
JOURNAL OF COMPUTER AND SYSTEM SCIENCES 24, 362-372 (1982)

Space Complexity in On-Line Computation

HAJIME MACHIDA AND TAKUMI KASAI

Department of Computer Science,
University of Electra-Communications, Chofu-shi, Tokyo 182 Japan

Received August 7, 198 1; revised March 10, 1982

A technique is developed for determining space complexity in on-line computation. It is
shown that each of the following functions requires linear space: (i) the conversion of binary
numbers into ternary numbers, (ii) the multiplication of integers and (iii) the translation of
arithmetic expressions in infix notation into Polish notation.

1. INTRODUCTION

In the past few years much research has been carried out in an attempt to obtain
nontrivial lower bounds on the computational complexity of some specific problems.
In such investigations off-line Turing machines and on-line Turing machines are the
machine models most commonly used. In the case of off-line computation, there are
presently large gaps between known upper and lower bounds on the requisite time
and space for a number of well-known problems. For example, it is not known that
any of the recognition problems of context-free languages, the path-finding problem
of digraphs, the multiplication of integers, etc., requires more than log n space (where
n is the length of input). For multiplication, log n space is sufftcient [6]. Techniques
known to be applicable to obtaining a lower bound in off-line computation are quite
limited: diagonalization argument and crossing sequence argument. On the other
hand, in the case of on-line computation, some information-theoretic techniques and
other methods are applicable and nontrivial low level lower bounds for some specific
problems have successfully been obtained. Hartmanis and Shank [4, 51, for example,
studied the recognition problem of prime numbers and showed it requires linear
space. Lewis et al. [71 proved that the recognition problem of a particular context-
free language necessitates linear space, while Gallaire [3] showed that for some other
context-free language recognition, the problem requires n*/(log n) time.

The purpose of this paper is to develop a technique for determining space
complexity in on-line computation. We shall deal mainly with (i) the recognition
problem of a set of natural numbers, (ii) the multiplication of integers, and (iii) the
problem of translating arithmetic expressions in infix notation into Polish notation.
The only restriction imposed is that Turing machines used to compute them must be
on-line Turing machines.

362
0022-OCQO/82/030362-11$02.00/0
Copyright 0 1982 by Academic Press, Inc.
All rights of reproduction in any form reserved.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82528442?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ON-LINE SPACE COMPLEXITY 363

From the results of (i), it follows that the space complexity of the recognition
problem of a set of natural numbers depends on the positional representation (e.g.,
binary, ternary, decimal). Specifically, we show the existence of a set A of natural
numbers with the following properties: If each member of A is represented as a
ternary string, i.e., a ternary number, A is a regular set and hence recognizable in
O(1) space, while if each member of A is represented as a binary number the
recognition problem of A requires linear space, i.e., cn space for some constant c. The
immediate implication of this result is that the conversion of binary numbers into
ternary numbers requires linear space.

Note that on-line computation with S(n)-space may be considered off-line if
S(n) > n.

It is also shown that any on-line Turing machine which computes the
multiplication of integers requires linear space. It is easy to see that the multiplication
can be carried out in O(n) space. Hence, linear space is both necessary and sufficient
for on-line integer multiplication. In passing, we note that Fischer and Stockmeyer
[2] showed that integer multiplication can be computed within O(n(log n)’ log log n)
time and O(n) space by an on-line Turing machine.

The existence of a language C over (0, 1) is shown which has the following
properties: C can be accepted by a log n space bounded nondeterministic on-line
Turing machine, but any deterministic on-line Turing machine which accepts C
requires linear space. Hence, in the case of on-line Turing machine, nondeterministic
machines are more powerful than deterministic machines with respect to space.

Finally we show that the translation of arithmetic expressions in infix notation into
Polish notation requires linear space.

2. PRELIMINARIES

In studying computational complexity one must specify what computing model the
discussion will be based on. Throughout this paper we choose the model of an on-line
Turing machine defined below.

DEFINITION. An on-line Turing machine is a Turing machine with a one-way
read-only input tape, a one-way write-only output tape and a finite number of semi-
infinite two-way storage tapes.

Our investigation is devoted entirely to the study of space complexity in on-line
computation. Throughout we shall always assume that a Turing machine is an on-line
Turing machine.

DEFINITION. Let Z, and Z, be alphabets. Let f be a function from Z;,* to 2; and
S be a function from N to N, where N is the set of nonnegative integers. Then f is
S(n)-space computable if there exists a Turing machine M with 2, and Z2 as input
and output alphabets, respectively, and for every input w E .Z: of length n, M scans

364 MACHIDA AND KASAI

no more than S(n) cells on any storage tape and halts in a finite number of steps with
f(w) as its output. Moreover, a subset A of 2$ is S(n)-space recognizable if the
characteristic function c, of A (i.e., Z, = (0, 1 }) is S(n)-space computable.

The following are immediate consequences of definitions. A set A E Z* is 0(1)
space recognizable if and only if A is a regular set. Let A c Z: and B c Zf. Suppose
that A is S,(n) space recognizable and B is S,(n) space recognizable. Then A U B
and A n B are (S,(n) + S,(n))-space recognizable.

DEFINITION. Let f and S be as above. Then f is said to require S(n) space if for
any Turing machine M computing f, there exists a constant c > 0 such that M scans
more than cS(n) cells for some input of length n for infinitely many n. In other
words, f requires S(n) space if and only if f is not S’(n)-space computable for any
function S’: N-+ N such that

Moreover, a set A requires S(n)-space if its characteristic function cA requires S(n)
space.

The next definition is standard.

DEFINITION. Let Z, and Z2 be alphabets. For subsets A c .Z: and B G ET and a
function f: Z: -9 Z2 , * A is said to be reducible to B with respect to f if for any w E 2Y:

wEA iff f(w)E B.

LEMMA 1. Let A E ZT and B E .?YT. Suppose that A is reducible to B with respect
to f, and f: CT --+ Z$ is S,(n)-space computable and B is S,(n)-space recognizable. If
for some constant c, 1 f(w)] < c 1 w 1, then A is (S,(n) + S,(cn))-space recognizable.

Let r be an alphabet, and A be a subset of r *. Let the equivalence relation GZ over
r* be defined by: x z y if and only if, for all z in r*, xz is in A exactly when yz is in
A. For each x in r*, let E(x) be the equivalence class of x. Let S, be the function of
N into N defined by

S,(n) = I(x E r*, 1x1 < n)l,

where, for a set X, (X .I denotes the cardinality of X.

LEMMA 2. Let A be u subset of r *. Then A requires log S,(n) space.

Proof: Suppose A is recognizable by a Turing machine M of space complexity
S(n) for some S: N-P N such that

S(n) =-J
F!!it log S,(n) ’

ON-LINE SPACE COMPLEXITY 365

Let M have s states and t storage tapes. Let r be the cardinality of the storage tape
alphabet. Since M is S(n)-space bounded, for any input word of length n there are at
most

s@(n) rsy
configurations. (By configuration we mean a (2t + 1)-tuple consisting of a state of the
finite control and the head position and content of each storage tape.) Then

for sufficiently large n.

s(S(n) rsy < S,(n) (2.1)

For each n satisfying inequality (2.1) we can choose a distinct pair of words U, u’
such that u B a’,] a] < n,] u’] < n, and when u is supplied to A4 as an input, M
finishes its computation in the same configuration as it does when U’ is given as its
input. This contradicts the fact u & u’, however, and hence A requires S, space.

COROLLARY 1. (i) The set A = {w # wR #) w E {0, 1) *} requires linear space.
(ii) The set B = { 0” 1” (n E N} requires log space.

Proof. (i) S,(n) > 2”, since for any distinct pair of words U, u in {O, 1 } *, u & u.
(ii) S,(n) > n, since 0’ ti Oj if i #j.

Remark. The proof of (i) is also found in Lewis et al. [7].

3. RECOGNITION OF 3k IN THE BINARY NOTATION

Throughout this paper we denote by Z the set {0, 1 }. For a string x = a, a2 . . . a, of
Z*, [x] denotes the number corresponding to the binary string x with the rightmost
letter as the most significant bit, i.e.,

[x] = 5 ai . 2’-‘.
i=l

This is the reverse of the standard representation of numbers, and we consider
numbers only in this reverse representation. It is not clear if the theorems proved in
this section hold also for the standard representation.

Let

In other words, the set T consists of strings each of which represents a power of 3 in
the binary notation.

The purpose of this section is to prove the following.

’ C*l denotes the set of words over C ending in 1.

366 MACHIDAANDKASAI

THEOREM 1. The set T requires linear space.

On the other hand, a straightforward algorithm can be designed using no more
than linear space. Hence linear space is both necessary and sufficient for recognizing
the set T.

In order to prove this theorem, we need to develop preliminary results on what
may be called initial segments of T, which will play an essential role in the proof of
the theorem. For every n E N and w E Z* define

w(“) = W()“-m 3 if iwl=m<n,

= u, if w=uz) and]ul=n (u,vEZ*).

Thus, when interpreted as a binary number w(“) satisfied the following conditions:

(i) Iw(“)]=n, and
(ii) [w(“)] E [w] (mod 2”).

For each k E N let wk E Z*l be the word such that [wk] = 3k. Hence
T = {wkl k E NJ. Furthermore, let P”), n E N, denote the set {w(“) I w E T}, which
equals to (wp)I k E N}. T(“) is the collection of initial segments of T with length n.
Since

bcn:] E 3[wF’] (mod 2’7,

it follows that the sequence

(n) w 0 (n) (n)) w,)...) Wk ,...

is a periodic sequence for each n > 0. Denote by n(n), n > 0, the period of this
sequence. Thus for any k E N

(n) (n)
wkt n(n) = wk *

It follows by inspection that

?(I) = 1, 7t(2) = 2, rr(3) = 2, n(4) = 4,...,

and in general we have

LEMMA 3. x(n) = 2”-‘for every n > 3.

Proof: Clearly, n(n) is the minimal integer m > 0 such that 3” = 1 (mod 2”).
Then it is easy to prove by induction that m = 2n-2, i.e.,

(a) 3’“-* = (2k + 1) 2” + 1 for some k, and
(b) for 1 < s < 2”-2, 3” & 1 (mod 2”).

Corollary 2 is immediate.

ON-LINE SPACE COMPLEXITY 361

COROLLARY 2. 1 T(")I = 2"-2for every n > 3.

Proof of Theorem 1. Since T contains at most one word of length n for every
n > 0, for two distinct words u and v in T(“), u k v. Hence, S,(n) > 2”-‘, n > 3, by
Corollary 2. Therefore, by Lemma 2, T requires linear space.

Next we show that the conversion of binary numbers to ternary numbers requires
linear space. Let A = {0, 1,2}. For each w in A*, [w]~ denotes the ternary number
represented by w in a usual manner. (The most significant bit is on the right.) Let
@: A*{ 1,2} + Z*l be the function defined by

Q(x) = Y iff [xl3 = [YI.

THEOREM 2. The function CD requires linear space.

Proof. Note that the set

is regular. Clearly, the set A is reducible to B with respect to @. Therefore, by
Lemma 1 and Theorem 1, @ requires linear space.

4. ON-LINE INTEGER MULTIPLICATION

The purpose of this and the following sections is to show that on-line integer
multiplication requires linear space.

Let Z = {0, 1) and Z, = .?Y U {e), where e is not in Z. Shuffle product # is defined
for any x=a,a, ... a, and y= b,b, .a. b, of C* such that x#y is a,b,a,b, se- a,b,,
whereIismax{m,n},andwherea,+,=~~~=a,=eifm<nandb,+,=~~~=b,=e
if n < m. For a positive integer n,]n [denotes the binary string in Z* 1 expressing the
value n when read as a binary number with the rightmost letter as the most
significant bit. (Let]O[correspond to 0.) Hence [(]n[)] = n for every n E N. The
multiplication function MULT: Z,* + Z* is defined below only for strings of the form
x # y for some x and y in Z*.

MULT(w) = l([xl * [YIN, if w=x#y for x and y in Z*,

= undefined, otherwise,

where * is usual integer multiplication. Thus the function MULT can quite naturally
be understood to read in two numbers x and y from lower order bits and to output
their product x * y also from lower order bits.

Now we shall relate space complexity of this function MULT to that of a squaring
function SQR. The function SQR is a function from Z* to Z* such as

SQR(w) = l(bl’)[

368 MACHIDAAND KASAI

for very string w in Z*. This means that given w as an input, SQR outputs a string
w’ whose value is the square of the value of w, i.e., [w’] = [WI’.

LEMMA 4. Let S: N -+ N be a function. MULT is S(n)-space computable if and
only if SQR is S(n)-space computable.

Proof: This follows from the fact that

a * b = {(a + 6)’ - (a - b)* }/4

for integers a and b.

THEOREM 3. SQR and MULT require linear space.

It should be noted that this is not a particular phenomenon due to our encoding
scheme of two operands x and y, or the delinintion of the multiplication function, but
that this result of integer multiplication requiring linear space would hold also for any
other natural definition of integer multiplication. For example, when the numbers
x=a,a, ... a,, and y = b, b, ..a b, are given as

in (Z x Z)*, the result still holds because the transformation from the previous
encoding to this encoding is computable in O(1) space.

Another remark is that MULT is clearly computable in linear space. Therefore,
linear space is the exact space complixity of on-line integer multiplication.

The remainder of this section is devoted to the proof of Theorem 3. By Lemma 4, it
is sufficient to consider SQR.

Let A be a subset of Z* defined as follows: A word w belongs to A if and only if w
is of the form

where e , ,..., e,, i, f, ,..., f, > 0 (t > 3) with the following properties: Among f, ,f, ,..., f,
the third largest is unique. Let it be f, (1 < s < t). Then the (f,, ,)th bit from the
leftmost bit of the substring les+20f,+2 ..* OftIer+’ does exist and is equal to 1.

LEMMA 5. A is recognizable in log space.

Proof At every intermediate stage in processing an input w, use three storage
tapes for special purposes to hold records of lengths of the longest, the second
longest, and the third longest sequences of O’s so far encountered and of the contents
of the corresponding us+ ,)th bit. Each time a new sequence of O’s is read in whose
length exceeds the previous third longest length, update the records on those three
special storage tapes. When w is completely scanned, the corresponding bit of the
third longest sequence of O’s is examined and w is accepted if and only if it is 1.

ON-LINE SPACE COMPLEXITY 369

Let B be the subset of Z* defined by

B= {WE lZ*l ISQR(w)EA}.

We contend that the recognition of the set B requires linear space.

LEMMA 6. B requires linear space.

Proof. Let B(“‘, n EN, denote the set {ulu E lZ*l, Iu[= n and uv E B for some
u E Z* }. First we show that

IB(“)I = 2”-2 for every n > 1. (4.1)

Let u be a string of length n in lZ* 1. Consider the square of [uO’lO’l] for
j>n- 1 and i>j+n- 1. Since

[uoj10i1]2 = (2i+l+i+n + 2jtn + [u~)2

=2*i+2jt2n+2+2i+2j+2n+2 + 2i+j+n+21U] + 22j+2n +2j+n+t'Lul + ,u12,

the string SQR(u0’10’1) is as shown in Fig. 1. It is easily verified by definition of the
set A that, unless u = 11 or 101, SQR(u02”103”1) belongs to A and thus u02”103”1 is
in B. Two exceptional cases are similarly handled as SQR(l 101061) and
SQR(10101061) are in A. Therefore, (4.1) holds.

Now we show that

for any distinct pair U, and u2 of B(“), u, d u2. (4.2)

(The equivalence relation zz is defined with respect to B.)
To prove this, we again consult Fig. 1. By assumption U, and u2 are distinct.

Suppose the mth bit of u, and that of u2 is different (1 < m < n). For n > 3, letj = 2n
and i = 3n + m - 1. Then it is clear from Fig. 1 that only one of u, 0’10’1 or
u,OjlO’l belongs to B and the other does not. Thus ur & u2. For n = 3, if we let j = 2
and i= 8 we see that 111021081 is in A, whereas 1010210Bl is not, and 101 z& 111.
Therefore, (4.2) is proved.

Recall the definition of S,(n), n E N, as follows:

s,(n) = Ibqx) I x E c*, [xl> n}l,

’ - “(2, (J J-1 i-j-n+1 i t-1
SQR(U) - - __ u - __

0 o&j0 01110 "' 0~0..0~1~0 "'011

u
i-j-n+1

FIGURE I

370 MACHIDAAND KASAl

where E(x) is the equivalence class of x with respect to M. It follows from (4.1) and
(4.2) that

S,(n) > 2”- * (n > 1).

Therefore, by Lemma 2, B requires linear space.

5. SOME PROPERTIES OF ON-LINE COMPUTATION

In this section two results are shown, one concerning reversal operation and
another concerning nondeterminism.

Let ON-LINE DLOG (resp. NLOG) SPACE denote the class of languages
recognizable by on-line deterministic (resp. nondeterministic) Turing machine of
O(log n) space complexity.

LEMMA 7. Let Cc 27 be the set defined by

C={w/w=ulO’l,Ju~>iandithbitofu

from its right end is 1)

Then, (i) C requires linear space, (ii) C”(= reverse of C) is in ON-LINE DLOG
SPACE, and (iii) C is in ON-LINE NLOG SPACE.

ProoJ It should be clear that the set C is log-space recognizable in nondeter-
ministic manner, and the reversed set CR is also log-space recognizable (deter-
ministically). In the essentially same line of argument as in the proof of Corollary
l(i) it can be shown that C requires linear space.

The following results are immediate consequences of Lemma 7:

COROLLARY 3. The class of languages recognizable on-line in log space is not
closed under reversal.

COROLLARY 4. ON-LINE DLOG SPACE+ ON-LINE NLOG SPACE.

6. OBJECT CODE GENERATOR

In this section we consider a typical problem on compiler construction-the
problem of translating arithmetic expressions in infix notation into Polish, or postfix,
notation, and show that this problem requires linear space.

DEFINITION. Let d and 8 be alphabets such that K I? d = 4. Let R = KU P
and d = Q U { (,)}. The set AEXP of arithmetic expressions over Q is the subset of
A* defined as follows:

ON-LINE SPACE COMPLEXITY 37:

(i) d E AEXP,

(ii) if x, y E AEXP and u E 8, then (xuy) E AEXP. The set POSTEXP of
postfix expressions over fi is the subset of 8* defined as follows:

(i) d G POSTEXP
(ii) if x,y E POSTEXP and u E b, then xyo E POSTEXP. An object code

generator is a function Y A * -+ Q * which satisfies the following conditions:

(i) Y(a) = a if a E 6,

(ii> You> = ‘u(x) Y(Y) u, ifx,yEAEXP and uE@,

(iii) if x’6?2 AEXP, then Y(x) @ POSTEXP.

We shall show that Y requires linear space.

THEOREM 4.- Log space is necessary and suflcient for recognizing the set
POSTEXP.

Proof: It should be clear that the set POSTEXP is log(n)-space computable. Let
0 E a and 1 E 8. Then

Since 0* 1 * is regular, it suffices to show that (0 ‘+ ’ 1’ / n E NJ requires log(n) space.
By an argument similar to Corollary 1 (ii), {0 *+ ’ 1’ 1 n E N} requires log(n) space.

THEOREM 5. Linear space is necessary and suSJicient for recognizing the set
AEXP.

Proof Clearly, AEXP is O(n) space computable. Let a be an element of d and
+ be an element of b. Let

h,:{O,l}*-,{a,+,(,)}* and h,: (0, I}* --) {a, f, (,)I*

be homomorphisms defined by

h,(O) = (a+, h,(l)=(, h,(O) = 1, h2(1) = +a).

Let f: {0, 1) * # {0, 1 } * # + A * be the function defined by

f(u # u#) = h,(u) ah,(u), u, u E (0, 1 } *.

For example,

f(O1 # 10#) = h,(O) h,(l) ah,(l) h*(O) = (a + (a + a)).

Let A be the set in Corollary 1 (i). Then, for each element x of (0, 1) * # {0, 1 } * #,

xEA iff f(x) E AEXP.

57 I/24/3-9

312 MACHIDAANDKASAI

The function f can be extended naturally to a function f: {0, 1, #} * + {a, +, (,)} *
such that

(i) for all XE (0, l,#}*,

xEA iff f(x) E AEXP,

(ii) f is O(1) space computable.

Then, by Lemma 1 and Corollary l(i), AEXP requires linear space.

From Theorems 4 and 5 and Lemma 1, we finally have

THEOREM 6. The object code generator Y requires linear space.

ACKNOWLEDGMENT

The authors would like to express their gratitude to a referee who simplified some of the proofs and
helped to make the presentation clearer.

REFERENCES

1. A. V. AHO, J. E. HOPCROFT, AND J. D. ULLMAN, “The Design and Analysis of Computer
Algorithms,” Addison-Wesley, Reading, Mass., 1974.

2. M. J. FISCHER AND L. J. STOCKMEYER, Fast on-line integer multiplication, J. Comput. .Yystern Sci. 9
(1974), 317-331.

3. H. GALLAIRE, Recognition time of context-free languages by on-line Turing machines, Zform. and
Control 15 (1969), 288-295.

4. J. HARTMANIS AND H. SHANK, On the recognition of primes by automata, J. Assoc. Comput. Mach.
15 (1968), 382-389.

5. J. HARTMANIS AND H. SHANK, Two memory bounds for the recognition of primes by automata,
Math. Systems Theory 3 (1969), 125-129.

6. J. JA’JA’ AND J. SIMON, Some space-efficient algorithms, in “Proceedings, Seventeenth Annual
Allerton Conference on Communication, Control, and Computing,” 1979.

7. P. M. LEWIS II, R. E. STEARNS, AND J. HARTMANIS, Memory bounds for recognition of context-free
and context-sensitive languages, in “IEEE Conference Record of Sixth Annual Symposium on
Switching Circuit Thory and Logic Design,” pp. 191-202, 1965.

8. M. S. PATERSON, M. J. FISCHER, AND A. R. MEYER, An improved overlap argument for on-line
multiplication, in “Complexity of Computation (SIAM-AMS Proceedings, Vol. 7),” American
Mathematical Society, Providence, R. I., pp. 97-l 11, 1974.

9. M. P. SCHUTZENBERGER, A remark on acceptable sets of numbers, J. Assoc. Comput. Mach. 15
(1968) 30%303.

