Total Blow-Up versus Single Point Blow-Up

J. Bebernes ${ }^{1}$
Department of Mathematics, University of Colorado, Boulder, Colorado 80309
A. Bressan ${ }^{1}$
Istituto di Matematica Applicata, Universitá di Padova 35100 Padova, Italy
AND
A. Lacey
Department of Mathematics, Heriot-Watt University, Riccarton, Edinburgh EH14 4AS, Scotland

Received October 24, 1986

1. Introduction

Traditional thermal explosion theory is used to describe reaction initiation in condensed explosives and is limited formally to nondeformable materials. Kassoy and Poland [4] significantly extended this theory to develop an ignition model for a reactive gas in a bounded container in order to describe the induction period. During this induction period there is a spatially homogeneous pressure rise in the system which causes a compressive heating effect in the constant volume container. Mathematically this compressibility of the gas is expressed by means of an integral term in the induction model for the temperature perturbation $\theta(x, t)$. This model is given by

$$
\begin{array}{r}
\theta_{t}-\Delta \theta=\delta e^{\theta}+\frac{\gamma-1}{\gamma} \cdot \frac{1}{\operatorname{vol} \Omega} \int_{\Omega} \theta_{t}(x, t) d x \\
\theta(x, 0)=\phi(x) \geqslant 0, \quad x \in \Omega \tag{D}\\
\theta(x, t)=0, x \in \partial \Omega, \quad t \geqslant 0,
\end{array}
$$

and (D) motivates this paper.

[^0]In an earlier paper, Bebernes and Bressan [2] analyzed this ignition model (D) for a compressible reactive gas and proved the following using semigroup techniques. For any positive value of the Frank-Kamenetski parameter δ and any value of the gas constant $\gamma \geqslant 1$, (D) has a unique classical solution $\theta(x, t)$ on $\Omega \times[0, T)$ where Ω is an arbitrary bounded container and $T=+\infty$ or $T<+\infty$. In the latter case, $\theta(x, t)$ blows up as t approaches T. If $\delta>\delta_{\mathrm{FK}}$, the Frank-Kamenetski critical value, then $T<\infty$ and blow-up or thermal runaway occurs in finite time.
The purpose of this paper is to describe where blow-up occurs in the container Ω for a more general problem

\[

\]

2. Statement of Problem

Consider

$$
\begin{align*}
& u_{t}-\Delta u=f(u)+g(t) \tag{2.1}\\
& u(x, 0)=\phi(x), x \in \Omega, \tag{2.2}\\
& u(x, t)=0, x \in \partial \Omega, t>0,
\end{align*}
$$

where we assume throughout the paper that

$$
\begin{align*}
& \Omega=B_{R}=\left\{x \in \mathbb{R}^{n}:|x|<R\right\}, \\
& \phi \in C^{2}(\bar{\Omega}), \phi=0 \text { on } \partial \Omega, \phi \geqslant 0, \Delta \phi+f(\phi) \geqslant 0, \\
& \phi \text { is radially symmetric and radially decreasing on } \Omega, \\
& f \in C^{\prime}, f(u) \geqslant 0 \text { for } u \geqslant 0, \tag{2.3}\\
& g \in C, g(t) \geqslant 0 \text { on its domain of existence, or } \\
& g(t)=\frac{K}{\operatorname{vol} \Omega} \int_{\Omega} u_{t}(x, t) d x \text { with } 0<K<1 .
\end{align*}
$$

Then the following facts are known [2]:
(i) a unique solution $u(x, t)$ of (2.1)-(2.2) exists on $\Omega \times[0, \sigma), \sigma>0$ sufficiently small;
(ii) $u(x, t) \geqslant 0$;
(ii') if $g^{\prime}(t) \geqslant 0$ or if $g(t)=(K / \operatorname{vol} \Omega) \int_{\Omega} u_{t}(x, t) d x$ with $0<K<1$, then $u_{t} \geqslant 0$ and $u_{0}(t)=\max _{\Omega} u(x, t)$ is increasing;
(iii) if $u(x, t)$ exists on $0 \leqslant t<\sigma<\infty$ and $u_{0}\left(\sigma^{-}\right)<\infty$, then the solution u can be uniquely extended to $0<t<\sigma+\varepsilon, \varepsilon>0$.

Let $T \equiv \sup \{\sigma: u(x, t)$ exists on $0 \leqslant t<\sigma\}$.
(iv) $u(x, t)$ is radially symmetric and $u(\cdot, t)$ is radially decreasing for $t \in[0, T)$.
(v) If $T<\infty$, then $u_{0}\left(T^{-}\right)=\max _{\bar{\Omega}} u\left(x, T^{-}\right)=+\infty$.

We always will assume that $R>0$ and $\phi(x) \geqslant 0$ are such that $T<\infty$; then $u(x, t)$ blows up in finite time. When $g(t)=(K / \operatorname{vol} \Omega) \int_{\Omega} u_{t}(x, t) d x$, we always must assume $0 \leqslant K<1$ to assure local existence for (2.1)-(2.2).

Definition. A point $x \in \Omega$ is a blow-up point if there exists $\left\{\left(x_{n}, t_{n}\right)\right\}$ such that $t_{n} \rightarrow T^{-}, x_{n} \rightarrow x$, and $u\left(x_{n}, t_{n}\right) \rightarrow+\infty$ as $n \rightarrow \infty$.

The purpose of this paper is to determine the set of blow-up points for (2.1)-(2.2) primarily when $\Omega=B_{R}$.

In the next section we review and extend one of the known results for (2.1)-(2.2) when $g(t) \equiv 0$.

In Section 4, we prove our key results which can be summarized as follows. Assume $\Omega=B_{R}$ and blow-up occurs at T.
(I) If $\int_{0}^{T} g(t) d t=+\infty$, then blow-up occurs everywhere (Theorem 4.1).
(II) If $\int_{0}^{T} g(t)<+\infty$ and $f(u)=e^{u}$ or $f(u)=(u+\lambda)^{p}, \lambda \geqslant 0, p>1$, then blow-up occurs only at $x=0$ (consequence of Theorems 4.5 and 4.6).
(III) If $g(t)=(K / \operatorname{vol} \Omega) \int_{\Omega} u_{t}(x, t) d x, K<1$ and $f(u)=(u+\lambda)^{p}$, $\lambda \geqslant 0,1<p<1+2 / n$, then blow-up occurs everywhere (Theorem 4.4).
(IV) If $g(t)=(K / \operatorname{vol} \Omega) \int_{\Omega} u_{i}(x, t) d x, K<1$, and $f(u)=e^{u}$, then blow-up occurs at a single point (Theorem 4.5).
(V) If $g(t)=(K / \operatorname{vol} \Omega) \int_{\Omega} u_{t}(x, t) d x$ and $f(u)=(u+\lambda)^{p}, \quad \lambda \geqslant 0$, $p>1+2 / n$, then blow-up occurs only at $x=0$ provided $K<1$ is sufficiently small (Theorem 4.7).

3. $g(t) \equiv 0-$ Review of Known Results

Baras and Cohen [1], Friedman and McLeod [3], Weissler [6], and Weissler and Mueller [7] have considered (2.1)-(2.2) when $g(t) \equiv 0$ and for particular $f(u)$.

When $f(u)=e^{u}$ and $g(t) \equiv 0$, Fricdman and McLeod [3] proved

Theorem 3.1. (a) $x=0$ is the only blow-up point in B_{R}.
(b) Given $\alpha \in(0,1)$, there exists $K_{\alpha}>0$ such that

$$
\begin{equation*}
u(x, t) \leqslant-\frac{2}{\alpha} \ln x+K_{\alpha} \tag{3.1}
\end{equation*}
$$

on $\bar{B}_{R} \times[0, T]$.
They proved this result by using a maximum principle argument applied to $J(r, t)=w+\varepsilon r^{n} F(u)$ where $r=|x|, w=r^{n-1} u_{r}$, and F is a positive function with $F_{u}, F_{u u} \geqslant 0$. If, for $\varepsilon>0$ sufficiently small,

$$
\begin{equation*}
f^{\prime} F-F^{\prime} f \geqslant 2 \varepsilon n F F^{\prime} \tag{3.2}
\end{equation*}
$$

then J satisfies

$$
\begin{equation*}
J_{t}+\frac{n-1}{r} J_{r}-J_{r r}-b J \leqslant 0, \quad 0<r<R, 0<t<T \tag{3.3}
\end{equation*}
$$

where b is a bounded function for $0<r<R$, and moreover J cannot take a positive maximum on $r=R$. Also, for ε small anough $J \leqslant 0$ at $t=0$. By the maximum principle $J \leqslant 0$ on $\Omega \times[0, T)$. If $F(u)=e^{\alpha u}$ with $\alpha \in(0,1)$, then (3.2) holds and

$$
\begin{equation*}
r^{n-1} u_{r} \leqslant-\varepsilon r^{n} F(u) \tag{3.4}
\end{equation*}
$$

follows. Setting $H(u)=(1 / \alpha) e^{-\alpha u}$, then $H_{r}=-e^{-\alpha u} u_{r} \geqslant \varepsilon r$. Integrating, they obtain

$$
\begin{equation*}
u(r, t) \leqslant \frac{2}{\alpha} \ln r^{-1}+K_{\alpha} \tag{3.1}
\end{equation*}
$$

and hence blow-up occurs at $x=0$ only.
This same argument can be used to improve the upper bound estimate on u.

Theorem 3.2. If $f(u)=e^{u}$, then

$$
\begin{equation*}
u(r, t) \leqslant 2 \ln r^{-1}+\ln \left(\ln r^{-1}\right)+C . \tag{3.5}
\end{equation*}
$$

Proof. The function $F(u)=e^{u} \cdot(1+u)^{-1}$ satisfies (3.2) for $0<\varepsilon \leqslant 1 / 2 n$. Then, since $\int_{u}^{\infty} d s / F(s)=(u+2) e^{-u}$, we have from

$$
u_{r} \leqslant-\varepsilon r \frac{e^{u}}{u+1}
$$

that

$$
(u+2) e^{-u} \geqslant \frac{\varepsilon r^{2}}{2}
$$

Hence, $-u+\ln (u+2) \geqslant \ln \left(\varepsilon r^{2}\right) / 2$ implying

$$
u-\ln (u+2) \leqslant 2 \ln \frac{1}{x}+C^{\prime}
$$

and

$$
u-\ln u \leqslant 2 \ln \frac{1}{r}+C^{\prime \prime}
$$

Thus, $u \leqslant 2 \ln 1 / r+C^{\prime \prime}+\ln \left(2 / \alpha \ln \frac{1}{r}+K_{\alpha}\right)$ by (3.1) and we conclude

$$
u(r, t) \leqslant 2 \ln \frac{1}{r}+\ln \ln \frac{1}{r}+C
$$

Using the same type of argument as for Theorem 3.1, Friedman and McLeod also proved for $f(u)=u^{p}, p>1$:

Theorem 3.3. Let $f(u)=u^{p}, p>1$. Consider IBVP (2.1)-(2.2).
(a) $x=0$ is the only blow-up point in B_{R}.
(b) Given $\alpha \in(1, p)$, there is a $C>0$ such that

$$
u(x, t) \leqslant \frac{C}{x^{2 /(\alpha-1)}}
$$

Baras and Cohen [1] have recently proven that the solution $u(x, t)$ of (2.1)-(2.2), with $g(t) \equiv 0$ and under some special assumptions on f, blows up completely after T and hence, in a sense to be made precise later, everywhere in Ω after T.

Consider the following sequence of approximating IBVP's to (2.1)-(2.2):

$$
\begin{gather*}
w_{t}-\Delta w=f_{n}(w) \tag{3.6}\\
w(x, t)=0, \tag{3.7}\\
w(x, 0)=\phi(x), \quad x \in \partial \Omega, t>0 \\
w \in \Omega
\end{gather*}
$$

where f_{n} is uniformly Lipschitz continuous, nondecreasing, $f_{n}(0)=0$, and $f_{n} \uparrow f$. For each n, (3.6)-(3.7) has a solution $u_{n}(x, t)$ on $\Omega \times[0, \infty)$.

Theorem 3.4. Let $f(0)=0$. If one of the following three hypotheses holds,
$\mathrm{H}_{1}, \quad \Omega$ is convex and if $n \geqslant 2$, there exists $p \in(1, n /(n-2))$ such that $0 \leqslant f^{\prime}(u) \leqslant c\left(|u|^{p-1}+1\right), u \geqslant 0$;
$\mathrm{H}_{2} . f$ is convex and there exists $q>1, a \geqslant 0$ such that $f(u) / u^{q}$ is nondecreasing on ($a,+\infty$);
$\mathrm{H}_{3} . f$ is convex and there exists $p \in(1,(n+2) /(n-2))$ such that $0 \leqslant \lim _{u \rightarrow \infty} f(u) / u^{p}<\infty$, then
(a) $\lim _{n \rightarrow \infty} u_{n}(x, t)=u(x, t),(x, t) \in \Omega \times[0, T) ;$
(b) $\lim _{n \rightarrow \infty} u_{n}(x, t)=+\infty,(x, t) \in \Omega \times(T, \infty)$;
(c) $\lim _{n \rightarrow \infty} u_{n}(x, T)=\lim _{t \rightarrow T^{-}} u(x, t), x \in \Omega$.

For IBVP (2.1)-(2.2) with $g(t) \geqslant 0$, we will prove that $u(x, t)$ blows up at a single point $x=0$ or everywhere as $t \rightarrow T$.

4. $g(t) \geqslant 0$-New Results

For IBVP (2.1)-(2.2) assuming the hypotheses (2.3) we now show that $u(x, t)$ blows up everywhere at T or at a single point.

Theorem 4.1. If $\int_{0}^{T} g(t) d t=+\infty$, then

$$
\lim _{t \rightarrow T^{-}} u(x, t)=+\infty \quad \text { for all } \quad x \in B_{R}
$$

and $u(x, t)$ blows up everywhere.
Proof. Fix any $\bar{x} \in B_{R}$ and let $\rho=R-|\bar{x}|$. On the ball $B(\bar{x}, \rho) \subseteq B_{R}$, the solution $u(x, t)$ of (2.1)-(2.2) is an upper solution for

$$
\begin{array}{ll}
v_{t}=A v+g(t) & \\
v(x, 0)=0, & |x-\bar{x}|<\rho \tag{4.1}\\
v(x, t)=0, & |x-\bar{x}|=\rho, \quad t \in[0, T) .
\end{array}
$$

Using the Green's function for (4.1), the solution $v(\bar{x}, t)$ of (4.1) can be expressed as

$$
\begin{aligned}
v(\bar{x}, t) & =\int_{0}^{t} \int_{B(\bar{x}, \rho)} G(\bar{x}, y, t-s) g(s) d y d s \\
& \geqslant \int_{0}^{t} g(s) \int_{B(\bar{x}, \rho)} G(\bar{x}, y, T-0) d y d s \\
& \geqslant K(\rho) \int_{0}^{t} g(s) d s
\end{aligned}
$$

where $K(\rho)=\int_{B(\bar{x}, \rho)} G(\bar{x}, y, T) d y$.

Clearly, as $t \rightarrow T^{-}, \quad v(\bar{x}, t) \rightarrow \infty \quad$ since $\int_{0}^{T} g(s) d s=+\infty$. Since $v(x, t) \leqslant u(x, t)$ on $|x-\bar{x}|<\rho, t \in[0, T), u(\bar{x}, t) \rightarrow+\infty$ as $t \rightarrow T^{-}$. But $\bar{x} \in B_{R}$ was arbitrary and thus blow-up occurs everywhere.

Remark. Note that Theorem 4.1 holds for arbitrary domains and not just for radially symmetric problems.

Theorem 4.2. Consider IBVP (2.1)-(2.2) with $g(t)=(K / v o l) \Omega \int_{\Omega} u_{t}(x, t)$ $d x, 0<K<1$. If the solution $u(x, t)$ of (2.1)-(2.2) blows up at some $\bar{x} \neq 0$, then it blows up everywhere in B_{R}.

Proof. First observe

$$
\int_{0}^{t} g(s) d s=\frac{K}{\operatorname{vol} \Omega} \int_{0}^{t} \int_{\Omega} u_{t}(x, s) d x d s=\frac{K}{\operatorname{vol} \Omega} \int_{\Omega}(u(x, t)-\phi(x)) d x
$$

If $\lim _{t \rightarrow T^{-}} u(\bar{x}, t)=+\infty$, by the radial monotonicity of u,

$$
\int_{\Omega} u(x, t) d x \geqslant \int_{|x| \leqslant|\bar{x}|} u(x, t) d x \geqslant \operatorname{vol} B_{|\bar{x}|} u(\bar{x}, t)
$$

$\rightarrow \infty$ as $t \rightarrow T^{-}$. Hence $\int_{0}^{T} g(s) d s=+\infty$ and by Theorem 4.1 blow-up occurs everywhere.

We now prove a theorem, similar to Theorem 3.1 of Friedman and McLeod [3, p. 432], which allows us to get lower bounds on $u(x, t)$ and the integral of $u(x, t)$ over Ω.

Theorem 4.3. Assume $\int_{0}^{\infty} f(u) d u=+\infty$. Let $u(x, t)$ be a solution of IBVP (2.1)-(2.2) which blows up only at $x=0$. Then there exists a $t^{*} \in[0, T)$ such that

$$
\begin{equation*}
|\nabla u(x, t)|^{2} \leqslant 2\left[-F(u(x, t))+F\left(u_{0}(t)\right)+L f\left(u_{0}(t)\right)\right] \tag{4.2}
\end{equation*}
$$

for all $\quad \bar{t} \in\left(t^{*}, T\right)$ where $F(w)=\int_{0}^{w} f(u) d u, \quad L=\int_{0}^{T} g(t) d t<\infty, \quad$ and $u_{0}(t)=u(0, t)=\max _{\Omega} u(x, t)$.

Proof. By the assumptions and Theorem 4.1, it follows that $L<\infty$. Since u blows up only at the origin, both u and ∇u are uniformly bounded on the parabolic boundary $\partial \mathscr{Q}$ of the cylinder $\widetilde{Q}=\{(x, t):|x| \leqslant R / 2$, $0 \leqslant t<T\}$. This follows from classical interior estimates. For let $v=u-G(t)$ where $G(t)=\int_{0}^{t} g(s) d s$, then $\nabla v=\nabla u$ and $v_{t}=\Delta v+f(v+G(t))$ where $G(t)$ is bounded on $[0, T]$. Hence,

$$
\max _{(x, t) \in \partial Q}\left\{\frac{|\nabla u(x, t)|^{2}}{2}+F(u(x, t))\right\}=M<\infty
$$

Choose $t^{*}<T$ so that $F\left(u_{0}(t)\right)>M$ for all $t \in\left[t^{*}, T\right)$ (such a t^{*} exists because $u_{0}(t)$ is increasing to $+\infty$ (recall (ii') and $F(w) \rightarrow+\infty$ as $w \rightarrow \infty$).

For any $\bar{t} \in\left[t^{*}, T\right)$, define

$$
\begin{equation*}
J(x, t)=\frac{|\nabla u(x, t)|^{2}}{2}+F(u(x, t))-F\left(u_{0}(t)\right)-f\left(u_{0}(t)\right) \int_{0}^{t} g(s) d s . \tag{4.3}
\end{equation*}
$$

We will show by a maximum principle argument that $J(x, t) \leqslant 0$ on $\{(x, t):|x|<R / 2,0 \leqslant t \leqslant \bar{t}\}$. From this, (4.2) follows immediately.

Notice that, on $\partial \widetilde{Q}$, we have

$$
J(x, t) \leqslant M-F\left(u_{0}(t)\right)-f\left(u_{0}(t)\right) \int_{0}^{t} g(s) d s<0 .
$$

Moreover, for $x=0 \in \mathbb{R}^{n}, t \in[0, i)$,

$$
J(0, t) \leqslant F(u(x, t))-F\left(u_{0}(t)\right) \leqslant 0 .
$$

A direct computation yields

$$
\begin{aligned}
J_{t}(x, t)= & \nabla u \cdot \nabla(\Delta u)+f^{\prime}(u)|\nabla u|^{2}+f(u) \Delta u \\
& +f^{2}(u)+f(u) g(t)-f\left(u_{0}(\bar{t})\right) g(t) \\
\nabla J(x, t)= & \Delta u(\nabla u)+f(u) \nabla u=(\Delta u+f(u)) \nabla u
\end{aligned}
$$

and

$$
\Delta J(x, t)=(\Delta u)^{2}+\nabla u \cdot \nabla(\Delta u)+f^{\prime}(u)|\nabla u|^{2}+f(u) \Delta u .
$$

Using the fact that

$$
\begin{aligned}
|\nabla J-(\Delta u) \nabla u|^{2} & =|\nabla u|^{2}(\Delta u)^{2}+\nabla J[\nabla J-2(\Delta u) \nabla u] \\
& =f^{2}(u)|\nabla u|^{2},
\end{aligned}
$$

we obtain

$$
\begin{aligned}
& J_{t}(x, t)-\Delta J-\frac{[\nabla J-2(\Delta u) \nabla u] \cdot \nabla J}{|\nabla u|^{2}} \\
& =\left[f(u(x, t))-f\left(u_{0}(\bar{t})\right)\right] g(t) \leqslant 0 .
\end{aligned}
$$

Noting that $\nabla u=0$ only at $x=0 \in \mathbb{R}^{n}$, the Maximum Principle implies $J(x, t) \leqslant 0$ for $|x|<R / 2,0 \leqslant t \leqslant \bar{i}$. In particular, $J(x, t) \leqslant 0$ and (4.2) follows.

Corollary. In addition to the hypotheses of Theorem 4.3, if $f^{\prime}(u) \geqslant 0$ for $u>0$, then

$$
\begin{equation*}
|\nabla u(x, t)|^{2} \leqslant 2 f\left(u_{0}(t)\right)\left(u_{0}(t)-u(x, t)+L\right) \tag{4.4}
\end{equation*}
$$

for t sufficiently close to T.
Proof. Take $t=\bar{t}$ in Theorem 4.3 and use $F\left(u_{0}(t)\right)-F(u)=\int_{u}^{u_{0}} f(s) d s \leqslant$ $\left(u_{0}-u\right) f\left(u_{0}\right)$.

We now are in a position to prove one of the key results of this paper.
Theorem 4.4. Assume $f^{\prime}(u) \geqslant 0$ for $u>0, f(u)=o\left(u^{1+2 / n}\right)$ as $u \rightarrow \infty$, and let $g(t)=(K / \operatorname{vol} \Omega) \int u_{t}(x, t) d x$ with $0<K<1$. Then the solution $u(x, t)$ of IBVP (2.1)-(2.2) satisfies

$$
\lim _{t \rightarrow T^{-}} u(x, t)=+\infty \quad \text { for all } \quad x \in B_{R}
$$

and blow-up occurs everywhere.
Proof. If the conclusion were false, then single point blow-up must occur by Theorems 4.1 and 4.2.

Using the facts that u is radially symmetric and (4.4), we can derive a lower bound on $u(x, t)$:

$$
\begin{aligned}
\int_{0}^{r} \frac{\left|u_{r}(r, t)\right|}{\left(u_{0}(t)-u(r, t)+L\right)^{1 / 2}} d r & \leqslant \int_{0}^{r} 2^{1 / 2} f\left(u_{0}(t)\right)^{1 / 2} d r \\
\left(u_{0}(t)-u(r, t)+L\right)^{1 / 2} & \leqslant 2^{-1 / 2} f\left(u_{0}(t)\right)^{1 / 2} r+L^{1 / 2} \\
u_{0}(t)+L-u(r, t) & \leqslant f\left(u_{0}(t)\right) r^{2}+2 L .
\end{aligned}
$$

Thus,

$$
\begin{equation*}
u(r, t) \geqslant u_{0}-L-f\left(u_{0}\right) r^{2} \tag{4.5}
\end{equation*}
$$

We now use (4.5) to get a lower bound on the integral of $u(x, t)$ over Ω. Let w_{n} denote the area of the surface of the n-dimensional ball. From (4.5), $u=u_{0} / 2$ on $r>r_{1} \equiv\left[\left(u_{0} / 2-L\right) / f\left(u_{0}\right)\right]^{1 / 2}$.

Thus, $u \geqslant u_{0} / 2$ if $r \leqslant r_{1}$. Integrating over Ω, we get

$$
\begin{aligned}
\int_{s} u(x, t) d x & =w_{n} \int_{0}^{R} u(r, t) r^{n-1} d r \\
& \geqslant w_{n} \int_{0}^{r_{1}} \frac{u_{0}}{2} r^{n-1} d r \\
& =\frac{w_{n} u_{0}}{2 n}\left[\left(\frac{u_{0}}{2}-L\right) / f\left(u_{0}\right)\right]^{n / 2} .
\end{aligned}
$$

Since $f(s)=o\left(s^{1+2 / n}\right)$ as $s \rightarrow \infty$, this last term tends to ∞ as $u_{0} \rightarrow \infty$, that is, as $t \rightarrow T^{-}$. This implies that

$$
\lim _{t \rightarrow T^{-}} \int_{0}^{t} g(s) d s=\lim _{t \rightarrow T^{-}}\left[\frac{K}{\operatorname{vol} \Omega} \int_{\Omega}[u(x, t)-\phi(x)] d x\right]=+\infty
$$

and is a contradiction with Theorem 4.1. We conclude that $u(x, t)$ blows up everywhere at $t=T$.

Remark. The conditions on f in Theorem 4.4 are satisfied for all f of the form $(u+\lambda)^{p}$ with $\lambda \geqslant 0$ and $1<p<1+2 / n$.

An obvious question is: what happens if $p>1+2 / n$? We first consider $f(u)=e^{u}$.

Theorem 4.5. If $f(u)=e^{u}, g(t)=(K / \operatorname{vol} \Omega) \int_{\Omega} u_{t}(x, t) d x$ with $0<K<1$, then the solution $u(x, t)$ of IBVP (2.1)-(2.2) blows up only at $x=0$.

Proof. The proof is similar to that given by Friedman and McLeod [3, pp. 427-429]. Set $w=r^{n-1} u_{r}, c(r)=\varepsilon r^{n}$ where $\varepsilon>0$ is to be determined, $J(r, t)=w+c F(u, t)$ where $F(u, t)=e^{\alpha(u-G(t))}$ with $\alpha \in(0,1)$ and $G(t)=$ $\int_{0}^{t} g(s) d s$.

We claim $J \leqslant 0$ on $B_{R} \times[0, T)$. This will be accomplished by again using a maximum principle argument applied to J.

It is observed immediately that

$$
\begin{equation*}
w_{r}+\frac{n-1}{r} w_{r}-w_{r r}-f^{\prime}(u) w=0 \tag{4.6}
\end{equation*}
$$

Using (4.6), $u_{r}=w / r^{n-1}$, and $w=-c F+J$, a direct computation gives

$$
\begin{align*}
J_{t}+ & \frac{n-1}{r} J_{r}-J_{r r}-b J \\
& \leqslant-c\left(f^{\prime} F-F_{u} f \quad 2 c n F F_{u}\right)+c\left(F_{u} g+F_{t}\right) \tag{4.7}
\end{align*}
$$

where $b=f^{\prime}(u)-2 \varepsilon F_{u}$. If (i) $f^{\prime} F-F_{u} f \geqslant 2 \varepsilon n F F_{u}$ and (ii) $F_{u} g+F_{t} \leqslant 0$, then

$$
\begin{equation*}
J_{t}+\frac{n-1}{r} J_{r}-J_{r r}-b J \leqslant 0 \tag{4.8}
\end{equation*}
$$

on $[0, R] \times[0, T)$. (ii) is immediate and (i) holds if $\varepsilon \leqslant(1-\alpha) / 2 n \alpha$. To apply the maximum principle to J knowing (4.8), we need only check behavior of J on the parabolic boundary of $(0, R) \times(0, T)$. At $r=0$, $J(0, t)=0$. Next we observe that J cannot take a positive maximum on $r=R$ since $J_{r} \leqslant w_{r}+c^{\prime} F$ and thus $J_{r}(R, r) \leqslant-R^{n-1}[f(0)+g(t)]+$ $c^{\prime}(R) F(0, t)=-R^{n-1}[1+g(t)]+\varepsilon n R^{n-1} e^{\alpha(-G(t))} \leqslant R^{n-1}[\varepsilon n-1-g(t)]$ <0 if $\varepsilon<1 / n$. Finally, note that $J(r, 0)=r^{n-1} \phi^{\prime}(r)+c F(\phi, 0)<0$ on
$0 \leqslant r<R$ provided $\varepsilon>0$ is sufficiently small and $\phi^{\prime}(r)<0$. (As noted in [3], this can be relaxed to $\phi^{\prime}(r) \leqslant 0$.) We conclude $J(r, t) \leqslant 0$ on $[0, R] \times(0, T]$. Thus

$$
r^{n-1} u_{r} \leqslant-\varepsilon r^{n} e^{\alpha(u-G(t))}
$$

and

$$
-e^{-\alpha(u-G(t)} u_{r} \geqslant \varepsilon r .
$$

Set $H(u, t)=(1 / \alpha) e^{-\alpha[u-G(t)]}$, then

$$
\begin{equation*}
H_{r}(u, t) \geqslant \varepsilon r \tag{4.9}
\end{equation*}
$$

and integrating, we have

$$
e^{-\alpha[u(r, t)-G(t)]} \geqslant \frac{\alpha \varepsilon r^{2}}{2}
$$

From this, we have

$$
\begin{equation*}
u(r, t) \leqslant \frac{2}{\alpha} \ln r^{-1}-\frac{1}{\alpha} \ln \frac{\alpha \varepsilon}{2}+G(t) . \tag{4.10}
\end{equation*}
$$

Integrating over $\Omega=B_{R}$, recalling that

$$
\begin{equation*}
G(t) \leqslant \frac{K}{\operatorname{vol} \Omega} \int_{\Omega} u(x, t) d x \tag{4.11}
\end{equation*}
$$

we get from (4.10)

$$
\begin{equation*}
\int_{\Omega} u(x, t) d x \leqslant \int_{\Omega}\left(\frac{2}{\alpha} \ln \frac{1}{|x|}-\frac{1}{\alpha} \ln \frac{\alpha \varepsilon}{2}\right) d x+K \int_{\Omega} u(x, t) d x \tag{4.12}
\end{equation*}
$$

or

$$
(1-K) \int_{\Omega} u(x, t) d x \leqslant \int_{\Omega}\left(\frac{2}{\alpha} \ln \frac{1}{|x|}-\frac{1}{\alpha} \ln \frac{\alpha \varepsilon}{2}\right) d x<\infty
$$

and blow-up occurs at a single point provided $K<1$.
Remark. From the proof of Theorem 4.5 if $f(u)=e^{u}$ and $\int_{0}^{T} g(s) d s<\infty$, then $u(x, t)$ blows up at a single point $x=0$.

In fact, we can prove more if $\int_{0}^{t} g(s) d x<\infty$.
THEOREM 4.6. If $G(t)=\int_{0}^{t} g(s) d s<\infty$ for $t \in[0, T]$, if $f^{\prime}(u) \geqslant 0$ for $u>0$, if $F>0, F^{\prime}, F^{\prime \prime} \geqslant 0$, and if
for all $K>0$, there exists \bar{u} such that
$f^{\prime}(u) F(u-\xi)-f(u) F^{\prime}(u-\xi) \geqslant 2 n \varepsilon F(u-\xi) F^{\prime}(u-\xi)$
for all $u \geqslant \bar{u}, 0 \leqslant \xi \leqslant K$, and $\varepsilon>0$ sufficiently small,
then the solution $u(x, t)$ of IBVP (2.1)-(2.2) blows up only at $x=0$.
Remark. If $f(u)=(u+\lambda)^{p}, p>1$, and $F(u)=(u+\lambda)^{q}, 1<q<p, \lambda \geqslant 0$, then (4.13) is satisfied and single point blow-up occurs.

Proof. The proof proceeds as for Theorem 4.5. Set $w=r^{n-1} u_{r}$, $c(r)=\varepsilon r^{n}, \varepsilon>0$, and let

$$
J(r, t)=w+c F(u-G(t))
$$

Then

$$
\begin{align*}
J_{t}+\frac{n-1}{r} J_{r}-J_{r r}-b J= & -c\left(f^{\prime}(u) F(u-G)-F^{\prime}(u-G) f(u)\right. \\
& \left.-2 \varepsilon n F(u-G) F^{\prime}(u-G)\right) \tag{4.14}
\end{align*}
$$

Let $L=G(T)$. By assumption (4.13), there exists $\bar{u}>0$ such that (4.13) holds for $u \geqslant \bar{u}, 0 \leqslant \xi \leqslant L$, and $\varepsilon>0$ sufficiently small. Thus, for all $(r, t) \in[0, R] \times[0, T]$ such that $u(r, t) \geqslant \bar{u}$,

$$
\begin{equation*}
J_{t}+\frac{n-1}{r} J_{r}-J_{r r}-b J \leqslant 0 . \tag{4.15}
\end{equation*}
$$

If blow-up occurs at some $r^{*}>0$, then $\lim _{t \rightarrow T^{-}} u(r, t)=+\infty$ for all $r \in\left[0, r^{*}\right.$) since u is radially decreasing. In particular, there exists a $t_{1} \in[0, T)$ such that $u\left(r^{*} / 2, t\right) \geqslant \bar{u}$ for all $t \in\left[t_{1}, T\right)$.

By the implicit function theorem, there exists a continuously differentiable function $r_{1}(t)$ on $\left[t_{1}, T\right)$ with range contained in $\left[r^{*} / 2, R\right)$ such that $u\left(r_{1}(t), t\right)=\bar{u}$ for $t \in\left[t_{1}, T\right)$. We claim that

$$
u_{r}\left(r_{1}(t), t\right) \leqslant-M<0
$$

for some constant $M>0$ and all $t \in\left[t_{1}, T\right)$. Indeed, since $f, g \geqslant 0$, the solution v of the IBVP,

$$
\begin{array}{ll}
v_{t}=v_{r r}+\frac{n-1}{r} v_{r} & \\
v\left(r, t_{1}\right)=u\left(r, t_{1}\right), & r \in\left(\frac{r^{*}}{2}, R\right) \\
v\left(\frac{r^{*}}{2}, t\right)=\bar{u}, v(R, t)=0, & t \in\left[t_{1}, T\right),
\end{array}
$$

provides a lower bound for u. Hence

$$
-M=\max _{s \in\left[t_{1}, T\right]} v_{r}(R, s) \geqslant u_{r}(R, t)
$$

for all $t \in\left[t_{1}, T\right)$.
The function u_{r} satisfies the IBVP:

$$
\begin{gathered}
\left(u_{r}\right)_{t}=u_{r r r}+\frac{n-1}{r} u_{r}+f^{\prime}(u) u_{r} \\
u_{r}(R, t) \leqslant-M<0, \quad u_{r}\left(\frac{r^{*}}{4}, t\right) \leqslant 0 \quad \text { for } t \in\left[t_{1}, T\right), \\
u_{r}\left(r, t_{1}\right) \leqslant-M^{\prime}, \quad r \in\left[\frac{r^{*}}{4}, R\right], \quad \text { for some } M^{\prime}>0 .
\end{gathered}
$$

Since $f^{\prime}(u) \geqslant 0$ and $u_{r} \leqslant 0,\left(u_{r}\right)_{t} \leqslant u_{r r r}+((n-1) / r) u_{r}$ and we conclude that there exists a constant $M^{\prime \prime}$ such that $u_{r}(r, t) \leqslant-M^{\prime \prime}<0$ uniformly on the set $A=\left[r^{*} / 2, R\right] \times\left[t_{1}, T\right)$. Using this bound, we see that by choosing $\varepsilon>0$ sufficiently small,

$$
J\left(r_{1}(t), t\right) \leqslant 0 \quad \text { and } \quad J\left(r, t_{1}\right) \leqslant 0
$$

for $t \in\left[t_{1}, T\right), \quad r \in[0, R)$. At $r=0, J(0, t) \equiv 0$. An application of the maximum principle to J knowing (4.15) yields $J \leqslant 0$ on the set $B=\left\{(r, t): 0 \leqslant r \leqslant r_{1}(t), t_{1} \leqslant t<T\right\}$. Hence $r^{n-1} u_{r} \leqslant-\varepsilon r^{n} F(u-G(t))$ for all $(r, t) \in B$. We then have

$$
-\frac{u_{r}}{F(u-L)} \geqslant \varepsilon r
$$

and integrating

$$
-\int_{0}^{r} \frac{u_{r} d r}{F(u-L)} \geqslant \frac{\varepsilon r^{2}}{2}
$$

or

$$
-\int_{u_{0}-L}^{u(r, t)} \frac{L}{} \frac{d z}{F(z)} \geqslant \frac{\varepsilon r^{2}}{2} .
$$

Set $H(s)=+\int_{u_{0}-L}^{s} d z / F(z)$, then

$$
-H(u(r, t)-L) \geqslant \frac{\varepsilon r^{2}}{2}
$$

and

$$
u(r, t) \leqslant H^{-1}\left(-\frac{\varepsilon r^{2}}{2}\right)+L \quad \text { for } \quad(r, t) \in B
$$

By this contradicts our assumption that blow-up occurs at some $r^{*}>0$. We conclude that blow-up occurs at a single point.

ThEOREM 4.7. If $f(u)=(u+\lambda)^{p}$ where $\lambda \geqslant 0$ and $p>1+2 / n$, and $g(t)=(K / \operatorname{vol} \Omega) \int_{\Omega} u_{1}(x, t) d x$, then the solution of (2.1)-(2.2) blows up only at $x=0$ if $0 \leqslant K \leqslant K_{1}$ and $K<1$ where K_{1} is a constant depending on n, λ, p, and ϕ.

Proof. The idea of the proof is exactly the same as that of Theorem 4.5. Set $w=r^{n-1} u_{r}, c(r)=\varepsilon r^{n}$ with $\varepsilon>0$ and $F(u, t)=e^{-\alpha G}(u+\mu)^{q}$ where $\alpha>0$, $\mu>0$, and $\mu \geqslant \lambda$, and $1+2 / n<q<p$.

Consider $. J(u, t)=w+c F(u, t)$. Again, (4.8) holds for.J provided that (i) $f^{\prime} F-F_{u} f \geqslant 2 \varepsilon n F F_{u}$ and (ii) $F_{u} g+F_{t} \leqslant 0$.

For (ii), we note that

$$
g F_{u}+F_{t}=e^{-\alpha G}(u+\mu)^{q-1}\{q g-\alpha g(u+\mu)\}
$$

so condition (ii) holds if

$$
\begin{equation*}
\mu \alpha \geqslant q \tag{4.16}
\end{equation*}
$$

Now

$$
\begin{aligned}
f^{\prime} F-f F_{u} & =(u+\lambda)^{p-1}(u+\mu)^{q-1} e^{-\alpha G}\{(p-q) u+(p \mu-q \lambda)\} \\
& \geqslant 2 n \varepsilon q(u+\mu)^{2 q-1} e^{-2 \alpha G} \\
& =2 n \varepsilon F F_{u}
\end{aligned}
$$

provided

$$
\begin{equation*}
\varepsilon \leqslant \lambda^{p-1}(p \mu-q \lambda) / 2 n q \mu^{q} . \tag{4.17}
\end{equation*}
$$

Certainly $J=0$ or $r=0$ while $J_{r} \leqslant 0$ on $r=R$ if $\varepsilon \leqslant 1 / n$. Moreover at $t=0, J=r^{n} \quad 1 \phi^{\prime}+\varepsilon r^{n}(\phi+\mu)^{q} \leqslant 0$ if

$$
\begin{equation*}
\varepsilon \leqslant \inf \left\{-\phi^{\prime} / r(\phi+\mu)^{q}\right\} . \tag{4.18}
\end{equation*}
$$

Then from the maximum principle $J \leqslant 0$ in $[0, R] \times[0, T)$. Thus

$$
r^{n-1} u_{r} \leqslant-\varepsilon r^{n} e^{-\alpha G}(u+\mu)^{4} .
$$

Integrating from 0 to r, we have

$$
(u+\mu)^{-(q-1)} \geqslant(q-1) \varepsilon e^{-\alpha G} \frac{r^{2}}{2}
$$

which gives

$$
\begin{equation*}
u \leqslant\left[2 e^{\alpha G} / \varepsilon(q-1)\right]^{1 /(q-1)} r^{n-1-2 /(q-1)} . \tag{4.19}
\end{equation*}
$$

Integrating (4.19) over Ω and using (4.11) we have

$$
\begin{align*}
G & \leqslant \frac{n K}{w_{n} R_{n}} \int_{0}^{R}\left[\frac{2 e^{\alpha G}}{\varepsilon(q-1)}\right]^{1 /(q-1)} r^{n} 1-2 /(q-1) \\
& =n K\left[\frac{2}{\varepsilon(q-1) R^{2}}\right]^{1 /(q-1)} e^{\alpha G / q-1} /[n-2 /(q-1)] . \tag{4.20}
\end{align*}
$$

For K sufficiently small, say $K \leqslant K_{2}(n, \varepsilon, \alpha, q)$, there is some G_{2} giving equality in (4.20). Then since $G(0)=0, G(t)$ remains bounded above by G_{2}. Hence $\int_{\Omega} u d x$ is also bounded and u only blows up at $x=0$.

Note that K_{1} is given by the maximum value of K, for $\mu \geqslant \lambda, \mu>0$, $1+2 / n<q<p, \alpha \geqslant q / \mu$, and $0<\varepsilon \leqslant 1 / n$ satisfying (4.17) and (4.18).

Remarks. (1) From the proof of Theorem 4.7, if $f(u)=(u+\lambda)^{p}, \lambda \geqslant 0$, $p>1$, and $\int_{0}^{T} g(s) d s<\infty$ we again have that u blows up at the single point $x=0$.
(2) We conjecture, but cannot prove, that Theorem 4.7 is true for all $p>1+n / 2$ and $0<K<1$. Our result is considerably more restrictive.

References

1. P. Baras and L. Cohen, Sur l'explosion totale après $T_{\max }$ de la solution d'une equation de la chaleur semi-linéaire, C. R. Acad. Sci. Paris 300 (1985), 295-298.
2. J. Bebernes and A. Bressan, Thermal behavior for a confined reactive gas, J. Differential Equations 44 (1982), 118-133.
3. A. Friedman and B. McLeod, Blow-up of positive solutions of semilinear heat equations, Indiana Univ. Math. J. 34 (1985), 425-447.
4. D. Kassoy and J. Poland, The induction period of a thermal explosion in a gas between infinite parallel plates, Combust. Flame 50 (1983), 259-274.
5. A. Lacey and D. Tzanetis, Global existence and convergence to a singular steady state for a semilinear heat equation, Proc. Roy. Soc. Edinburgh 105A (1987), 289-305.
6. F. Weissler, Single point blow-up of semilinear initial value problems, J. Differential Equations 55 (1984), 204-224.
7. F. Weissler and C. E. Mueller, Single point blow-up for a general semilinear heat equation, Indiana Univ. Math. J. 34 (1985), 881-913.

[^0]: ${ }^{1}$ Research partially supported by the U. S. Army Research Office, Contract Number DAAG 29-85-K-0209, and by a NATO Collaborative Research Grant, No. RG 84/0624.

