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1. INTR~DLJCTI~N 

Traditional thermal explosion theory is used to describe reaction 
initiation in condensed explosives and is limited formally to nondeformable 
materials. Kassoy and Poland [4] significantly extended this theory to 
develop an ignition model for a reactive gas in a bounded container in 
order to describe the induction period. During this induction period there 
is a spatially homogeneous pressure rise in the system which causes a com- 
pressive heating effect in the constant volume container. Mathematically 
this compressibility of the gas is expressed by means of an integral term in 
the induction model for the temperature perturbation 0(x, t). This model is 
given by 

e,-Ak&“+::-1.&j e,(x, t)dx 
Y x-2 

0(x, 0) = d(x) 2 0, XEQ CD) 

etx, t) = 0, x E asz, t 2 0, 

and (D) motivates this paper. 
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TOTALVSSINGLEPOINTBLOW-UP 31 

In an earlier paper, Bebernes and Bressan [2] analyzed this ignition 
model (D) for a compressible reactive gas and proved the following using 
semigroup techniques. For any positive value of the Frank-Kamenetski 
parameter 6 and any value of the gas constant y 2 1, (D) has a unique 
classical solution 0(x, t) on 0 x [0, T) where Q is an arbitrary bounded 
container and T = +co or T < +co. In the latter case, 0(x, t) blows up as t 
approaches T. If 6 > SFK, the Frank-Kamenetski critical value, then T < 00 
and blow-up or thermal runaway occurs in finite time. 

The purpose of this paper is to describe where blow-up occurs in the 
container 52 for a more general problem 

24, - LIZ.4 =f(u) + g(t) 

4% 0) = d(x), XE:sz (G) 

24(x, t) = 0, X~cx2, t>o. 

2. STATEMENT OF PROBLEM 

Consider 

u,-du=f(u)+g(t) 

4x9 0) =&fh XEQ, 

24(x, t) = 0, xEaqt>o, 

(2.1) 

(2.2) 

where we assume throughout the paper that 

sZ= B,= {xEW: 1x1 <R), 

4 E C*(Q), 4 = 0 on aa, 4 > 0, Ad +f(d) 2 0, 
4 is radially symmetric and radially decreasing on 52, 
fEC’,f(~)>Ofor~aO, 

g E C, g(t) > 0 on its domain of existence, or 
(2.3) 

u,(x, t) dx with 0 < Kc 1. 

Then the following facts are known [2]: 

(i) a unique solution 24(x, t) of (2.1)-(2.2) exists on Sz x [0, a), (T >O 
sufftciently small; 

(ii) 24(x, t) > 0; 
(ii’) if g’(r) 20 or if g(t) = (K/v01 Sz) fn u*(x, t) dx with 0 <K-z 1, 

then u, 2 0 and u,(t) = maxn u(x, t) is increasing; 

505:73/l-3 



32 BEBERNES, BRESSAN, AND LACEY 

(iii) if u(x, t) exists on 0 < t < 0 < cc and uO(aP) < co, then the 
solution u can be uniquely extended to 0 < t < B + E, E > 0. 

Let T~sup{o:u(x,t)existsonOdt<o). 

(iv) U(X, t) is radially symmetric and u(., t) is radially decreasing for 
t E [O, T). 

(v) If T-c co, then q,(T-) =maxD U(X, T-)= +co. 

We always will assume that R >O and 4(x)20 are such that T-c co; 
then u(x, t) blows up in finite time. When g(t) = (K/v01 Q) jn u,(x, t) dx, we 
always must assume 0 Q Kc 1 to assure local existence for (2.1~(2.2). 

DEFINITION. A point XGSZ is a blow-up point if there exists {(x,,, t,)} 
suchthat t,+T-,x,-+x,andu(x,,t,)++ooasn-,co. 

The purpose of this paper is to determine the set of blow-up points for 
(2.1)-(2.2) primarily when 52 = B,. 

In the next section we review and extend one of the known results for 
(2.1 t(2.2) when g(t) = 0. 

In Section 4, we prove our key results which can be summarized as 
follows. Assume D = B, and blow-up occurs at T. 

(I) If [l g(t) dt = +co, then blow-up occurs everywhere 
(Theorem 4.1). 

(II) If JFg(t)< +co andf(u)=e” orS(u)=(ti+A)P, A>O, p>l, 
then blow-up occurs only at x = 0 (consequence of Theorems 4.5 and 4.6). 

(III) If g(t) = (K/v01 Q) so u,(x, t) dx, Kc 1 and f(u) = (U + n)p, 
12 0, 1 < p < 1 + 2/n, then blow-up occurs everywhere (Theorem 4.4). 

(IV) If g(t) = (K/v01 Q) In u,(x, t) dx, K< 1, and f(u) = e”, then 
blow-up occurs at a single point (Theorem 4.5). 

(V) If g(t)=(K/volQ)j,u,(x, t)dx and f(u)=(u+AY, 120, 
p > 1 + 2/n, then blow-up occurs only at x = 0 provided K < 1 is sufficiently 
small (Theorem 4.7). 

3. g(t) 3 &REVIEW OF KNOWN RESULTS 

Baras and Cohen Cl], Friedman and McLeod [3], Weissler [6], and 
Weissler and Mueller [7] have considered (2.1 j-(2.2) when g(t) = 0 and for 
particular f(u). 

When f(u) = eU and g(t) E 0, Friedman and McLeod [3] proved 
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THEOREM 3.1. (a) x = 0 is the only blow-up point in B, 
(b) Given c1 E (0, l), there exists K, > 0 such that 

u(x, t)< -zlnx+K, (3.1) c? 

on BR x [O, T]. 

They proved this result by using a maximum principle argument applied 
to J(r, t)= w +&F(U) where r= 1x1, w = r+‘~,, and F is a positive 
function with F,, F,, >, 0. If, for E > 0 sufficiently small, 

then J satisfies 

f’F- F’f 2 &nFF, (3.2) 

J, + 
n-l 
-JJ,-J,,-bJ<O, O<r<R,O<t<T, (3.3) r 

where b is a bounded function for 0 < r < R, and moreover J cannot take a 
positive maximum on r = R. Also, for E small anough J < 0 at t = 0. By the 
maximum principle J < 0 on 52 x [0, T). If F(u) = e’” with a E (0, 1 ), then 
(3.2) holds and 

r*- ‘24, < --EYF(u) (3.4) 

follows. Setting H(u) = (l/cc) ePoru, then H, = -e-““a, 2 cr. Integrating, 
they obtain 

u(r, t)<llnr-‘+K, u (3.1) 

and hence blow-up occurs at x = 0 only. 
This same argument can be used to improve the upper bound estimate 

on 24. 

THEOREM 3.2. Iff(u) = e”, then 

u(r, t)b21nrP’+ln(lnr-‘)+C. (3.5) 

Proof The function F(u) = e” . (1 + U) - ’ satisfies (3.2) for 0 < E < 1/2n. 
Then, since j’; &/F(s) = (U + 2) e-“, we have from 

e” 
u,< --Er- 

u+l 
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that 
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(u+2)e-Q$. 

Hence, -u + ln(u + 2) 2 ln(.sr2)/2 implying 

u-ln(u+2)$21n-!j+C’ 

and 
24 - In 24 d 2 In i + C”. 

Thus, u < 2 In l/r f C” + ln(2/c( In f + K,) by (3.1) and we conclude 

u(r, t) < 2 In 1 + In In i + C. 
r r 

Using the same type of argument as for Theorem 3.1, Friedman and 
McLeod also proved for f(u) = up, p > 1: 

THEOREM 3.3. Letf(u)=uP, p> 1. Consider ZBVP (2.1)-(2.2). 

(a) x = 0 is the only blow-up point in BR. 
(b) Given cr~(l, p), there is a C>O such that 

C 
u(x, t) d-. x2/(a ~ 1) 

Baras and Cohen [l] have recently proven that the solution u(x, t) of 
(2.1 t(2.2), with g(t) G 0 and under some special assumptions on f, blows 
up completely after T and hence, in a sense to be made precise later, 
everywhere in Q after T. 

Consider the following sequence of approximating IBVP’s to (2.1)-(2.2): 

w, - dw =fn(w) (3.6) 

w(x, t) = 0, xEaf2, t>o 

w(x, 0) =4(x), XEQ, 
(3.7) 

where f, is uniformly Lipschitz continuous, nondecreasing, f,,(O) = 0, and 
f, TJ: For each n, (3.6)-(3.7) has a solution u,(x, t) on Q x [0, co). 

THEOREM 3.4. Let f(0) = 0. Zf one of the following three hypotheses 
holds, 
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Q is convex and if n > 2, there exists p E (1, n/(n - 2)) such that 
o&&q-l+ l), 2420; 

H,. f is convex and there exists q > 1, a 2 0 such that f(u)/u” is non- 
decreasing on (a, + a~ ); 

H,. f is convex and there exists p E (1, (n + 2)/(n - 2)) such that 
Oblim,,, f(u)/u” < 03, then 

(a) lim,, co u,(x, t) = 4x3 t), (4 t) E Q x PI n; 

(b) lb,,, 24,(x, t)= +m, (x, t)gQx(T, co); 

(cl lim,,, u,(x, T) = lim, _ T- u(x, t), x E Q. 

For IBVP (2.1)-(2.2) with g(t) 20, we will prove that u(x, t) blows up 
at a single point x = 0 or everywhere as t + T. 

4. ~(~)>&NEw RESULTS 

For IBVP (2.1)-(2.2) assuming the hypotheses (2.3) we now show that 
u(x, t) blows up everywhere at T or at a single point. 

THEOREM 4.1. Ifs: g(t) dt = +a~, then 

lim U(x, t)= +co for all x E B, 
, - T- 

and u(x, t) blows up everywhere. 

Proof: Fix any XE B, and let p = R- 1x1. On the ball B(X, p) E B,, the 
solution u(x, t) of (2.1)-(2.2) is an upper solution for 

v, = Au + g(t) 

v(x, 0) = 0, IX-XI <p (4.1) 

v(x, t) = 0, IX-XI =p, te [0, T). 

Using the Green’s function for (4.1), the solution u(X, t) of (4.1) can be 
expressed as 

v(x, t, = j; s,,, p) W, Y, t -s) g(s) 4 ds 

a ‘g(s) s s G(x, y, T-O) dy ds 
0 m*. PI 

where K(P) = lBcx, p) G&f, Y, T) dy. 
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Clearly, as t -+ T-, u(X, t) + co since fc g(s) ds= +a. Since 
0(x, t) < u(x, t) on lx-21 <p, t E [O, T), u(X, t) + +co as t + T-. But 
XE B, was arbitrary and thus blow-up occurs everywhere. 

Remark. Note that Theorem 4.1 holds for arbitrary domains and not 
just for radially symmetric problems. 

THEOREM 4.2. Consider IBVP (2.1)-(2.2) with g(t)= (K/vol)B so UJX, t) 
dx, O< K< 1. Zf the solution u(x, t) of (2.1)-(2.2) blows up at some X#O, 
then it blows up everywhere in B,. 

Proof First observe 

s , 0 
g(s) d”=& f ff u,(x, s) dx ds = 

0 R & J1, (4x, 1) -4(x)) dx. 

If lim, j T- u(X, t) = + co, by the radial monotonicity of U, 

I u(x, t) dx> 
R f u(x, t) dx 2 vol B,,, u(X, t) 

1x1 c 1x1 

--) cc as t + T-. Hence sc g(s) ds = + co and by Theorem 4.1 blow-up 
occurs everywhere. 

We now prove a theorem, similar to Theorem 3.1 of Friedman and 
McLeod [3, p. 4321, which allows us to get lower bounds on u(x, t) and 
the integral of u(x, t) over Q. 

THEOREM 4.3. Assume f? f(u) du= +co. Let u(x, t) be a solution of 
IBVP (2.1)-(2.2) which blows up only at x =O. Then there exists a 
t* E [0, T) such that 

IV44 o12~2c-~(~(x, t~)+~(uo(t~)+r;f(~,(t~)l (4.2) 

for all i~(t*, T) where F(w)=J,“f(u)du, L=Jlg(t)dt<~, and 
uo(t) = ~(0, t) = maxn U(X, t). 

Proof By the assumptions and Theorem 4.1, it follows that L < co. 
Since u blows up only at the origin, both u and Vu are uniformly bounded 
on the parabolic boundary @ of the cylinder D = ((x, t): 1x1 <R/2, 
0 <t < T}. This follows from classical interior estimates. For let 
u = u - G(t) where G(t) = j;, g(s) ds, then Vu = Vu and u, = Au + f (u + G(t)) 
where G(t) is bounded on [0, T]. Hence, 

max 
{ 

IWX, t)12 
2 

+ F(u(x, t)) = M-L 00. 
(x, f)E an 1 



TOTAL VS SINGLE POINT BLOW-UP 31 

Choose t* < T so that F(u,(t))>M for all t E [t*, T) (such a t* exists 
because uO( t ) is increasing to + co (recall (ii’) and F(w) -+ + co as w + co ). 

For any in [t*, T), define 

J(x 
9 

t) = IWX~ f)12 

2 + Jl’(u(-% t)) -I;(%dr)) --f(%(O) j,’ g(s) & (4.3) 

We will show by a maximum principle argument that J(x, t) ~0 on 
{(x, t): (XI 4 R/2, 0 < t < i}. From this, (4.2) follows immediately. 

Notice that, on @, we have 

J(x, t) G hf- F(u,(T)) --f(uo(O) j; g(s) ds < 0. 

Moreover, for x = 0 E UP, t E [0, t‘), 

J(0, t) < F(u(x, t)) - F(&)(i)) < 0. 

A direct computation yields 

J,(x,t)=Vu4Qlu)+f’(u)lVu12+f(u)h4 

+f’W +f(u) g(t) --f(kAO) g(t), 
VJ(x, t)=Llu(Vu)+f(u)Vu= (du+f(u))Vu, 

and 

dJ(x, f)’ (du)2+Vu4qdu)+f’(u)lVu12+f(u) Au. 

Using the fact that 

IVJ- (du)Vu12= lVu12 (du)2+vJ[vJ-2(h4)vu] 

=f2W IV4 2, 

we obtain 

J (x t) _ dJ- CVJ- Wu) Vu1 .VJ 
f ? 

IV4 2 

= Lo+, 1)) --fMO)l g(t) G 0. 

Noting that Vu = 0 only at x = OE R”, the Maximum Principle implies 
J(x, t) < 0 for (xl <R/2, 0 <t < i In particular, J(x, 0 ~0 and (4.2) 
follows. 
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COROLLARY. In addition to the hypotheses of Theorem 4.3, if f '(u) 2 0 
for u > 0, then 

IWX, t)12 < 2f(uo(t))(uo(t) - 44 t) + L) (4.4) 

for t sufficiently close to T. 

ProoJ: Take t = i in Theorem 4.3 and use Quo(t)) - F(u) = luO f (s) ds d 
(uo - u) f (%J u 

We now are in a position to prove one of the key results of this paper. 

THEOREM 4.4. Assume f’(u) 2 0 for u > 0, f(u) = o(u’+*/~) as u + co, 
and let g(t) = (K/v01 52) 1 u,(x, t) dx with 0 -C KC 1. Then the solution u(x, t) 
of ZBVP (2.1)-(2.2) satisfies 

lim u(x, t)= +co for all x E B, 
1-r 

and blow-up occurs everywhere. 

Proof If the conclusion were false, then single point blow-up must 
occur by Theorems 4.1 and 4.2. 

Using the facts that u is radially symmetric and (4.4), we can derive a 
lower bound on u(x, t): 

J 
r lu,(r, tl 

0 (uo(t)-u(r, t)+L)“’ 
dr < r 2’12f(uo(t))1/2 dr J 0 

(u,(t) - u(r, t) + L)l/* < 2~‘/2f(uo(t))‘/*r + L1/* 

u,(t)+L-u(r, t)<f(uo(t))r2+2L. 

Thus, 
u(r, t) > u. - L - f(uo) 2. (4.5) 

We now use (4.5) to get a lower bound on the integral of u(x, t) over 52. 
Let w, denote the area of the surface of the n-dimensional ball. From (4.5), 
u = uo/2 on r > rl f [(u,/2 - L)/f(uo)]“*. 

Thus, u 2 u,/2 if r < rl. Integrating over 52, we get 

Jn u(x, t) dx = w, JoR u(r, t) rn- ’ dr 
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Since f(s) = o(sl +“‘) as s + co, this last term tends to CC as ZQ, + co, that 
is, as t-t T-. This implies that 

[u(x, t)-d(x)] dx = + co, 1 
and is a contradiction with Theorem 4.1. We conclude that u(x, t) blows up 
everywhere at t = T. 

Remark. The conditions on fin Theorem 4.4 are satisfied for allf of the 
form (u + A)” with 12 0 and 1~ p < 1+2/n. 

An obvious question is: what happens if p > 1 + 2/n? We first consider 
f(u) = e’. 

THEOREM 4.5. Zff(u) = e’, g(t) = (K/v01 0) jn u,(x, t) dx with 0 < KC 1, 
then the solution u(x, t) of IBVP (2.1)(2.2) blows up only at x=0. 

Proof. The proof is similar to that given by Friedman and McLeod [3, 
pp. 4274291. Set w = r+‘u,, c(r) = sr” where E > 0 is to be determined, 
J(r, t) = w + cF(u, t) where F(u, t) = ea’u-G(‘)) with c( E: (0, 1) and G(t) = 
jb g(s) ds. 

We claim J < 0 on B, x [0, T). This will be accomplished by again using 
a maximum principle argument applied to J. 

It is observed immediately that 

n-l 
w,+ -w,-ww,,- f ‘(u)w=O. 

r 

Using (4.6) u, = w/r” ~ ‘, and w = -cF + J, a direct computation gives 

n-l 
J, +- J, - J,, - bJ 

r 

< -c( f ‘F- F, f - 2uzFF,) + c(F, g + F,), (4.7) 

where b = f ‘(u) - 2&F,. If (i) f ‘F- F,, f 2 2&nFF, and (ii) F, g + F, 6 0, then 

n-l 
J,+- 

r 
J,-J,,-bJ<O (4.8) 

on [0, R] x [0, T). (ii) is immediate and (i) holds if E < (1 - cr)/2na. To 
apply the maximum principle to J knowing (4.8), we need only check 
behavior of J on the parabolic boundary of (0, R) x (0, T). At r = 0, 
J(0, t) = 0. Next we observe that J cannot take a positive maximum on 
r = R since J, < w, + c’F and thus J,(R, r) < -R”- ‘[f(O) + g(t)] + 
c’(R) F(0, t)= -R”-‘[l+g(t)]+~nR”-lea(-G~“) < R”-‘[&n-l-g(t)] 
<0 if E-C l/n. Finally, note that J(r, 0)= r”-‘4’(r) + cF($, 0) ~0 on 
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0 < r < R provided E > 0 is sufficiently small and b’(r) < 0. (As noted in [3], 
this can be relaxed to 4’(r) < 0.) We conclude J(r, 1) < 0 on [O, R] x (0, T]. 

Thus 

and 

r n - lu, < -Er”e=(u - G(t)) 

-e -a(~ - G(‘)jM, 2 Er. 

Set H(u, t) = (~/CC) e-aCU-G(‘)l, then 

H,(u, t) 2&r 

and integrating, we have 

2 
e -a[u(r, I)- G(t)1 2 E 

2 . 

From this, we have 

u(r, t)g~lnrP’-dln~+G(f). (4.10) 

Integrating over Q = B,, recalling that 

G(r)c&j 4x, t) dx, 
n 

we get from (4.10) 

I u(x, t) dx < 
n 

(4.9) 

(4.11) 

(4.12) 

or 

(l-K)1 u(x,t)dx<~Q(~ln&-~ln~)dx<cc 
R 

and blow-up occurs at a single point provided K < 1. 

Remark. From the proof of Theorem 4.5 iff(u) = e” and j’,‘g(s) ds < co, 
then U(X, t) blows up at a single point x = 0. 

In fact, we can prove more if s&g(s) dx < co. 

THEOREM 4.6. r G(t) = I;, g(s) ds -c 00 for t E [O, T], f f’(u) b 0 for 
u>O, if F>O, F,F>,O, and if 
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for all K > 0, there exists ii such that 

f’(u)F(u-~)-f(u)F(u-~)~2n&F(u-~)F(u-~) (4.13) 
for all u 3 ii, 0 < 5 =$ K, and E > 0 sufficiently small, 

then the solution u(x, t) of IBVP (2.1)-(2.2) blows up only at x=0. 

Remark. If f(u)=(~+A)~, p> 1, and F(u)=(u+A)~, 1 <q<p, 220, 
then (4.13) is satisfied and single point blow-up occurs. 

Proof. The proof proceeds as for Theorem 4.5. Set w = Flu,, 
c(r) = d’, E > 0, and let 

J(r, t)=w-tcF(u-G(t)). 

Then 

Jt + qJ,-J,,,-bJ= -c(f’(u)F(u-G)-F(u-G)f(u) 

- 2snF(u - G) F(u - G)). (4.14) 

Let L= G(T). By assumption (4.13), there exists U>O such that (4.13) 
holds for u > U, 0 < < CL, and E > 0 sufficiently small. Thus, for all 
(r, t) E [0, R] x [0, r] such that u(r, t) > ii, 

n-l 
J,+ r - J,-J,,-bJ<O. (4.15) 

If blow-up occurs at some r* > 0, then lim, _ T- u(r, t) = + cc for all 
r E [0, r*) since u is radially decreasing. In particular, there exists a 
t,E [0, T) such that u(r*/2, t)>ii for all tE [tl, T). 

By the implicit function theorem, there exists a continuously differen- 
tiable function rl(t) on [t,, T) with range contained in [r*/2, R) such that 
u(rl(t), t)= ii for tE [tl, T). We claim that 

u,(r,(t), t) d -A4 -c 0 

for some constant M > 0 and all t E [tl, T). Indeed, since f, g > 0, the 
solution u of the IBVP, 

n-l 
v,=u,,+-u 

r r 

ub-, tl) = u(r, tl), 
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provides a lower bound for u. Hence 

-M= max u,(R, s)~M,(R, t) 
SE Cll, Tl 

for all TV [ti, T). 
The function u, satisfies the IBVP: 

for t E [tl, T), 

u,(r, tl) < -M’, 
r* 

rE [ 1 z,R , for some M’ > 0. 

Since f’(u) > 0 and u, d 0, (u,), < u,, + ((n - 1 )/r) u, and we conclude that 
there exists a constant M” such that u,(r, t) < -M” < 0 uniformly on the 
set A = [r*/2, R] x [t, , T). Using this bound, we see that by choosing E > 0 
sufficiently small, 

J(rl(tL t) G 0 and J(r, t,)<O 

for t E [t,, T), rE [0, R). At r =O, J(0, t)=O. An application of the 
maximum principle to J knowing (4.15) yields J< 0 on the set 
B= ((r, t):O<r<r,(t), t, ,<t< T}. Hence rnelu,< -er”F(u-G(t)) for all 
(r, t) E B. We then have 

ur 
-F(4)- 

and integrating 

J 
r u, dr 2 

- 2E' 
oF(u-L) 2 

or 

J 
41, I)- L dz ET2 - a--. 

M-L F(z)2 

Set H(s) = +j& L dz/F(z), then 

-H(u(r, t)-IL)>: 
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and 

2 

u(r, t) < z--l 
( > 
-$ +L for (r, t) E B. 

By this contradicts our assumption that blow-up occurs at some r* > 0. We 
conclude that blow-up occurs at a single point. 

THEOREM 4.7. If f(u)= (u+ A)p where A>,0 and p> 1+2/n, and 
g(t) = (K/v01 L?) jn u,(x, t) dx, then the solution of (2.1 t(2.2) blows up only 
at x = 0 if 0 d K < K, and K < 1 where K, is a constant depending on n, A, p, 
and 4. 

Proof. The idea of the proof is exactly the same as that of Theorem 4.5. 
Set w = r”-lu,, c(r) = Er” with E > 0 and F(u, t) = edCLG(U + PL)~ where c1> 0, 
p>O, and p>B, and 1+2/n<q<p. 

Consider J(u, t) = w + cF(u, t). Again, (4.8) holds for J provided that 
(i)f’F- F, f > 2mFF, and (ii) F,, g + F, < 0. 

For (ii), we note that 

gFu+F,=eP”G(u+p)Y-‘{qg-ag(u+p)) 

so condition (ii) holds if 

,mBq. (4.16) 

Now 

f’F-fFu=(u+I)P~l(u+~)Y~le~~G{(p-q)u+(pp-q~)} 

B 2mq(u + p)2y~‘e-2”G 

= 2nEFF,, 

provided 

E < Ape ‘( pp - qA)/2nqpq. (4.17) 

Certainly J= 0 or r = 0 while J, < 0 on r = R if E Q l/n. Moreover at 
t = 0, J = r”- ‘4’ + Er”(# + PL)~ < 0 if 

E< inf{ -@/r(b + P)~}. (4.18) 

Then from the maximum principle J< 0 in [0, R] x [0, T). Thus 

r n- ‘24, < -uneCaG(u + P)~. 
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Integrating from 0 to r, we have 

(u+p)-‘Y-%(g- l)C”O;; 

which gives 

Integrating (4.19) over Sz and using (4.11) we have 

(4.19) 

=nK[~(q-2~)R’lI’(S~I)e’“~vl/[n-2/(g- 111. (4.20) 

For K sufficiently small, say KG K,(n, E, LX, q), there is some G2 giving 
equality in (4.20). Then since G(0) = 0, G(t) remains bounded above by G2. 
Hence Jn u dx is also bounded and u only blows up at x = 0. 

Note that K, is given by the maximum value of K2 for ,U k A, p >O, 
1 +2/n < q < p, cI 3 q/p, and 0 <E < l/n satisfying (4.17) and (4.18). 

Remarks. (1) From the proof of Theorem 4.7, iff(u) = (U + A)p, 12 0, 
p > 1, and JOT g(s) ds < co we again have that u blows up at the single point 
x = 0. 

(2) We conjecture, but cannot prove, that Theorem 4.7 is true for all 
p > 1 + n/2 and 0 < K < 1. Our result is considerably more restrictive. 
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