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The purpose of this note is to establish a close relationship between the 
two algebraic concepts of the title. F will be a field which for simplicity we 
take to be algebraically closed and of characteristic zero (e.g., the complex 
numbers). All algebras considered will be commutative, not necessarily 
associative, with an identity, and finite dimensional over F; we will use the 
unrestricted term “algebra” in this sense. 

An algebra is simple if it has exactly two ideals, and semi-simple if it is a 
direct sum of simple algebras. The Chinese Remainder Theorem is easily 
checked to hold, so we let the radical of an algebra be the intersection of its 
maximal ideals, and have that an algebra has radical zero if and only if it is 
semi-simple. Let A be an algebra. For a, b, c E A we write [a, b, c] for the 
associator (a. b) . c - a. (b *c), and [A, A, A] for the subspace of A 
spanned by all the associators. Then A is associative if and only if [A, A, A] = 
{O}. If the other extreme holds-namely [A, A, A] = A-we call A anti- 
associative. If A is simple and associative, no proper square roots of zero 
exist in the sense that a E A, a2 = 0 imply a = 0. In general, we call A regular 
simpZe if it is simple, it is not anticommutative, and it has no proper square 
roots of zero. We call an algebra regular semi-simple if it is a direct sum of 
regular simple algebras. It is these algebras we wish to characterize, or at 
least show that their theory is equivalent to the theory of nonsingular cubic 
forms over F. Nonsingular cubic forms in three or less variables are of 
course classically known (X1s, Xl3 + X23, Xa2X3 - X,(X, - X,)(X, - AX,), 
where X E F, X # 0, l), but in larger numbers of variables their theory is of 
course very extensive and very far from complete. 

Thanks are given to John Leahy, William Adkins, Gary Fowler, and 
Michael Gilpin for help on this material. 
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1. CUBIC FORMS 

By a cubic form we mean a homogeneous polynomial of degree three in 
so&me given number of variables over 8’. Two cubic forms f(X, ,‘.., X,) and 

&WI J-.-T %) are called equivalent, and we write f -~g, if g can be gotten 
from f by a linear reversible change of variables; i.e., if z = m and there is an 
invertible n by n matrix [CQJ such that if xi ai,jY,. = Xj for j = l,..., n, 
then f(Xr ,...) X,) = g( Yr ,..., Y,). The cubic form f (X, ) . . . . Xn) is calle 
nonsingular if the projective variety defined by f has no singular points; this 
is equivalent to the fact that the partials 3fiaXr ,~.., 8)/3X, do not have a 
common nontrivial zero in F. Any form equivalent to a nonsingular form is 
nonsingular. Two forms are viewed as being essentially the same (i.e., 
isomorphic) if they are equivalent; for this reason it is easiest in anything but 
final computations to deal with cubic spaces. By a cubic space we mean a 
pair (V, B), where V is a finite dimensional vector space over F and B is a 
trilinear symmetric map from B x V x V to I;: Two cubic spaces (V, 8) acd 
(V’, 19’) are called isomorphic if there is a bijective linear map ii from V to Y’ 
with 

for all u1 ) zis ) us E V. If (V, 0) is a cubic space and ar, a2 ,..~, a, is a basis of 
V, then 

is a cubic form in n variables. If this formula holds for some basis of V we 
say f is associated to (V, ~9). If (V’, 0’) 1s a cubic space and g is a cubic form 
which is associated to (Y’, O’), then f is equivalent to g if and only if (V, 0) 
is isomorphic to (V’, 0’). Also every cubic form is associated to some cubic 
space. Rence rather than working with cubic forms, up to equivalence, we 
can work with cubic spaces, up to isomorphism. One checks that a form 
associated to (V, 0) is nonsingular if and only if for each nonzero u E V there 
exists a v E V with O(U, U, V) # 8. If th’ is is true we call (V, 0) nonsingular. 

PROPOSITION 1.1~ Let ( V, 6) be a nonsingular cubic space over F. Then there 
eksts a u in V such that fey each nonzero v in V there is a w in V with 

qu, v, w) f 0. 

Proof. Let n be the dimension of V over F. Let yr , yz ,..., yIz be indeter- 
minants over F and let pi= be an algebraic closure of F(y, , yz ).~., m)” Let 

f =f(4 9 x2 ,.a.> X,) be a cubic form over F associated to (VT 0). Then f is 
nonsingular, so aflax, ,..., afj&u, do not have a common nontrivial zero in F. 
Mence by Hilbert’s Nullstellensatz they do not have a common nontrivial 
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zero in K. Thus f is still nonsingular when considered as a polynomial with 
coefficients in K. This polynomial is associated to some cubic space over K; 
one checks that (K OF V, 0,) is such a space, where 8, is the unique map 
from (K OF V) x (K OF V) x (K BP V) to K, where 

for all a 1 , a2 , as E K and vr , v2 , v3 E V. Hence, we have that (K BP V, 6,) is 
a nonsingular cubic space over K. 

Let i be an integer from 1 to n. There is a unique F-linear derivation Di 
OfF(Yl ,***> yn) with D,(y,) = S,,j forj = I,..., n, where S,,j is 1 if i =j and 
0 otherwise. Since K is of characteristic zero, it is a separable algebraic field 
extension of F( yr , . . . , yn) so Di can be extended to a unique derivation, which 
we also call Di , of K with D,(y,) = S,,$ for all j. Now choose a basis 

Vl , 712 ,.**, V, of V over F and define a map Bi from K OF V to itself by 

f4(~lO~,+~~~+~,O~,) =Di(u1>Ov,+...+D,(un)Ov,, 

for all aI , a2 ,..., a, E K. One can check that this is well defined and is 
independent of the choice of basis. 

LEMMA 1.2. For all wl, w2 , w3 E K OF V, 

Wdw, > ~2 > ~3)) = 4c(Bi(wd, ~2 , ~3) + 4&, 3 Bi(w2), ~3) 

+ Mw, > w2 7 Bi(W3)) 

Proof. This is easily checked directly. 
Now let z=y10a,+y,0a2+...+yn.0an. Note that B,(z)= 

1 @Ui. 

LEMMA 1.3. For each v E K gE V there exists a w E K OF V with 
4&f, v, w) # 0. 

Proof. Just suppose v E K OF V with &(z, v, w) = 0 for all w E K OF V. 
Then 

0 = DJO) = D&(X, q v)) 

and by the last lemma this is 

4AB&), v, 4 + &&, B,(v), 4 + 4&, v, B,(v)), 

which by the choice of v is B&B,(x), v, v). But Bi (z) = 1 @ ai so 0 = 
6&l @ ui , v, v) for i = l,..., n. Since 1 @ a, ,..., 1 @ a, is a basis of K OF V 
this gives that &(c, v, v) = 0 for all c E K BP V. But we proved (K OF V, 0,) 
is nonsingular, and thus v = 0. This proves the lemma. 
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As a corollary to the lemma we have 

0 f det([O,(x, B @ ai , 1 @ a,]). 

Since BK(z, 1 @ ai , I @ aj) = CsysO(as, ai , aj), this nonzero determinant 
is a homogenious polynomial of g(yr ,...) ~1~) over F of degree n. Thus there 
exist 011 ) aa ) . . . . ollz E F with g(ar , C+ ,..., a,) # 0; i.e., with 

det 
([ 

c @?(as , a, , aj) 
s 

ence letting u = Es asas, det([e(u, ai , a?)] 0 which means for each 
nonzero 21 in V there is a w in V with t?(u, v, w) . Proposition I I 1 is proven. 

This proposition 1.1 with its restriction to nonsingular forms is very weak; 
actually one has to work hard to find any nontrivial cubic form which does 
not satisfy the conclusion of proposition 1 .l. We say a cubic space (V, 8) 
has nontrivial Hessian if the conclusion of Proposition 1.1 holds (i.e., there 
exists a 21 in Y such that v E V and e(u, U, w) = 0 for ah w E V imply e, = 0). 
Of course a degenerate cubic space (V, 0) (one where there exists a ziI # 0 
in V with B(v, , v2 , va) = 0 for all ~a , v3 E V) does not have a nontrivial 
Hessian, but these are trivial because every cubic space is uniquely a direct 
sum of a zero cubic space and a nondegenerate one. William Adkins has 
shown that 

does not have a nontrivial Hessian and is nondegenerate. 

PROPOSITION I .4. Let (V, 8) be a cubic space which has a nontrivial Hessian 
(e.g., is nonsiagular). Let u E V be such that v E V and 6’(u: v, w) = 0 jcor all 
w E V imply v = 0. Then there exists a unique ~~lt~p~~~ation on V which makes 
V into an algebra with u as identity and which satisj%s 

0(a, b, c) = B(zc; u, (a . 6) . c) 

joy all a, 6, c, in V. We denote this algebra by V(,, . 

Proo;f. For v E V define h, E Hom,(V,F) by h,(w) = B(u, U, ZL) for all 
Z/J E V. Qne checks that a ++ h, is an injective linear map from V to 

omF(V, F). Since these two spaces have the same dimension this man is 
actually bijective. For a, b E V we define a functional f on V by f(u) = 
@(a, b, w) for all w E V. Hence there exists a unique v in V with h, = J. 
We denote v by a . b. Then a * b is that unique element in V with 

@(a, b, w) = @(a, a . b, w) 
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for all w E V. With this one checks that multiplication is bilinear, com- 
mutative, has u for an identity, and satisfies 8(u, u, (a . b) . c) = e(a, b, c) for 
all a, b, c E V. Conversely, suppose a new multiplication is given with these 
properties. Then 

ecu, a . b, c) = ecu, u, tu . (a . b)) . c) = qu, u, tu . b) . c) = ecu, b, c) 
for all a, b, c E V, and since this is the relation used to define the first multi- 
plication, the two multiplications are equal. 

Note 1.5. Let the notation be as in Proposition 1.4. For a, b E V let 
~(a, b) be e(u, a, b). Then y is a nondegenerate inner product on V which 
satisfies ~(u * b, c) = ~(a, b . c) and ~(a . b, c) = e(u, b, c) for all a, b, c in V. 

Proof. 

q(u * 6, c) = ecu, a . b, c) = ecu, 24, (u . (a * b)) * c) 

= ecu, u, (u - b) * c) = ecu, b, c) = B(b, c, u) = e(u, 24, (b . c) * a) 

= e(u, u, (u . (b . C)) . U) = o(U, b . c, u) = @, a, b . c) = ~(a, b + c). 

That 9 is a nondegenerate is immediate from the properties of u. 

PROPOSITION 1.6. Let (V, 0) be a nonsingular cubic space. Let u E V be such 
that for each nonzero v E V there is a w E V with e(u, v, w) # 0. Muke V into 
an algebra by giving it the unique multiplication which has u for an identity azd 
satisfies e(a, b, C) = f?(u, u, (a . b) . C) f OY all a, b, c E V. Then V is a regular 
semi-simple ulgebyu. 

Proof. Let a E V with a * a = 0. Then for all c E V, e(u, a, c) = 
B(u, u, (a * u) . c) = 0 so a = 0 since (V, 0) is nonsingular. This proves no 
proper square roots of zero exist. Now let I be a mininal nonzero ideal of V. 
Using the inner product cp of note 1.5, let I-’ be the set of all c E V such that 
y(b, c) = 0 for all b ~1. Then I n I1 = (0) for if a were an element in this 
intersection, for all v E V we would have ~(a * a, v) = v(a, a . v) = 0 (and 
thus a . a = 0) since a . v ~1. Thus V is the direct sum of I and Ii. One 
checks directly that I1 is an ideal, and thus V is the direct sum of I and IA 
as algebras. One can check that I is simple, and by reapplying this procedure 
to IA one can get that V is the direct sum of simple algebras. We now show 
any one of these simple algebras, say I, is not anti-commutative. Just suppose 
1 were anti-commutative. Then for a E I, b E V, a . b E I so a . b can be written 
as a linear combination of associators of elements in I. But for X, y, z ~1. 

e(u,u,xqy-+ =e(24,x,y2) =e(u,y-z,x) =e(y,z,x) 
= ecx, y, ,z) = ecu, u, cx . y) . z) 
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so B(zc, 24, [x, y, 2~1) = 0. Since a . 6 is a linear combination of such associators, 
0 = B(u, u, a = 6) = 6( u, a, b). This is true for all b E ii;‘. Thus a = 
a was any element in I. This contradiction proves the proposition. 

2. ALGEBRAS 

Let A be an algebra over F. We call u E A a unit if for each b E A, u . x = b 
has a solution x in A. Since A is finite dimensional one can check that this is 
equivalent to u being a nonzero-divisor (i.e., zl * c + for all nonzero c in A). 
Let zk be a unit. One can check that for each b E A there exists exactly one 
x~Awithu.x=b.E\Jowleta,b~A.Thena.b~Asothereisauniqiie 
c~Awithu~c=a~b.Wedenotecbya*b. his defines a new multi- 
plication * on A. One checks that A with + is an algebra; we denote this 
algebra by A(,) and call it a varialzt of A. This new multiplication is charac- 
terized in terms of the old one by u . (a t b) = a . b for all a, b E A. 
checks that zk is the identity of At,, . Hence for each unit there is a un 
variant of A with that unit as an identity. We take the point of view t 
we really know an algebra then we can compute ali its variants; if we want to 
make a list of all algebras then it would be least cumbersome to list only one 
algebra from each variant class, rather than to include with each algebra all 
its variants. If A and B are algebras, we call B v~~i~~~-~sQ~o~~h~~ to A and 
write 23 N A if B is isomorphic to a variant of A. One can check that a variant 
of a variant is a variant, each algebra is a variant of each of its variants, and 
the variant with the identity as identity is the algebra itself. Hence variant 
isomorphism is an equivalence relation. For associative algebras 
isomorphic and being isomorphic are equivalent. 

0ne quickly checks that a unit of an algebra is a unit of every variant, an 
ideal of an algebra is an ideal of every variant, the radical of an algebra is the 
radical of every variant, a proper square root of zero of an algebra is a proper 
square root of zero in every variant, a variant of a direct sum of algebras is 
a direct sum of corresponding variants, a tensor product of variant is a variant 
of the tensor product of the corresponding algebras, a variant of a factor 
algebra is a factor algebra of a variant, a variant of a simple algebra is simple, 
a variant of an associative (respectively antiassociative) algebra is associative 
(respectively antiassociative), etc. In particular, each variant of a regular 
semi-simple algebra is regular semi-simple. In the list we will give of the 
regular semi-simple algebras, we will give only one from each variant- 
isomorphism class (there are still way too many to make the listing anything 
more than a shifting of the problem to more familiar ground). 

ION 2.1. Let (V, 6) and (V’, 0’) be cubic spaces which have ~zotz- 
‘ans (e.g., are nonsingzllffr). C%oose a UE V suciz tkat ior each nOnzero J 

481/32/3-6 
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v in V there is a w E V with e(u, v, w) f 0. Choose a u’ E V’ such that for each 
nonxero v’ in V’ there is a w’ E V’ with e’(u’, v’, w’) # 0. Let A be the algebra 
V(,) and B be the algebra V,!,,, (see Proposition 1.4). Then A is variant- 
isomorphic to B if and only if (V, 6) is isomorphic to (V’, 0’) (i.e., if and only if 
a cubic form associated to (V, 0) is equivalent to a cubic form (OY equivalently all 
cubic forms) which is (OY are) associated to (V’, 0’)). In particular, the variant- 
isomorphism class of A is independent of the choice of u. 

Proof. First suppose (V’, f3’) is isomorphic to (V, 0) by a bijective linear 
map t from V to v’. Let a, b E V. Then for any x E V 

8(u, a . b, X) 

= e(u, U, (U . (a . b)) . X) = e(u, U, (a . b) . X) = e(a, b, X) 

= B’(t(a), t(b), t(x)) = B’(u’, u', (t(a) . t(b)) . t(x)) 

= B’(u’, u’, (u’ . (t(a) . t(b))) . t(x)) = W(u’, t(a) . t(b), t(x)) 

= B’(t(t-l(u’)), t(t-l(t(a) . t(b))), t(x)) = e(t-l(u’), t@(t(a) . t(b)), x) 

= e(u, U, (t-l(u’) . t-l(t(a) . t(b))) . X) = B(u, t-l(u’) . @(t(a) . t(b)), x). 

Hence a . b = t-l(u’) . t-l(t(a) . t(b)). If t-l( u’ is a unit, then writing * for the ) 
multiplication of the variant of A with t-l(u’) as identity, the above gives 
a * b = t-l(t(a) . t(b)) or t(a * b) = t(a) . t(b) and we are done. We prove 
t-l(u’) is a unit by supposing t-‘(u’) . c = 0 with c E A. For each y’ E V 

0 = ecu, u, (t-l(d) . c) . t-yy’)) = e(t-l(d), c, t-yy’)) = eyd, tee), y’). 

Hence t(c) = 0, so c = 0. 
Now conversely suppose A is isomorphic to a variant of B. We will need 

some lemmas. An algebra D is indecomposable if it is not a direct sum of two 
nonzero algebras. The center Z(D) of an algebra D is the set of all x E D 
such that z . (x . y) = (z . x) . y for all x, y E D; this center is an associative 
subalgebra of D. 

LEMMA 2.2. Let x be a unit of an associative algebra D. Then there is a unit 
y in D with x = y3. 

Proof. D is a direct sum of indecomposable algebras D, ,..., D, . If 
x=x1+ ~~~+x,withxi~Diandx,=yi3foryi~Di,i===l,...,m,then 

x = (r1+ ... + Y~)~. Hence without loss of generality we may assume D is 
indecomposable. But D is associative, so idempotents can be lifted, so D/I is 
indecomposabIe where I is the radical of D. Since D/I is semi-simple, it must 
be a field, and since F is algebraically closed D = F . 1 + I. I is nilpotent so 
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there is a smallest positive integer s with IS = 8. If s = 1, D = F1 and tke 
lemma is true since F is algebraically closed. Now let J = IS-r and suppose 
the lemma is true with D replaced by D/J. Then there is a unit y + J in 
D/J with x + J = (y + 1)” in Dl J. Using J . J = 0, it is easily checked that 
y is a unit in l?. There is a b E J with x = y3 + b. (y-” . bj2 = 0 since 

~ Hence (y + 3-r~-~ . b)3 = y3 + b = x. The lemma fooilows by 
induction on s. 

Now let e be the unit of B such that A is isomorphic to the variant of B 
which has e as identity. Let * be the multiplication of this variant so that 
e ~ (b c b’) = b . 6’ for all b, b’ E B. Let t be a bijective linear map from R to B 
with t(a ~ a’) = t(a) * t(a’) for all a, a’ E A. t must preserve the identities so 
t(l) = e. Multiplying by e we get t(1) . t(a . t(a . (I’) = t(a) . t(d). Let .T be 
the linear map from A to F where I’(a) = @‘(t(l), t(l), t(a)) for all a E A. 
For y E A let f, be the linear map where fzl(a) = O(1, y, a) for a E A. Th 
y ti J, is an injective linear map from A to Horn,@!, F). This map must 
surjective since Hom,(A,F) has the same dimension as A. Thus there is a 
unique do A with fd = r, i.e., with 19(1, 6, a) = @‘(t(l), t(l)> t(a)) for all 
a E A. Let x, y be any elements in A. We use the notation of Note 1.5 and 
write g, and y’ for the inner products corresponding to 0 and 9’, respectively. 
For any z in A. 

=&?.(X.y),Z) =~(d,(x.y).z)=e(l,d,(x.Y).z) 

= e,(t(n), t(l), qx .y) . XI) = byf(l), t((x ~ Y) . 4 a) 

= eyl, 1, (t(l) . t(~ .Y) . z)) . t(i)) = eyl, 1, t(x .Y) ’ W) . W 

= eyt(a), t(x .y), t(~)) = eyi, 1, (t(l) . t(x ‘~1) . t(4) 

= &(I> 1, (t(x) . t(y)) * t(z)) = fl(t(x), t(y), t(4). 

bus e(1, (d * x) . y - d . (x . y), 2) = 0, and since this is true for ah x E A, 
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(d . X) *y ,- d * (X . y) = 0. Hence d is in the associative algebra Z(A). d is a 
nonzero-divisor in Z(A), for if 6 E Z(A) and d -6 = 0, then for any w E B 

0 = cp(d . b, t-l(w)) = lp(d, b . t-l(w)) = e,&(l), t(l), t(6 * t-l(w))) 

= #(t(l), t(b * t-l(w)), t(l)) = e,(l, 1, (t(l) * t(6 * t-l(w))) * t(1)) 

= C(l, 1, (t(6) * 20) * t(1)) = &(I, t(6) * w, t(1))‘= y’@(b) . w, t(1)) 

= #(w . t(6), t(l)> = v’(w, t(b) . t(l)>, 

so t(6) . t(1) = 0, and since t(1) = e is a unit, ~(6) = 0 and thus 6 = 0. 
Since d is a nonzero-divisor, it is a unit so by Lemma 2.2 there is a unit c 
in Z(A) with c3 = d. Define a map f from B to A by f(~‘) = c . t-‘(CC’) for 
all x’ E B. f is linear, and since t-l is injective and c is a unit, f is injective and 
thus bijective. For any X, y, z in A, we proved above B’(t(x), t(y), t(z)) = 
O(l, de (x .y), z). But 

8(1, d . (x .y), z) = &I, 1, (c” * (x +y) * 2) = 8(1, 1, ((c . x) . (c *y)) * (c . z)) 

= qc . x, c ’ y, c . z), 

since c is in Z(A). Thus for any x’, y’, x’ E B, we let x = t-l(x’), y = t-‘(y’), 

x = t-l(d) and have 

eyx', yf, d) = ccc . X, c . y. c .z) = e( f cx'), f (y), f(d)). 

This completes the proof of Proposition 2.1. 
We call an algebra A admissible if there exists a nonsingular inner product 

g, on A which is multiplicative in the sense that ~(a . 6, c) = ~(a, 6 . c) for 
all a, 6, c in A. One checks that a variant of an admissible algebra is admissible. 

COROLLARY 2.3. Let A be an algebra. Then there exists a cubic space (V, 0) 
with nontrivial Hessian and a u E V which satisfies the hypothesis of Proposition 
1.4, such that V(,) is isomorphic to A ;f, and only if, A is admissible. Hence 
there is a natural one-one correspondence between equivalence classes of cubic 
forms with nontrivial Hessian and variant-isomorphism classes of admissible 
algebras. 

What little of this corollary is not covered by Note 1.5 and Proposition 2.1 
is easily checked. 

An associative algebra which is a direct sum of algebras, each of which 
has exactly one maximal ideal and one minimal ideal is called a Frobenius 
algebra. One can check that these are exactly the associative admissible 
algebras. By the above result, isomorphism classes of Frobenius algebras 
correspond bijectively with a class of equivalence classes of cubic forms 
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(which will have as singularities all elements whose squares are zero in the 
corresponding algebras). I think most ring theorists would say that any 
attempt to classify (commutative) Frobenius algebras over F is unlikely 
because they exist in such abundance; this shows the complexity of hig 
singular cubic forms which exist. 

ROPQSITION 2.4. Let A be a regular semi-simple algebra. Then thae exists 
a nonsingular cubic space (V, 0) (unipue up to ~sornoy~~~rn~ and a ze E Y such 

that fog each nonzero v E V there is a w E V with B(u, v, w) # 0, with Vc,, 
isomorphic to A. Hence there is a natural one-oze Co~~es~Q~~e~ce between 
equivalence classes of nonsingular cubic forms and variant ~sorn5~~his~ classes of 
regular semi-simple algebras, 

Proof. Let A be a direct sum of the regular simple algebras A, ,‘.., A, ~ 
For i = I,..., m, Ai # [Ai , A, i AJ SO there is a nonzero linear map fi km 
Ai to F which has [Ai , Ai , Ai] in its kernel. We define yi(ai 9 bij to be 
fi(ai . 6,) for all ai , b, E Ai , and quickly check that vi is a m~l~i~~icative 
nonzero inner product on Ai . Letting li = {ai E Ai j q+(ai , bi) = 0 for all 
bi E Ai), we check that Ii is a proper ideal of AZ and thus is zero. Hence v( 
is a nonsinguiar inner product on A, . Now for ai t b, E A, we define 

y(a, i ... + a,, b, + ... + b,) = vl(a, , bJ + 1~. A- w(aml L) 

and check that q~ is a nonsingular inner product on A. For a, b, E E A we define 
@(a, 6, cj to be F(a . b, c), and check that (A, 0) is a cubic space. 1 E A and 
for each nonzero b E A there is a c in A with B(1, b, c) = y(b; c) f 0. For 
x, y, z E A, B(x,y, 2) = g)(x ‘y, z) = qJ(1 . (x -y), 2) = v(19 (x y) . 2fj = 
B(1, 1, (x . y) . .z) so A(,) = A. If a is a nonzero-element in A, then a2 f 0 so 
there is a b with 0 # v(a2, b) = d(a, a, b). Thus (A, 8) is nonsinguiar. 

Note 2.5. The algebra can be computed explicitly from the form 
f(X, ,.o*, X,) as fohows. First it is necessary to find a point 

a = (01~ , a2 ,..., a,) EFn 

such that (1/3)(C CQ 3f/&Y,) = g(X, ,..., X,) is nonsingular (this can 
done by computing the determinant of the coefficient matrix of gj. Then 
e, = (I, 0 ,..., 0) ,..., e, = (0, 0 ,..., I), multiplication is given by linearity an 
that for i,j = I,..., n, ei * ej = We1 + *em + plaen, where (l/3!)(a2~/8X&JX$j = 
(1 /NC Pk WW. F or instance if f = X22X, - X1(X, - X,)(X, - AX& 
h # 0, 1, then we can let a = e3 and get 

“I . el = -41 + l/h) el + (-(I + l/Xjz + 3/X) e3 p 



528 D. K. HARRISON 

q . e2 = 0, e, . es = e, , e2 * e, = 0, e2 . e2 = (--l/A) e, - (l/X)(1 + l/A) e3, 
es . es = es , es * e, = e, , e3 . es = es , es . es = es . 
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