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The purpose of this note is to establish a close relationship between the
two algebraic concepts of the title. F will be a field which for simplicity we
take to be algebraically closed and of characteristic zero (e.g., the complex
numbers). All algebras considered will be commutative, not necessarily
associative, with an identity, and finite dimensional over F; we will use the
unrestricted term “algebra’ in this sense.

An algebra is simple if it has exactly two ideals, and semi-simple if it is a
direct sum of simple algebras. The Chinese Remainder Theorem is easily
checked to hold, so we let the radical of an algebra be the intersection of its
maximal ideals, and have that an algebra has radical zero if and only if it is
semi-simple. Let 4 be an algebra. For a, b, c € 4 we write {g, b, ] for the
associator (@ -b)-¢c—a-(b-c), and [4, 4, A] for the subspace of 4
spanned by all the associators. Then 4 is associative if and only if [4, 4, 4] =
{0}. If the other extreme holds—namely [4, 4, 4] = A—we call 4 anti-
associative. If A is simple and associative, no proper square roots of zero
exist in the sense that @ € 4, ¢* = 0 imply @ = 0. In general, we call A regular
simple if it is simple, it is not anticommutative, and it has no proper square
roots of zero. We call an algebra regular semi-simple if it is a direct sum of
regular simple algebras. It is these algebras we wish to characterize, or at
least show that their theory is equivalent to the theory of nonsingular cubic
forms over F. Nonsingular cubic forms in three or less variables are of
course classically known (X3, X33 + X3, X;2X; — Xi(X; — Xp)(X; — A X)),
where AeF, A £ 0, 1), but in larger numbers of variables their theory is of
course very extensive and very far from complete.

Thanks are given to John Leahy, William Adkins, Gary Fowler, and
Michael Gilpin for help on this material.
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1. Cusic Forwms

By a cubic form we mean a homogeneous polynomial of degree three in
some given number of variables over F. Two cubic forms f(X, ,..., X,,) and
g(Yy ., Yy) are called equivalent, and we write f ~ g, if g can be gotten
from f by a linear reversible change of variables; i.c., if #z = m and there is an
invertible # by # matrix [, ;] such that if 3,4, ,;V; = X, for j =1,....n,
then f(X;,..., X)) = g(Y1,..., ¥,). The cubic form f(X, ..., X)) is called
nonsingular if the projective variety defined by f has no singular points; this
is equivalent to the fact that the partials 8f/0X; ,..., 8f/0X, do not have a
common nontrivial zero in F. Any form equivalent to a nonsingular form is
nonsingular. Two forms are viewed as being essentially the same (i.c.,
isomorphic) if they are equivalent; for this reason it is easiest in anything but
final computations to deal with cubic spaces. By a cubic space we mean a
pair (V, 6), where I is a finite dimensional vector space over F and 8 is a
trilinear symmetric map from ¥ X ¥ X ¥V to F. Two cubic spaces (V, §) and
(V', ') are called isomorphic if there is a bijective linear map ¢ from V to V'
with

0 (t(zr), Hwy), £(v5)) = b(zy, w2, vy),

for all v, , v, , v3€ V. If (¥, 0) is a cubic space and a4, , 4, ,..., @, is a basis of
V, then

/= Z ZZ 0a;, a;, ar) X, X; X,
ik

is a cubic form in # variables. If this formula helds for some basis of 7 we
say f is associated to (V, 0). If (V”, §') is a cubic space and g is a cubic form
which is associated to (V”, '), then f is equivalent to g if and only if (¥, §)
is isomorphic to (¥, #'). Also every cubic form is associated to some cubic
space. Hence rather than working with cubic forms, up to equivalence, we
can work with cubic spaces, up to isomorphism. One checks that a form
associated to (¥, 8) is nonsingular if and only if for each nonzero u € ¥ there
exists a v e V with 0w, u, v) # 0. If this is true we call (¥, §) nonsingular.

ProrositioN 1.1, Let (V, 8) be a nonsingular cubic space over F. Then there
exists a w in V such that for each nonzero v in V there is a w in V with
O(u, v, w) 7= 0.

Proof. Let n be the dimension of ¥V over F. Let y, , v, ..., ¥,, be indeter-
minants over ¥ and let K be an algebraic closure of F(y,, v, ,..., ,,)- Let
f=1(X;, X;,..., X)) be a cubic form over F associated to (¥, 6). Then £ is
nonsingular, so 0f/6X, ,..., 8f/0X,, do not have a common nontrivial zero in F.
Hence by Hilbert’s Nullstellensatz they do not have a common nontrivial
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zero in K. Thus f is still nonsingular when considered as a polynomial with
coefficients in K. This polynomial is associated to some cubic space over K;
one checks that (K Qr V, 0y) is such a space, where 0 is the unique map
from (K ®F V) X (K Qp V) X (K ®fr V)to K, where

Ox(ay @ 01, a3 @ vy, a3 @ v3) = aya,a30(v; , V5, V)

foralla, , a,,a;€ Kand v, , v, , v; € V. Hence, we have that (K ® V, 0) is
a nonsingular cubic space over K.

Let 7 be an integer from 1 to #. There is a unique F-linear derivation D;
of F(yy ,..., ¥,) with Dy(y;) = 8;; for j = 1,..., n, where §; ; is 1 if { = j and
0 otherwise. Since K is of characteristic zero, it is a separable algebraic field
extension of F(y, ,..., ¥,) so D; can be extended to a unique derivation, which
we also call D;, of K with DJy;) = 8;; for all j. Now choose a basis
Dy, Vg 5eery Uy OF V over I and define a map B, from K ®z I to itself by

Bi(al ® 7)1 + + an ® vn) = Di(al) ® 7)1 + + Dz(an) ®‘vn ’
for all a;, ay,..., a, € K. One can check that this is well defined and is

independent of the choice of basis.

Lemma 1.2. For all wy,w,, wse KRV,
D(Ox(w, , wy , wy)) = Ox(By(wy), wy , wy) + Ox(ewy , By(w,), ws)
+ Ok(wy , wy , Bi(ws))
Proof. This is easily checked directly.

Now let 2 =3, ®a, + v, R ay+ - + v, ®a,. Note that By(z) =
1®a;.

LemMa 1.3. For each ve K RpV there exists a we K RV with
Ox(z, v, w) 7~ 0.

Proof. Justsupposeve K @ V with 0(2, v, w) = Oforallwe K ® V.
Then

0 = Dy(0) = Dy(0(», v, v))
and by the last lemma this is

0x(BA2), v, v) + Ox(z, Bi(v), v) + 0x(2, v, B{(v)),

which by the choice of v is 0x(B(2), v,v). But B;(2) =1 ® a; s0o 0 =
(1 @a;,v,v)fori=1,.,n8ncel ®a;,...,1 Qa,isabasisof KRV
this gives that 0,(c, v, ) = O for allc € K R V. But we proved (K Q7 V, )
is nonsingular, and thus ¥ = 0. This proves the lemma.
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As a corollary to the lemma we have

0 = det([fx(z, | @a;, 1 ® a]).

Since Oz, 1 ®a;, 1 Qa;) =3, ya,, a;, a;), this nonzero determinant
is a homogenious polynomial of g(yy ,..., ¥,) over F of degree n. Thus there
exXist oy , o ..., 0, EF with goy , g ..., @) 7 0; 1e., with

det ([Z afa, , a a,.)]) £ 0.

Hence letting # = 3, aga,, det([8(u, a;, a;)]) = 0 which means for each
nonzero v in ¥ there is a w in IV with 8(u, v, w) 5= 0. Proposition 1.1 is proven.

This proposition 1.1 with its restriction to nonsingular forms is very weak;
actually one has to work hard to find any nontrivial cubic form which does
not satisfy the conclusion of proposition 1.1. We say a cubic space (V, )
has nonirivial Hessian if the conclusion of Proposition 1.1 holds (i.e., there
exists a # in ¥ such that v e V and 0(u, v, w) = 0 for all w € V imply v = 0).
Of course a degenerate cubic space (7, 8) (one where there exists a 7; % 0
in V with (v, , 05, v3) =0 for all v,, v3€ V) does not have a nontrivial
Hessian, but these are trivial because every cubic space is uniguely a direct
sum of a zero cubic space and a nondegenerate one. William Adkins has
shown that

X+ XP 4 XP + X2+ X AGX, + X XX + L XX, + XX
+ XX X,

does not have a nontrivial Hessian and is nondegenerate.

ProposiTION 1.4. Let (V, 0) be a cubic space which has a nonivivial Hessian
(e.g., is nonsingular). Let u€ V be such that ve V and 0(u, v, w) =0 for all
we ¥V imply v = Q. Then there exists a unique multiplication on V which makes
V into an algebra with u as identity and which satisfies

Ba, b, ¢) = Ou, u,{a b))
foralla, b, c,in V. We denote this algebra by V) .

Proof. For veV define h, e Homz(V,F) by k(w) = 8(u, v, w) for all
we V. One checks that v+ &, is an injective linear map from ¥V o
Homg(V, F). Since these two spaces have the same dimension this map is
actually bijective. For a, be V we define a functional f on ¥V by f(w) =

6(a, b, w) for all we V. Hence there exists a unique v in V with &, = f.
We denote v by @ - b. Then a - b is that unique element in V" with

&a, b, w) = 0(u, a - b, w)
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for all we V. With this one checks that multiplication is bilinear, com-
mutative, has u for an identity, and satisfies 6(x, , (a - b) - ¢) = 8(a, b, ¢) for
all a4, b, c € V. Conversely, suppose a new multiplication is given with these
properties. Then

Ou,a-b,¢) = 0(u,u, (- (a- b)) -c)=0uu(a- b c)==0ab,c)
for all @, b, c € V, and since this is the relation used to define the first multi-
plication, the two multiplications are equal.

Note 1.5. Let the notation be as in Proposition 1.4. For g, eV let
o(a, b) be 8(u, a, b). Then ¢ is a nondegenerate inner product on V' which
satisfies p(a * b, ¢) = @(a, b - ¢) and p(a - b, c) = 0(a, b,c) for all @, b, cin V.

Proof.

<p(a'b,c)zﬂ(u,a-b,c):0(u,u,(u-(a~b)>-c)
= 0w, u,(a b)) ¢) =0(ab,c)y=00c a) =0uu - c):a
= 0w, u,(u-(b-c)) a) =0ub-c,a)=0uab c)=q¢ab: c)

That ¢ is a nondegenerate is immediate from the properties of u.

ProrosiTiON 1.6. Let (V, 0) be a nonsingular cubic space. Let u € V be such
that for each nonzero ve V there is a w € V with 8(u, v, w) # 0. Make V into
an algebra by giving it the unique multiplication which has u for an identity and
satisfies 0(a, b, ¢) = O(u, u, (a - b) - ¢) for all a, b, ce V. Then V is a regular
semi-simple algebra.

Proof. et acV with a-a=0. Then for all ceV, 0a, a c) =
O(u, u, (- a) - c) =0 so a =0 since (V, 6) is nonsingular. This proves no
proper squate roots of zero exist. Now let I be a mininal nonzero ideal of V.
Using the inner product ¢ of note 1.5, let I be the set of all ¢ € I such that
(b, ¢) =0 for all bel. Then I NI+ = {0} for if @ were an element in this
intersection, for all v € V' we would have ¢(a - @, v) = ¢(a, a - v) =0 (and
thus @ * @ = 0) since @ - v€l. Thus V is the direct sum of I and I*. One
checks directly that I is an ideal, and thus ¥ is the direct sum of I and I+
as algebras. One can check that I is simple, and by reapplying this procedure
to I one can get that V' is the direct sum of simple algebras. We now show
any one of these simple algebras, say I, is not anti-commutative. Just suppose
I were anti-commutative. Thenforael,be V,a - beIsoa - bcan be written
as a linear combination of associators of elements in I. But for x, y, z e l.

O, u, % (y - 2)) = 0(u, 2,y - 2) = 0(u, y - 2, x) = 0y, 2, %)
= 0(x, y, 8) = O(u, u, (x - y) - 2)
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so (s, u, [x, y, ]) = 0. Since a - bis alinear combination of such associators,
0 = 6(u, u, @ - b) = B(u; a, b). This is true for all be V. Thus a = 0. But
@ was any element in 1. This contradiction proves the proposition.

2. ALGEBRAS

Let 4 be an algebra over F. We call ue A aunit if foreachbe 4, u-x =b
has a solution x in 4. Since A4 is finite dimensional one can check that this is
equivalent to u being a nonzero-divisor (i.e., % - ¢ 7 0 for all nonzero ¢ in 4).
Let « be a unit. One can check that for each b e A4 there exists exactly one
xe A withu-x=>5b Nowlet @, be 4. Then a - be 4 so there is a unique
ce A with u-c=a-bh We denote ¢ by @ 5. This defines a new multi-
plication * on A. One checks that 4 with % is an algebra; we denote this
algebra by Ay, and call it a variant of A. This new multiplication is charac-
terized in terms of the old one by u - (axb) =4 b for all g, 5 A. One
checks that # is the identity of 4y, . Hence for each unit there is a unique
variant of 4 with that unit as an identity. We take the point of view that if
we really know an algebra then we can compute all its variants; if 'we want to
make a list of all algebras then it would be least cambersome to List only one
algebra from each variant class, rather than to include with each algebra all
its variants. If 4 and B are algebras, we call B variant-isomorphic to A and
write B ~ A4 if B is isomorphic to a variant of A. One can check that a variant
of a variant 1s a variant, each algebra is a variant of each of its variants, and
the variant with the identity as identity is the algebra itself. Hence variant
isomorphism is an equivalence relation. For associative algebras being variant-
isomorphic and being isomorphic are equivalent.

One quickly checks that a unit of an algebra is a unit of every variant, an
ideal of an algebra is an ideal of every variant, the radical of an algebra is the
radical of every variant, a proper square root of zero of an algebra is a proper
square root of zero in every variant, a variant of a direct sum of algebras is
a direct sum of corresponding variants, a tensor product of variant is a variant
of the tensor product of the corresponding algebras, a variant of a factor
algebra is a factor algebra of a variant, a variant of a simple algebra is simple,
a variant of an associative (respectively antiassociative) algebra is associative
(respectively antiassociative), etc. In particular, each variant of a regular
semi-simple algebra is regular semi-simple. In the list we will give of the
regular semi-simiple algebras, we will give only one from each variant-
isomorphism class (there are still way too many to make the listing anything
more than a shifting of the problem to more familiar ground).

ProvostrioN 2.1, Let (V, 8) and (V', 8') be cubic spaces which have non-
trivial Hessians (e.g., are nonsingular). Choose a ueV such that for each nonzero

481/3213-6
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vin V thereis awe V with O(u, v, w) % 0. Choose a u' € V' such that for each
nonzero v’ in V' there is a w' € V' with 0'(u', ', w") # 0. Let A be the algebra
Vi and B be the algebra V., (see Proposition 1.4). Then A is variant-
isomorphic to B if and only if (V, 0) is isomorphic to (V', &) (i.e., if and only if
a cubic form associated to (V, 0) is equivalent to a cubic form (or equivalently all
cubic forms) which is (or are) associated to (V', 0")). In particular, the variant-
isomorphism class of A is independent of the choice of u.

Proof. First suppose (V', #') is isomorphic to (V, 8) by a bijective linear
map ¢ from V'to V. Leta,be V. Thenforanyx e V'

O(u, a - b, x)
= 0w, u, (u - (a- b)) x) = Ou,u,(a-b) x)=0@a,b x)
= 0'(t(a), 1(b), t(x)) = O'(w', ', (t(a) - £(B)) - 1))
=00, u, (- (Ha) - 1)) - tx)) = O'(', () - 1(b), £{x))
= 0'(t(t7(w)), 1t (t(a) - b)), t(w)) = O(t~*('), t(¥(a) - £(D)), %)
= O(u, u, (t7Y(u') - t71(t(a) - 1(D))) - x) = O(u, t7(w') - t7(t(a) - (b)), x).

Hence a - b = t-1(u') - t=Y(#(a) - 1(b)). If t(u') is a unit, then writing * for the
multiplication of the variant of 4 with #7%(«') as identity, the above gives
a*b =t"1i(a) - (b)) or t(a *b) = t(a) - ¢(b) and we are done. We prove
t71(u’) is a unit by supposing t~*(u’) - ¢ =0 with ce 4. For each y' e V"

0 =0, u, ¢7') - ¢) - t7H(¥") = 007 (W), ¢, t7H(5")) = O'(', 1e), ¥).

Hence t{¢) = 0,s0¢c = 0.

Now conversely suppose 4 is isomorphic to a variant of B. We will need
some lemmas. An algebra D is indecomposable if it is not a direct sum of two
nonzero algebras. The center Z(D) of an algebra D is the set of all ze D
such that 2 - (x - y) == (2 - ») - y for all x, y € D; this center is an associative
subalgebra of D.

Levma 2.2. Let x be a unit of an associative algebra D. Then there is a unit
yin D with x = y3.

Proof. D is a direct sum of indecomposable algebras D, ,..., D,,. If
X =x + - + %, with x;€ D; and x; = y3 for y;€ D, , i = 1,..., m, then
x = (¥ + -+ Ym)® Hence without loss of generality we may assume D is
indecomposable. But D is associative, so idempotents can be lifted, so D/I is
indecomposable where I is the radical of D. Since D/I is semi-simple, it must
be a field, and since F is algebraically closed D =F - 1 + I. I is nilpotent so
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there is a smallest positive integer s with I® = 0. If s = 1, D = F1] and the
lemma is true since F is algebraically closed. Now let J == It and suppose
the lemma is true with D replaced by D/ . Then there is a unit v 4+ [ in
DiJwithe + J=(y+ J)®in D/]. Using J - J =0, it is easily checked that
v is a unit in D. There is a be J with » = 3% + 6. (y~2 - 5)% = O since
J-J =0 Hence (y + 379205 = 3% + 5 = x. The lemma follows by
induction on s.

Now let e be the unit of B such that 4 is isomorphic to the variant of B
which has ¢ as identity. Let % be the multiplication of this variant so that
e (bxb)=>5" b forallb, & € B. Let t be a bijective linear map from 4 to B
with #(a - ') = t(a) x t{a’) for all a, a’ € 4. t must preserve the identities so
#(1) = e. Multiplying by e we get #(1) - #(a - t{a - @) = t{a) - #{(a’). Let I' be
the linear map from 4 to F where I'(a) = 8'(¢(1), t(1), #(a)) for all ac A.
For y € 4 let f, be the linear map where f{a) = 0(1, y, a) for ae€ 4. Then
¥ > f, is an injective linear map from A4 to Homg(4, ). This map must be
surjective since Homg(4, F) has the same dimension as 4. Thus there is a
unique d€ 4 with f; =TI, ie., with 0(1, d, a) = '(¢(1), {(1), i{a}) for all
a€ A. Let x, y be any elements in 4. We use the notation of Note 1.5 and
write @ and ¢ for the inner products corresponding to 8 and ', respectively.
For any 2z in A.

(1, (2" %) 3, 2)
=¢((d %) 3,2) =od %y 2)=edx (7))
=01, d, x - (y - 7)) = 0'(t(1), 1(1), 2x - (¥ - 2))
= 0((1), t(x - (v - 2)), (1))
=01, 1, (1) (e~ (3 2)) - 1(1)) = (L, 1, (#x) - oy - 2)) - 1))
= 0(¥(x), 1y - ), 1)) = (1), (- 2), ¥x))
= G(L, L, (¢(1) - ¢y - 2)) - tx)) = O(L, 1, /(y) - £{z)) - 1))
= (H(y), 1(z), 1(x)) = O(t(x), 1), £(3))-

Similarly,

(1, d - (x ), %)
=g(d (x-9),2) = ¢d, (2 y) 2) =01, 4d,(x ) 3)
= 0'((1), (1), d{(w - ) - 2)) = O((L), #((% - 3) - 2), (1))
=01 1, (1) - #x - p) - 2)) - #(1)) = O(1, 1, #(x - ) - () - H(1))
= (&), ox - 3), (=) = O'(1, 1, (i(1) - 2= - »)) - 1(=))
= 0(1, 1, (dx) - %)) - #(2)) = O'(¢(»), {(), ©=))-

Thus 6(1,(d - x) -y — d - (x - ), &) = 0, and since this is true for all z € 4,
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(d-x)-y~—d-(x-y) =0. Hence d is in the associative algebra Z(A4). d is a
nonzero-divisor in Z(4), for if be Z(A) and d - b = 0, then for any we B

= o(d b, 17} w)) = @(d, b - t7Y(w)) = O'((1), K1), £(b - 17} (w)))

= (1), #(b - t-Y(w)), (1)) = €'(1, 1, (#(1) - #(b - t7w))) - £(1))

= (1, 1, (1(8) - w) - (1)) = O'(L, 1(8) - w, £(1)) = ¢'(2(b) - w, (1))
= ¢'(w - 2(b), (1)) = ¢'(w, 1(b) - (1)),

so #(b) - #(1) = 0, and since #(1) = e is a unit, #(b) =0 and thus b =0.
Since d is a nonzero-divisor, it is a unit so by Lemma 2.2 there is a unit ¢
in Z(A) with ¢® = d. Define a map f from B to 4 by f(x') = ¢ - t-}(x") for
all " € B. f is linear, and since £~ is injective and ¢ is a unit, f is injective and
thus bijective. For any x, y, 2 in A4, we proved above §'((x), i(y), #(2)) =
0(1,d - (x - y), 2). But

01, d-(x-3),2) =01, 1,(c* (x-3) - 2) =01, 1,((c %) (¢ ) (¢~ 2)
=0c-xc -y c"2),

since ¢ is in Z(A4). Thus for any &', ¥, 2’ € B, we let x = &), y = +"Yy'),

% = t7Y(2') and have
O,y &) = bc-xcy.c2) = 0(f(*), f(5), f(=))-

This completes the proof of Proposition 2.1.

We call an algebra A admissible if there exists a nonsingular inner product
@ on A which is multiplicative in the sense that ¢(a - b, ¢) = ¢(a, b - ¢) for
all ¢, b, cin A. One checks that a variant of an admissible algebra is admissible.

CoroLLARY 2.3. Let A be an algebra. Then there exists a cubic space (V, 0)
with nontrivial Hessian and a w € V which satisfies the hypothesis of Proposition
1.4, such that V) is isomorphic to A if, and only if, A is admissible. Hence
there is a natural one-one correspondence between equivalence classes of cubic
Jorms with nontrivial Hessian and variant-isomovphism classes of admissible
algebras.

What little of this corollary is not covered by Note 1.5 and Proposition 2.1
is easily checked.

An associative algebra which is a direct sum of algebras, each of which
has exactly one maximal ideal and one minimal ideal is called a Frobenius
algebra. One can check that these are exactly the associative admissible
algebras. By the above result, isomorphism classes of Frobenius algebras
correspond bijectively with a class of equivalence classes of cubic forms
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{which will have as singularities all elements whose squares are zero in the
corresponding algebras). I think most ring theorists would say that any
attempt to classify (commutative) Frobenius algebras over F is unlikely
because they exist in such abundance; this shows the complexity of highly
singular cubic forms which exist.

Prorosition 2.4. Let A be a regular semi-simple algebra. Then there exists
a nonsingular cubic space (V, 0) (unique up to isomorphism) and a we ¥V such
that for each nonzero ve V there is a we V with 0(u, v, w) 5= 0, with Vi,
isomorphic to A. Hence there is a natural one-ome correspondence between
egusvalence classes of nonsingular cubic forms and variant isomorphism classes of
regular semi~simple algebras,

Proof. Let A be a direct sum of the regular simple algebras 4, ,..., 4, .
Fori = 1,..,m, 4, # [4;, 4;, A;] so there is a nonzero linear map f; from
A; to F which has [4;, 4;, 4;] in its kernel. We define ofqg,, b,) to be
fila; - b)) for all a;, b;€ 4;, and quickly check that ¢, is a multiplicative
nonzero inner product on A4;. Letting I; = {4, € 4; | p;(a;, b;) = 0 for all
b; € A}, we check that I; is a proper ideal of A; and thus is zero. Hence ¢,
is a nonsingular inner product on 4; . Now for a; , b, € 4; we define

plar 4+ am, by 4+ o) = pilar, b)) o - enlam s On)

and check that ¢ is a nonsingular inner product on 4. For a, b, ¢ € A we define
8(a, b, c) to be ¢(a - b, ¢), and check that (4, 0) is a cubic space. 1 € 4 and
for each nonzero be A there is a ¢ in A with 6(1, b, ¢) = ¢(b, ¢) 5= 0. For
% 9 z€4, 0x,y,2) =g -y z) =l (v 3),2)=¢(l,(x y) 2 =
81, 1, (x - 3) - 8) so Ay = 4. If @ is a2 nonzero-element in 4, then 4% 5= 0 so
there is 2 b with 0 £ @(a?, b) = #(q, a, b). Thus (4, ) is nonsingular.

Note 2.5. The algebra can be computed explicitly from the form
(X, ,..., X)) as follows. First it is necessary to find a point

a = {0y, Ay yuuny ) EFT

such that (13} «; &f/6X;) = g(X; ..., X,,) is nonsingular (this can be
done by computing the determinant of the coeflicient matrix of g}. Then for
e; = (1, 0,0rsy 0)senssy €, = (0, 0,..., 1), multiplication is given by linearity and
thatforé,j = 1,...,m,€; - ¢; = PBrey + == + Buen , where (1/31{2f/0.X,0X;) =
(1/2)Z By, 0g/0X,). For instance if f = X2X; — X (X; — X} X; — AXY),
A 5% 0, 1, then we can let @ = ¢; and get

e e = —(L+ 1A ey + (=1 + 1P 3/ &5,
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e e =0,e"e3=¢,6 ¢ =0, 6= (—1x)e — (1)1 + 1/A) ¢,
€y "3 == €5,€5° 0 =m0 ,63 € =0y,€;" €3 = €.
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