of length n there are at 
most 

s@(n) rsy 
configurations. (By configuration we mean a (2t + 1)-tuple consisting of a state of the 
finite control and the head position and content of each storage tape.) Then 

for sufficiently large n. 

s(S(n) rsy < S,(n) (2.1) 

For each n satisfying inequality (2.1) we can choose a distinct pair of words U, u’ 
such that u B a’, ] a] < n, ] u’ ] < n, and when u is supplied to A4 as an input, M 
finishes its computation in the same configuration as it does when U’ is given as its 
input. This contradicts the fact u & u’, however, and hence A requires S, space. 

COROLLARY 1. (i) The set A = {w # wR # ) w E {0, 1) *} requires linear space. 
(ii) The set B = { 0” 1” ( n E N} requires log space. 

Proof. (i) S,(n) > 2”, since for any distinct pair of words U, u in {O, 1 } *, u & u. 
(ii) S,(n) > n, since 0’ ti Oj if i #j. 

Remark. The proof of (i) is also found in Lewis et al. [7]. 

3. RECOGNITION OF 3k IN THE BINARY NOTATION 

Throughout this paper we denote by Z the set {0, 1 }. For a string x = a, a2 . . . a, of 
Z*, [x] denotes the number corresponding to the binary string x with the rightmost 
letter as the most significant bit, i.e., 

[x] = 5 ai . 2’-‘. 
i=l 

This is the reverse of the standard representation of numbers, and we consider 
numbers only in this reverse representation. It is not clear if the theorems proved in 
this section hold also for the standard representation. 

Let 

In other words, the set T consists of strings each of which represents a power of 3 in 
the binary notation. 

The purpose of this section is to prove the following. 

’ C*l denotes the set of words over C ending in 1. 
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THEOREM 1. The set T requires linear space. 

On the other hand, a straightforward algorithm can be designed using no more 
than linear space. Hence linear space is both necessary and sufficient for recognizing 
the set T. 

In order to prove this theorem, we need to develop preliminary results on what 
may be called initial segments of T, which will play an essential role in the proof of 
the theorem. For every n E N and w E Z* define 

w(“) = W()“-m 3 if iwl=m<n, 

= u, if w=uz) and ]ul=n (u,vEZ*). 

Thus, when interpreted as a binary number w(“) satisfied the following conditions: 

(i) Iw(“)]=n, and 
(ii) [w(“)] E [w] (mod 2”). 

For each k E N let wk E Z*l be the word such that [wk] = 3k. Hence 
T = {wkl k E NJ. Furthermore, let P”), n E N, denote the set {w(“) I w E T}, which 
equals to (wp)I k E N}. T(“) is the collection of initial segments of T with length n. 
Since 

bcn: ] E 3[wF’] (mod 2’7, 

it follows that the sequence 

(n) w 0 (n) (n) ) w, )...) Wk ,... 

is a periodic sequence for each n > 0. Denote by n(n), n > 0, the period of this 
sequence. Thus for any k E N 

(n) (n) 
wkt n(n) = wk * 

It follows by inspection that 

?(I) = 1, 7t(2) = 2, rr(3) = 2, n(4) = 4,..., 

and in general we have 

LEMMA 3. x(n) = 2”-‘for every n > 3. 

Proof: Clearly, n(n) is the minimal integer m > 0 such that 3” = 1 (mod 2”). 
Then it is easy to prove by induction that m = 2n-2, i.e., 

(a) 3’“-* = (2k + 1) 2” + 1 for some k, and 
(b) for 1 < s < 2”-2, 3” & 1 (mod 2”). 

Corollary 2 is immediate. 
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COROLLARY 2. 1 T(")I = 2"-2for every n > 3. 

Proof of Theorem 1. Since T contains at most one word of length n for every 
n > 0, for two distinct words u and v in T(“), u k v. Hence, S,(n) > 2”-‘, n > 3, by 
Corollary 2. Therefore, by Lemma 2, T requires linear space. 

Next we show that the conversion of binary numbers to ternary numbers requires 
linear space. Let A = {0, 1,2}. For each w in A*, [ w]~ denotes the ternary number 
represented by w in a usual manner. (The most significant bit is on the right.) Let 
@: A*{ 1,2} + Z*l be the function defined by 

Q(x) = Y iff [xl3 = [YI. 

THEOREM 2. The function CD requires linear space. 

Proof. Note that the set 

is regular. Clearly, the set A is reducible to B with respect to @. Therefore, by 
Lemma 1 and Theorem 1, @ requires linear space. 

4. ON-LINE INTEGER MULTIPLICATION 

The purpose of this and the following sections is to show that on-line integer 
multiplication requires linear space. 

Let Z = {0, 1) and Z, = .?Y U {e), where e is not in Z. Shuffle product # is defined 
for any x=a,a, ... a, and y= b,b, .a. b, of C* such that x#y is a,b,a,b, se- a,b,, 
whereIismax{m,n},andwherea,+,=~~~=a,=eifm<nandb,+,=~~~=b,=e 
if n < m. For a positive integer n, ]n [ denotes the binary string in Z* 1 expressing the 
value n when read as a binary number with the rightmost letter as the most 
significant bit. (Let ]O[ correspond to 0.) Hence [(]n[)] = n for every n E N. The 
multiplication function MULT: Z,* + Z* is defined below only for strings of the form 
x # y for some x and y in Z*. 

MULT(w) = l([xl * [YIN, if w=x#y for x and y in Z*, 

= undefined, otherwise, 

where * is usual integer multiplication. Thus the function MULT can quite naturally 
be understood to read in two numbers x and y from lower order bits and to output 
their product x * y also from lower order bits. 

Now we shall relate space complexity of this function MULT to that of a squaring 
function SQR. The function SQR is a function from Z* to Z* such as 

SQR(w) = l(bl’)[ 
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for very string w in Z*. This means that given w as an input, SQR outputs a string 
w’ whose value is the square of the value of w, i.e., [w’] = [WI’. 

LEMMA 4. Let S: N -+ N be a function. MULT is S(n)-space computable if and 
only if SQR is S(n)-space computable. 

Proof: This follows from the fact that 

a * b = {(a + 6)’ - (a - b)* }/4 

for integers a and b. 

THEOREM 3. SQR and MULT require linear space. 

It should be noted that this is not a particular phenomenon due to our encoding 
scheme of two operands x and y, or the delinintion of the multiplication function, but 
that this result of integer multiplication requiring linear space would hold also for any 
other natural definition of integer multiplication. For example, when the numbers 
x=a,a, ... a,, and y = b, b, ..a b, are given as 

in (Z x Z)*, the result still holds because the transformation from the previous 
encoding to this encoding is computable in O(1) space. 

Another remark is that MULT is clearly computable in linear space. Therefore, 
linear space is the exact space complixity of on-line integer multiplication. 

The remainder of this section is devoted to the proof of Theorem 3. By Lemma 4, it 
is sufficient to consider SQR. 

Let A be a subset of Z* defined as follows: A word w belongs to A if and only if w 
is of the form 

where e , ,..., e,, i, f, ,..., f, > 0 (t > 3) with the following properties: Among f, ,f, ,..., f, 
the third largest is unique. Let it be f, (1 < s < t). Then the (f,, ,)th bit from the 
leftmost bit of the substring les+20f,+2 ..* OftIer+’ does exist and is equal to 1. 

LEMMA 5. A is recognizable in log space. 

Proof At every intermediate stage in processing an input w, use three storage 
tapes for special purposes to hold records of lengths of the longest, the second 
longest, and the third longest sequences of O’s so far encountered and of the contents 
of the corresponding us+ ,)th bit. Each time a new sequence of O’s is read in whose 
length exceeds the previous third longest length, update the records on those three 
special storage tapes. When w is completely scanned, the corresponding bit of the 
third longest sequence of O’s is examined and w is accepted if and only if it is 1. 
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Let B be the subset of Z* defined by 

B= {WE lZ*l ISQR(w)EA}. 

We contend that the recognition of the set B requires linear space. 

LEMMA 6. B requires linear space. 

Proof. Let B(“‘, n EN, denote the set {ulu E lZ*l, Iu[= n and uv E B for some 
u E Z* }. First we show that 

IB(“)I = 2”-2 for every n > 1. (4.1) 

Let u be a string of length n in lZ* 1. Consider the square of [uO’lO’l ] for 
j>n- 1 and i>j+n- 1. Since 

[uoj10i1]2 = (2i+l+i+n + 2jtn + [u~)2 

=2*i+2jt2n+2+2i+2j+2n+2 + 2i+j+n+21U] + 22j+2n +2j+n+t'Lul + ,u12, 

the string SQR(u0’10’1) is as shown in Fig. 1. It is easily verified by definition of the 
set A that, unless u = 11 or 101, SQR(u02”103”1) belongs to A and thus u02”103”1 is 
in B. Two exceptional cases are similarly handled as SQR(l 101061) and 
SQR(10101061) are in A. Therefore, (4.1) holds. 

Now we show that 

for any distinct pair U, and u2 of B(“), u, d u2. (4.2) 

(The equivalence relation zz is defined with respect to B.) 
To prove this, we again consult Fig. 1. By assumption U, and u2 are distinct. 

Suppose the mth bit of u, and that of u2 is different (1 < m < n). For n > 3, letj = 2n 
and i = 3n + m - 1. Then it is clear from Fig. 1 that only one of u, 0’10’1 or 
u,OjlO’l belongs to B and the other does not. Thus ur & u2. For n = 3, if we let j = 2 
and i= 8 we see that 111021081 is in A, whereas 1010210Bl is not, and 101 z& 111. 
Therefore, (4.2) is proved. 

Recall the definition of S,(n), n E N, as follows: 

s,(n) = Ibqx) I x E c*, [xl> n}l, 

’ - “(2, (J J-1 i-j-n+1 i t-1 
SQR(U) - - __ u - __ 

0 o&j0 01110 "' 0~0..0~1~0 "'011 

u 
i-j-n+1 

FIGURE I 
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where E(x) is the equivalence class of x with respect to M. It follows from (4.1) and 
(4.2) that 

S,(n) > 2”- * (n > 1). 

Therefore, by Lemma 2, B requires linear space. 

5. SOME PROPERTIES OF ON-LINE COMPUTATION 

In this section two results are shown, one concerning reversal operation and 
another concerning nondeterminism. 

Let ON-LINE DLOG (resp. NLOG) SPACE denote the class of languages 
recognizable by on-line deterministic (resp. nondeterministic) Turing machine of 
O(log n) space complexity. 

LEMMA 7. Let Cc 27 be the set defined by 

C={w/w=ulO’l,Ju~>iandithbitofu 

from its right end is 1) 

Then, (i) C requires linear space, (ii) C”(= reverse of C) is in ON-LINE DLOG 
SPACE, and (iii) C is in ON-LINE NLOG SPACE. 

ProoJ It should be clear that the set C is log-space recognizable in nondeter- 
ministic manner, and the reversed set CR is also log-space recognizable (deter- 
ministically). In the essentially same line of argument as in the proof of Corollary 
l(i) it can be shown that C requires linear space. 

The following results are immediate consequences of Lemma 7: 

COROLLARY 3. The class of languages recognizable on-line in log space is not 
closed under reversal. 

COROLLARY 4. ON-LINE DLOG SPACE+ ON-LINE NLOG SPACE. 

6. OBJECT CODE GENERATOR 

In this section we consider a typical problem on compiler construction-the 
problem of translating arithmetic expressions in infix notation into Polish, or postfix, 
notation, and show that this problem requires linear space. 

DEFINITION. Let d and 8 be alphabets such that K I? d = 4. Let R = KU P 
and d = Q U { ( , )}. The set AEXP of arithmetic expressions over Q is the subset of 
A* defined as follows: 
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(i) d E AEXP, 

(ii) if x, y E AEXP and u E 8, then (xuy) E AEXP. The set POSTEXP of 
postfix expressions over fi is the subset of 8* defined as follows: 

(i) d G POSTEXP 
(ii) if x,y E POSTEXP and u E b, then xyo E POSTEXP. An object code 

generator is a function Y A * -+ Q * which satisfies the following conditions: 

(i) Y(a) = a if a E 6, 

(ii> You> = ‘u(x) Y(Y) u, ifx,yEAEXP and uE@, 

(iii) if x’6?2 AEXP, then Y(x) @ POSTEXP. 

We shall show that Y requires linear space. 

THEOREM 4.- Log space is necessary and suflcient for recognizing the set 
POSTEXP. 

Proof: It should be clear that the set POSTEXP is log(n)-space computable. Let 
0 E a and 1 E 8. Then 

Since 0* 1 * is regular, it suffices to show that (0 ‘+ ’ 1’ / n E NJ requires log(n) space. 
By an argument similar to Corollary 1 (ii), {0 *+ ’ 1’ 1 n E N} requires log(n) space. 

THEOREM 5. Linear space is necessary and suSJicient for recognizing the set 
AEXP. 

Proof Clearly, AEXP is O(n) space computable. Let a be an element of d and 
+ be an element of b. Let 

h,:{O,l}*-,{a,+,(,)}* and h,: (0, I}* --) {a, f, (, )I* 

be homomorphisms defined by 

h,(O) = (a+, h,(l)=(, h,(O) = 1, h2( 1) = +a). 

Let f: {0, 1) * # {0, 1 } * # + A * be the function defined by 

f(u # u#) = h,(u) ah,(u), u, u E (0, 1 } *. 

For example, 

f(O1 # 10#) = h,(O) h,(l) ah,(l) h*(O) = (a + (a + a)). 

Let A be the set in Corollary 1 (i). Then, for each element x of (0, 1) * # {0, 1 } * #, 

xEA iff f(x) E AEXP. 

57 I/24/3-9 
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The function f can be extended naturally to a function f: {0, 1, #} * + {a, +, ( , )} * 
such that 

(i) for all XE (0, l,#}*, 

xEA iff f(x) E AEXP, 

(ii) f is O(1) space computable. 

Then, by Lemma 1 and Corollary l(i), AEXP requires linear space. 

From Theorems 4 and 5 and Lemma 1, we finally have 

THEOREM 6. The object code generator Y requires linear space. 
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