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a b s t r a c t

Methods are proposed for generating random (p+1)×(p+1) Toeplitz correlationmatrices
that are consistent with a causal AR(p) Gaussian time series model. The main idea is to first
specify distributions for the partial autocorrelations that are algebraically independent and
take values in (−1, 1), and thenmap to the Toeplitzmatrix. Similarly, startingwith pseudo-
partial autocorrelations, methods are proposed for generating (q + 1) × (q + 1) Toeplitz
correlation matrices that are consistent with an invertible MA(q) Gaussian time series
model. The density can be uniform or non-uniform over the space of autocorrelations up
to lag p or q, or over the space of autoregressive or moving average coefficients, by making
appropriate choices for the densities of the (pseudo)-partial autocorrelations. Important
intermediate steps are the derivations of the Jacobians of the mappings between the
(pseudo)-partial autocorrelations, autocorrelations and autoregressive/moving average
coefficients. The random generating methods are useful for models with a structured
Toeplitz matrix as a parameter.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

Methods for generating random correlation matrices (positive definite with 1s on the diagonal) of dimension d × d
have been considered in the recent papers [1,2]. Toeplitz d × d correlation matrices are special cases with d − 1 distinct
correlations, one for each diagonal away from the main diagonal. There are statistical models with structured correlation
matrices; for example, in longitudinal data analysis, Toeplitz matrices with AR(p) and MA(m) (orm-dependence) structure
are used asmodel parameters—see [3], and PROCGEMMOD and PROCMIXED in SAS. Toeplitzmatrices are also used in signal
processing.
With motivation from signal processing, an early paper of generating random Toeplitz matrices is by Holmes [4], with

a main approach of random Gram matrices. This approach does not allow analysis of distribution theory of the random
autocorrelations. In the time series literature, Jones [5] has provided a simple algorithm for generating φp = (φ1, . . . , φp)

T

with uniform distribution over Cp, the space for the coefficients of a causal AR(p) Gaussian time series. By using the results
of 1–1 correspondence between the autoregressive coefficients and the partial autocorrelations [6], Jones proposed an
algorithm based on random partial autocorrelations with independent Beta random variables on the interval (−1, 1). By
mapping to the space of autocorrelation coefficients, this algorithm implies a distribution in the space of Toeplitz correlation
matrices that is not uniform.
For signal processing applications,Makhoul [7]was interested in the size of the space of Toeplitzmatrices and derived the

volume of d×d Toeplitzmatrices, but did not showhowhis theory can also be used to generate randomToeplitzmatrices. By
combining results in [7,2], one can generate random d× d Toeplitz matrices, uniform over the space of suchmatrices, based
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on random partial autocorrelations that are independent Beta random variables on the interval (−1, 1). The parameters of
the Beta distributions are different from the case in the preceding paragraph.
In this paper, we propose methods of generating a random φp over Cp and a random ρp = (ρ1, . . . , ρp)

T for the first p
autocorrelations of an AR(p) Gaussian time series; the distributions can be uniform or have another simple density form.We
show that the two approaches are quite different in themarginalmoments of the {φj} or {ρj}. Thismeans that the appropriate
method depends on the context.
With motivation from statistical models that use structured correlation matrices of the MA(q) form, we also extend

our results to generating random MA(q) Toeplitz matrices. This requires the derivation of some interesting connections of
various parametrizations of Gaussian time series.
The key steps are (i) algebraic independence of partial autocorrelations in (−1, 1)p for AR(p), (ii) algebraic independence

of pseudo-partial autocorrelations in (−1, 1)q for MA(q), (iii) derivation of the Jacobians of the transformations from the
(pseudo)-partial autocorrelation space to the space of autocorrelation, autoregressive or moving average coefficients. That
is, we take advantage of (pseudo)-partial autocorrelations being algebraically independent, because the constraints on
autocorrelation, autoregressive or moving average coefficients are complicated for p > 2 and q > 2.
There are many applications for random Toeplitz matrices, especially for models or methods with a parameter that is an

AR(p) or MA(q) correlation matrix. For simulation studies to compare estimation methods, it would be useful to be able to
simulate a random structured correlation matrix that is (i) uniform over the relevant space or (ii) non-uniform with more
concentration nearer the identity matrix or stronger dependence. Also cases (i) and (ii) would be relevant as possible priors
for Bayesian inference in thesemodels, and our algorithms can be implemented for MCMC. For Bayesian inference, knowing
what the various distribution imply for marginal distributions is important for choosing a prior that matches historical
information. Daniels and Pourahmadi [8]mention shrinkage of correlation and partial correlations toward zero near as being
reasonable for Bayesian priors (in order to reduce Bayes risk); in their application, if stationarity is assumed, then a random
Toeplitz matrix as generated in this paper is appropriate. For a different type of application in non-normal time series, an
interesting question is the set of possible Toeplitz correlation matrices that are consistent with stationary processes with a
fixed univariatemargin F (which has finite variance). One could check on the range of d×d Toeplitzmatrices for a parametric
model of stationary processes with themargin F by sampling at random from the set of d×d Toeplitz matrices and checking
if it is consistent with the given model.
With the theory described in Section 2, we can generate the partial autocorrelations to get other nice (non-uniform)

distributions over Toeplitz correlationmatrices consistent with causal AR(p) Gaussian time series models. Examples include
(a) density of ρp proportional to a power of the determinant of the Toeplitz matrix, and (b) density of ρp uniform over
strongly positive Toeplitz matrices with all partial autocorrelations being positive. Similarly, we can generate the partial
autocorrelations so that the density ofφp is a power of the determinant of the Toeplitz matrix. In Section 3, we indicate how
to generate uniformly randomToeplitzmatrices that are consistentwith invertibleMA(q) Gaussian time seriesmodels.More
general non-uniform distributions for AR(p) and MA(q) can be obtained via the Jacobians that are derived in these sections.
In Section 4, numerical results are given for the marginal distributions. Because the specifications for the random partial

autocorrelations are quite different to get uniform in the φp space and in the ρp space, to make comparisons, we obtain the
moments of the resulting random φp and ρp to show the differences. For example, one distinction is that uniform on the ρp
space means each φ coefficient has a mean of 0, but this is not the case for uniform on the φp space. In Section 5, we have
an application of random Toeplitz correlation matrices to compute the probability that a Toeplitz matrix can be a Spearman
rank correlation matrix for a marginally transformed AR(p) Gaussian time series. Section 6 concludes with some discussion.

2. Generating AR(p) parameters

In this section, methods are proposed for generating the autoregressive parameters in a causal AR(p) model, and a new
family of joint density function is introduced. Suppose {Zt : t = 0,±1,±2, . . .} is an independent and identically distributed
N(0, σ 2) sequence. For a positive integer p, with B for the backward operator, the AR(p) Gaussian time series or process is:

Xt =
p∑
i=1

φiXt−i + Zt =
p∑
i=1

φiBiXt + Zt , t = 1, 2, . . . ,

or

φ(B) Xt = Zt , where φ(B) = 1− φ1B− φ2B2 − · · · − φpBp.

The innovation Zt is independent of Xt−1, Xt−2, . . . , Xt−p. If the roots of φ(b) = 0 are outside the unit circle, then

Xt = [φ(B)]−1Zt

is a zero-mean (causal) stationary process.
To allow greater degree of flexibility in the density functions, parameters η > 0 and δ > −1/p are introduced. We

consider the following two families of density functions

fρp(r1, . . . , rp) ∝ [det(r)]
η−1 and fφp(v1, . . . , vp) ∝ [det(r(v1, . . . , vp))]

δ, r = (rjk), rjk = r|j−k|, rjj = 1. (2.1)
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With ρp = (ρ1, . . . , ρp)
T being the column vector with the first p autocorrelations, the (p + 1)-dimensional Toeplitz

correlation matrix R = (ρjk) based on ρp has form ρjk = ρ|j−k| for all 1 ≤ j, k ≤ p+ 1. That is,

R = R(ρp) =


1 ρ1 ρ2 . . . ρp
ρ1 1 ρ1 . . . ρp−1
...

...
...

...
...

ρp ρp−1 ρp−2 . . . 1

 = (Corr(Xj, Xk))j,k=1,2,...,p+1.
Let αp = (α1, . . . , αp)

T be the column vectors with the first p partial autocorrelations. The range of αp is (−1, 1)p.
Let Cp be the set of φp = (φ1, . . . , φp)

T that correspond to causal AR(p) processes. We assume that the process has been
standardized so that Var (Xt) = 1. LetMp be the set of ρp that result in Toeplitz correlation matrices (equivalently, positive
definite Toeplitzmatrices with ones on the diagonal). When η = 1 in (2.1), ρp is uniformly distributed overMp. When δ = 0,
φp is uniformly distributed over Cp.
Theorem 1 of [2] has the form of the determinant of a correlation matrix in terms of partial correlations; from this result,

the determinant of R(ρp) is:

det[R(ρp)] =
p∏
`=1

(1− α2l )
p+1−`. (2.2)

This special case is also given as equation (5) in Barndorff-Nielsen and Schou [6].

2.1. Random φp

In this subsection, we indicate how to generate a random φp ∈ Cp with joint density function

fφp(v1, . . . , vp) ∝ [det(r(v1, . . . , vp))]
δ.

To generate φp , we consider the Levinson–Durbin formula (as given in equation (12) of [6], see also [9]) that gives the
following 1–1 map between Cp and (−1, 1)p by expressing φj in terms of the partial autocorrelations αj: for k = 1, 2, . . . ,
p− 1 and j = 1, 2, . . . , k,

ϕk+1,k+1 = αk+1,

ϕk+1,j = ϕk,j − αk+1ϕk,k+1−j, (2.3)
φj = ϕp,j.

In the above, note that φp = αp.
The Jacobian of φp to αp is given in Barndorff-Nielsen and Schou [6],

∂(φ1, . . . , φp)

∂(α1, . . . , αp)
=


p∏
k=2

(1− αk)[k/2](1+ αk)[(k−1)/2] when p ≥ 2,

1 when p = 1,

where [·] is the greatest integer function. Hence if the density of αp is fαp(ap), then the density of φp is

fφp(vp) = fαp(ap)
p∏
k=2

(1− ak)−[k/2](1+ ak)−[(k−1)/2].

If αj ∼ Beta([(j+ 1)/2]+ δ(p+ 1− j), [j/2]+ 1+ δ(p+ 1− j)), j = 1, 2, . . . , p, are chosen to be independent Beta random
variables over the interval (−1, 1), we have

fφp(vp) ∝ [det(r)]
δ.

Here, the smallest parameters are for α1 and in order for these parameters to be positive, the condition on δ is 1 + δp > 0
or δ > −1/p. The effect of larger δ is obtaining distributions of αj, ρj, φj that have smaller variances (or more concentration
near 0).
In the special case of δ = 0 where αj ∼ Beta([(j+ 1)/2], [j/2] + 1) on the interval (−1, 1), φp is uniformly distributed

in Cp; this result and extensions are given in Jones [5]. Note that the two parameters [(j+ 1)/2] and [j/2] + 1 are the same
if j is odd, and [j/2] + 1− [(j+ 1)/2] = 1 is j is even. That is, αj is symmetric about zero for j odd, and is negatively skewed
(with negative expectation) for j even (but the skewness decreases as i increases for j = 2i). The volume of the space for φp
is ∫

(−1,1)p

∣∣∣∣∂φp∂αp

∣∣∣∣ dαp = p∏
k=1

∫ 1

−1
(1− a)[k/2](1+ a)[(k−1)/2]da =

p∏
k=1

2kB([(k+ 1)/2], [k/2] + 1).

See [10] for a discussion of this result.
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2.2. Random ρp

For models, such as for longitudinal data, where the Toeplitz matrix is a parameter, it is simpler to consider generating a
random ρp ∈ Mp. Consider the joint density function

fρp(r1, . . . , rp) ∝ [det(r)]
η−1.

The 1–1 map between Mp and (−1, 1)p is given by the Levinson–Durbin formula (2.3) and the following recursive
relationship,

ρk =

k∑
j=1

ϕk,jρk−j. (2.4)

Makhoul [7] has

∂ρj

∂αj
=

j−1∏
`=1

(1− α2` )

and a Jacobian of∣∣∣∣ ∂(ρ1, . . . , ρp)∂(α1, . . . , αp)

∣∣∣∣ = p−1∏
j=1

j∏
i=1

(1− α2i ) =
p−1∏
j=1

(1− α2j )
p−j.

Lemma 3 of [2] has the partial derivatives of partial correlations to correlations with the above transform; this lemmawhen
applied to ρ12, ρ13, . . . , ρ1,p+1 also leads to the above Jacobian. Note that this Jacobian is just (2.2) with p replaced by p− 1 ,
i.e., ∣∣∣∣ ∂(ρ1, . . . , ρp)∂(α1, . . . , αp)

∣∣∣∣ = det(Rp−1),
where Rp−1 = R(ρp−1) (dimension p× pwith no ρp).
If we take independent densities g`(a`) for αl, ` = 1, . . . , p, then the joint density of ρ1, . . . , ρp is

fρp(r1, . . . , rp) = g1(a1) · · · gp(ap) ·
p−1∏
j=1

(1− a2j )
−(p−j). (2.5)

Suppose we take gj to be a Beta(βj, βj) density on (−1, 1) for j = 1, . . . , p, that is,

gj(u) =
1

22βj−1B(βj, βj)
(1− u2)βj−1, −1 < u < 1.

Then (2.5) becomes

fρp(r1, . . . , rp) ∝
p∏
j=1

(1− a2j )
βj−1−p+j. (2.6)

By comparing with (2.2), the density in (2.6) is proportional to [det(r)]η−1 if βj = η(p + 1 − j). In particular, a uniform
density obtains if η = 1 or βj = p + 1 − j for j = 1, . . . , p. The effect of larger η are distributions of αj, ρj, φj that have
smaller variances (or more concentration near 0).
In the special case of η = 1, the proportional constant is

p∏
j=1

1
22(p+1−j)−1B(p+ 1− j, p+ 1− j)

=

p∏
j=1

1
22j−1B(j, j)

.

Hence the volume of the (p+ 1)× (p+ 1) Toeplitz matrices in p-dimensional space is

Vp =
p∏
j=1

22j−1B(j, j) =
p∏
j=1

22j−1
[(j− 1)!]2

(2j− 1)!
= Vp−1 × 22p−1

[(p− 1)!]2

(2p− 1)!
.

This matches Makhoul’s result of

Vp = 2p
p−1∏
j=1

(
2j
2j+ 1

)p−j
.

By dividingVp by 2p, one gets the probabilities that a randomToeplitzmatrix,with diagonals of 1 and other entries in (−1, 1),
is positive definite.
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3. Generating MA(q) parameters

In this section, we derive a new result on generating random Toeplitz matrices that are uniform over the set of
(q+ 1)× (q+ 1) correlation matrices that are consistent with an invertible MA(q) Gaussian time series for q ≥ 1. Consider

Xt = Zt − θ1Zt−1 − · · · − θqZt−q, Zt ∼iid N(0, τ̃ ). (3.1)

We are interested in one of the following:

1. θq = (θ1, . . . , θq)T uniformly distributed over Cq,
2. ρq = (ρ1, . . . , ρq)

T uniformly distributed overM∗q ,

whereM∗q consists of vectors ρq that are consistent with an invertible MA(q) model.
Uniformly distributed θq can be obtained by virtue of the fact that there is symmetry between θ(B) for an invertibleMA(q)

Gaussian time series, andφ(B) for a causal stationaryAR(q) process. To generate a random θq ∈ Cq, one can generate (pseudo-
partial correlations) α̃q ∈ (−1, 1)q and get θq via the Levinson–Durbin algorithm. Then one can get the autocorrelations ρq
based on θq; the autocorrelations of lags greater than q are zero. The results can be considered as a random coefficient vector
and random autocorrelation vector for anMA(q) process. A uniform θq ∈ Cq is covered in Jones [5], but not uniform ρq ∈ M

∗
q .

In the subsequent subsections, we consider the transform from α̃q to θq. The Jacobian is given and an algorithm for
generating ρq is presented.

3.1. Jacobian of θq to α̃q

First, the 1–1 map between θq and α̃q is given below. The first q (non-zero) autocorrelations are:

ρ1 =
−θ1 + θ1θ2 + · · · + θq−1θq

1+ θ21 + · · · + θ2q

ρ2 =
−θ2 + θ1θ3 + · · · + θq−2θq

1+ θ21 + · · · + θ2q
(3.2)

... =
...

ρq =
−θq

1+ θ21 + · · · + θ2q
.

The mapping is 1–1 over θq ∈ Cq. From the Levinson–Durbin algorithm,

θk,k = α̃k, k = 1, . . . , q,

θk,j = θk−1,j − θk−1,k−jα̃k, j = 1, . . . , k− 1, k = 1, . . . , q, (3.3)
θj = θq,j, j = 1, . . . , q.

In order to generate random ρq ∈ M
∗
q , we can start with a distribution for α̃q = (α̃1, . . . , α̃q)

T and apply (3.2) and (3.3).
In order to get a distribution of ρq that is uniform (or non-uniform), we need the Jacobian of the transformation of α̃q to
ρq. If q is fixed and a small integer, the Jacobian can be obtained for an individual q using symbolic manipulation software.
Below, we provide a proof of the general form of the Jacobian.

Proposition 3.1. With the equations in (3.3) and (3.2), for an integer q ≥ 1, the Jacobian of the transformation of α̃q to ρq is:∣∣∣∣ ∂(ρ1, . . . , ρq)∂(α̃1, . . . , α̃q)

∣∣∣∣ = { q∏
k=1

(1− α̃k)2[k/2]+1(1+ α̃k)2[(k−1)/2]+1
}
(1+ θ21 + θ

2
2 + · · · + θ

2
q )
−(q+1). (3.4)

Proof. Note that this Jacobian can be obtained for q = 1 from differentiating ρ1 = −θ1/(1+ θ21 )with respect to θ1 = α̃1.
The remainder of the proof is for q ≥ 2. Consider the invertible MA(q) model:

Xt = (1− θ∗0 )Z
∗

t − θ
∗

1 Z
∗

t−1 − · · · − θ
∗

q Z
∗

t−q, Z∗t ∼
iid N(0, 1),

with θ∗0 < 1 . It is equivalent to the model (3.1) with τ̃ = (1− θ
∗

0 )
2, θ1 = θ

∗

1 (1− θ
∗

0 )
−1, . . . , θq = θ

∗
q (1− θ

∗

0 )
−1. Suppose

that (θ1, . . . , θq) is obtained from the pseudo-partial autocorrelations α̃1, . . . , α̃q , via the equations in (3.3). The domain for
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(θ∗0 , . . . , θ
∗
q ) is therefore the same as that of (φ

∗

0 , . . . , φ
∗
q ) in Lemma 3.3 in Section 3.3. We next obtain the Jacobian of the

transformation from (θ∗0 , . . . , θ
∗
q ) to the autocovariance vector (γ0, . . . , γ1). The autocovariances satisfy:

γ0 = (θ
∗

0 − 1)
2
+ (θ∗1 )

2
+ · · · + (θ∗q )

2,

γ1 = (θ
∗

0 − 1)θ
∗

1 + θ
∗

1 θ
∗

2 + · · · + θ
∗

q−1θ
∗

q ,

... =
...

γq = (θ
∗

0 − 1)θ
∗

q .

In this case, we have∣∣∣∣∣ ∂(γ0, . . . , γq)∂(θ∗0 , . . . , θ
∗
q )

∣∣∣∣∣ = 2 det(I−Θ∗U −Θ∗L T ) = 2 det(I−Θ∗U −Θ∗L ), (3.5)

whereΘ∗U is symmetric,

Θ∗U =


θ∗0 θ∗1 · · · θ∗q
... ↗ 0

θ∗q−1 θ∗q

θ∗q

 , Θ∗L =


0
0 θ∗0
...

...
. . .

0 θ∗q−1 · · · θ∗0

 .
By Lemma 3.3 in Section 3.3, we have

det(I−Θ∗U −Θ
∗

L ) = (1− θ
∗

0 )
q+1

q∏
j=1

(1− α̃k)[k/2]+1(1+ α̃k)[(k−1)/2]+1.

From ∣∣∣∣ ∂(θ∗0 , . . . , θ∗q )∂(τ̃ , θ1 . . . , θq)

∣∣∣∣ = (1− θ∗0 )q−1/2, (3.6)

and ∣∣∣∣∂(γ0, ρ1, . . . , ρq)∂(γ0, γ1, . . . , γq)

∣∣∣∣ = γ−q0 , (3.7)

after some manipulations, we have from a product of (3.7), (3.5) and (3.6):∣∣∣∣∂(γ0, ρ1, . . . , ρq)∂(τ̃ , θ1 . . . , θq)

∣∣∣∣ = (τ̃ /γ0)q q∏
k=1

(1− α̃k)[k/2]+1(1+ α̃k)[(k−1)/2]+1.

Note that ρ1, . . . , ρq is determined by θ1, . . . , θq only and that

γ0 = τ̃ (1+ θ21 + θ
2
2 + · · · + θ

2
q ),

so that we obtain∣∣∣∣∂(γ0, ρ1, . . . , ρq)∂(τ̃ , θ1 . . . , θq)

∣∣∣∣ = γ0

τ̃

∣∣∣∣∂(ρ1, . . . , ρq)∂(θ1 . . . , θq)

∣∣∣∣ ,
and therefore∣∣∣∣∂(ρ1, . . . , ρq)∂(θ1 . . . , θq)

∣∣∣∣ = (τ̃ /γ0)q+1 q∏
k=1

(1− α̃k)[k/2]+1(1+ α̃k)[(k−1)/2]+1

=

{ q∏
k=1

(1− α̃k)[k/2]+1(1+ α̃k)[(k−1)/2]+1
}
(1+ θ21 + θ

2
2 + · · · + θ

2
q )
−(q+1).

Since, from Section 2.1,∣∣∣∣ ∂(θ1 . . . , θq)∂(α̃1, . . . , α̃q)

∣∣∣∣ = q∏
k=2

(1− α̃k)[k/2](1+ α̃k)[(k−1)/2],

from a product of the above two equations, (3.4) obtains. �
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3.2. Algorithm

In this subsection, we derive the algorithm for generating a uniform ρq ∈ M
∗
q .

Let cq be the volume ofM∗q as a subset of q-dimensional Euclidean space. For q = 1, ρ1 lies in (−
1
2 ,
1
2 ) so that c1 = 1.

Using arguments tk,j, ãj in place of the random variables θk,j, α̃j in (3.3), then from (3.4), we get the uniform density
fρq(r1, . . . , rq) = c

−1
q if

fα̃q(ã1, . . . , ãq) = c
−1
q

q∏
k=1

(1− ãk)2[k/2]+1(1+ ãk)2[(k−1)/2]+1(1+ t21 + t
2
2 + · · · + t

2
q )
−(q+1). (3.8)

We can decompose (3.8) as a product

fα̃q(ã1, . . . , ãq) =
(1− ã1)(1+ ã1)
(1+ t21,1)2

×

q∏
k=2

ck−1
ck
(1− ãk)2[k/2]+1(1+ ãk)2[(k−1)/2]+1

[1+
k−1∑
j=1
t2k−1,j]

k

[1+
k∑
j=1
t2k,j]k+1

.

Note that tk,j is a function of ã1, . . . , ãk for j = 1, . . . , k. With this functional form, by induction, we identify

fα̃1(ã1) = (1− ã1)(1+ ã1)/(1+ ã
2
1),

and conditional densities (for k ≥ 2):

fα̃k|α̃1,...,α̃k−1(ãk|ã1,...,ãk−1) =
ck−1
ck
(1− ãk)2[k/2]+1(1+ ãk)2[(k−1)/2]+1

[1+
k−1∑
j=1
t2k−1,j]

k

[1+
k∑
j=1
t2k,j]k+1

=
ck−1
ck
(1− ãk)2[k/2]+1(1+ ãk)2[(k−1)/2]+1(1− 2ηk−1ãk + ã2k)

−(k+1)
[
1+

k−1∑
j=1

t2k−1,j
]−1

, (3.9)

where for i ≥ 1, with ãk = tk,k and tk,j = tk−1,j − tk−1,k−jãk (1 ≤ j < k),

ηi =
ti,1ti,i + ti,2ti,i−1 + · · · + ti,iti,1

1+ t2i,1 + · · · + t
2
i,i

. (3.10)

In (3.9), after omitting the terms that do not involve ãk, let

gk(ãk|ã1, . . . , ãk−1) = (1− ãk)2[k/2]+1(1+ ãk)2[(k−1)/2]+1(1− 2ηk−1ãk + ã2k)
−(k+1). (3.11)

Wehave |ηi| < 1 for all i = 1, . . . , q , and ηk−1 depends on ã1, . . . , ãk−1 only. Let νk1 = 2[k/2]+1 and νk2 = 2[(k−1)/2]+1.
An upper bound on (1 − a)νk1(1 + a)νk2 is (2νk1)νk1(2νk2)νk2/(νk1 + νk2)νk1+νk2 when 1 − a = 2νk1/(νk1 + νk2). An upper
bound on (1− 2ηk−1a+ a2)−1 is (1− η2k−1)

−1 when a = ηk−1. Therefore, an upper bound for the right-hand side of (3.11) is

Nk(ηk−1) =
(2νk1)νk1(2νk2)νk2

(νk1 + νk2)νk1+νk2(1− η2k−1)k+1
. (3.12)

To get uniformρq, the randomvariables α̃1, . . . , α̃q can be simulated sequentially by usingmethod of rejection as follows.

1. Let U ∼ Unif(− 12 ,
1
2 ), set α̃1 ← [−1+

√
1− 4U2 ]/(2U) [or U = −α̃1/(1+ α̃21)], set η1 ← α̃21/(1+ α̃

2
1), and compute

N2(η1) from (3.12) with ν21 = 3, ν22 = 1.
2. For k = 2, . . . , q:
a. Generate Uk ∼ Unif(0, 1) and V ∼ Unif(−1, 1).
b. If Uk < [Nk(ηk−1)]−1gk(V |α̃1, . . . , α̃k−1), set α̃k ← V and go to (c), otherwise repeat step (a).
c. Compute θk,j (1 ≤ j ≤ k − 1) with (3.3), ηk from (3.10) with tk,j = θk,j, and Nk+1(ηk) from (3.12) with νk+1,1 =
2[(k+ 1)/2] + 1 and νk+1,2 = 2[k/2] + 1.

3. Compute ρj, j = 1, . . . , q from (3.2).
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3.3. Technical Lemmae

Lemma 3.2. Let α ∈ (−1, 1)p and φp be defined as in (2.3). We have∣∣∣∣∂(φ1, . . . , φp)∂(ρ1, . . . , ρp)

∣∣∣∣ = ∣∣∣∣∂(φ1, . . . , φp)∂(α1, . . . , αp)

∣∣∣∣ · ∣∣∣∣∂(α1, . . . , αp)∂(ρ1, . . . , ρp)

∣∣∣∣
=

{
p∏
k=2

(1− αk)[k/2](1+ αk)[(k−1)/2]
}
· det(R−1p−1), (3.13)

where Rp−1 = R(ρp−1) (dimension p× p with no ρp). Note that when p = 1, the Jacobian is 1.

Proof. The proposition is a direct consequence of the results in Sections 2.1 and 2.2. �

Lemma 3.3. Let α ∈ (−1, 1)p and φ∗0 < 1 , Define φp by (2.3). Let

8∗U =


φ∗0 φ∗1 . . . φ∗p
... ↗ 0

φ∗p−1 φ∗p

φ∗p

 , 8∗L =


0
0 φ∗0
...

...
. . .

0 φ∗p−1 . . . φ∗0

 ,
where φ1 = φ∗1 (1− φ

∗

0 )
−1, . . . , φp = φ

∗
p (1− φ

∗

0 )
−1 . Then,

det(I−8∗U −8
∗

L ) = (1− φ
∗

0 )
p+1

p∏
k=1

(1− αk)[k/2]+1(1+ αk)[(k−1)/2]+1. (3.14)

Proof. Consider the AR(p) model of the form:

Xt = φ∗0Xt + φ
∗

1Xt−1 + · · · + φ
∗

pXt−p + ε
∗

t , (3.15)

where φ∗0 < 1 and ε
∗
t ∼ N(0, 1). It is equivalent to the model with τ = σ

2
= (1 − φ∗0 )

−2, φ1 = φ
∗

1 (1 − φ
∗

0 )
−1, . . . , φp =

φ∗p (1− φ
∗

0 )
−1.

In the following, we find det(I−8∗U −8
∗

L ) via the identity

J∗ = (Γ + τe0eT0)
−1(I−8∗U −8

∗

L ), (3.16)

where J∗ is the Jacobian of transforming φ∗0 , φ
∗

1 , . . . , φ
∗
p to the autocovariances γ0, γ1, . . . , γp.

To establish (3.16), we consider a modified Yule–Walker equation
γ0
γ1
...
γp

 =

γ0 γ1 . . . γp
γ1 γ0 . . . γp−1
...

...
. . .

...
γp γp−1 . . . γ0



φ∗0

φ∗1
...
φ∗p

+

(1− φ∗0 )

−1

0
...
0

 .
With indices of the vectors and matrices from 0 to p, and ei (i = 0, . . . , p) representation the vector with 1 in the position i
and 0 elsewhere, the matrix form of the above equation is:

γ = 0φ∗ + (1− φ∗0 )
−1e0. (3.17)

Differentiate both sides of (3.17) with respect to γi, we obtain

0


∂φ∗0

∂γi
...
∂φ∗p

∂γi

+


φ∗i
...
φ∗p
0
...
0


+



0
...
0
φ∗0
...

φ∗p−i


+ (1− φ∗0 )

−2


∂φ∗0

∂γi

0
...
0

 = ei,
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for i = 1, 2, . . . , p, and

0


∂φ∗0

∂γ0
...
∂φ∗p

∂γ0

+
φ
∗

0
...
φ∗p

+ (1− φ∗0 )−2

∂φ∗0

∂γ0

0
...
0

 = e0.

Then, we have

(0+ τe0eT0)J
∗
+8∗U +8

∗

L = I,

and the identity (3.16) follows.
Next, we find det(0+ τe0eT0) and det(J

∗).We have

det(0+ τe0eT0) = γ
p+1
0 det[Rp] + τγ

p
0 det(Rp−1)

= γ
p+1
0

p∏
j=1

(1− α2j )
p+1−j

+ γ
p+1
0

p∏
j=1

(1− α2j )
p−1∏
j=1

(1− α2j )
p−j

= 2γ p+10

p∏
j=1

(1− α2j )
p+1−j, (3.18)

where, in the second equality, we have used equation (8) from Barndorff-Nielsen and Schou [6]:

γ0 = τ(1− α21)
−1 . . . (1− α2p)

−1. (3.19)

Also

det(J∗) =
∣∣∣∣∂(φ∗0 , . . . , φ∗p )∂(γ0, . . . , γp)

∣∣∣∣ = ∣∣∣∣ ∂(φ∗0 , . . . , φ∗p )∂(τ , φ1 . . . , φp)

∣∣∣∣ · ∣∣∣∣ ∂(τ , φ1 . . . , φp)∂(γ0, ρ1, . . . , ρp)

∣∣∣∣ · ∣∣∣∣∂(γ0, ρ1, . . . , ρp)∂(γ0, γ1, . . . , γp)

∣∣∣∣ .
It is straightforward to show that∣∣∣∣ ∂(φ∗0 , . . . , φ∗p )∂(τ , φ1 . . . , φp)

∣∣∣∣ = (1− φ∗0 )p+3/2, ∣∣∣∣∂(γ0, ρ1, . . . , ρp)∂(γ0, γ1, . . . , γp)

∣∣∣∣ = γ−p0 .

Note that ρ1, . . . , ρp are determined solely by φ1, . . . , φp. Using (3.19),∣∣∣∣ ∂(τ , φ1 . . . , φp)∂(γ0, ρ1, . . . , ρp)

∣∣∣∣ = τ

γ0
·

∣∣∣∣ ∂(φ1 . . . , φp)∂(ρ1, . . . , ρp)

∣∣∣∣ .
Then, from Lemma 3.2, we have

det(J∗) =
1
2
(1− φ∗0 )

p+1γ
−(p+1)
0

{ p∏
k=2

(1− αk)[k/2](1+ αk)[(k−1)/2]
}
det(R−1p−1). (3.20)

Eq. (3.14) now follows from Eqs. (3.16) and (2.2) with the product of (3.20) and (3.18). �

4. Marginal distributions of ρj and φj for AR(p) and MA(q)

For simulation studies or Bayesian inference for statistical models with a Toeplitz matrix as a parameter, the behavior of
the marginal distributions of ρj can help in choosing among the various generating methods for ρp ∈ Mp or ρq ∈ M

∗
q . In this

section, we present numerical results on the first twomoments of the marginal distributions of ρj and φj for AR(p), or ρj and
θj for MA(q), when αp or α̃q is generated with one of the distributions in Section 2 or 3. Some theoretical properties of the
expected values, motivated from the computational results, of ρj, φj and θj are also given.
First, we consider moments for AR(p). For AR(p), the expressions for the φj’s in terms of αj’s can be obtained by means of

the Levinson–Durbin formula in (2.3). For p = 3, this leads to:

φ1 = α1 − α1α2 − α2α3, φ2 = α2 − α1α3 + α1α2α3, φ3 = α3.

A general pattern is given in the next proposition.

Proposition 4.1. φ1, . . . , φp are polynomials in α1, . . . , αp where the power of each αj in any term is 0or 1. In addition, for all
k = 1, 2, . . . , p− 1, and j = 1, 2, . . . , p, φk includes at least one term involving αj.
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Proof. This can be seen inductively from the Levinson–Durbin formula (2.3). Note that both ϕk,j and ϕk,k+1−j do not depend
on αk+1. Therefore, we have the power of each αj in any term is 0 or 1. �

The expressions for ρj in terms of αj’s can be obtainedwith properties of conditional distributions ofmultivariate normal,
or recursively by (2.4) and the Levinson–Durbin formula (2.3). We list the first four ρk:

ρ1 = α1,

ρ2 = α
2
1 + α2(1− α

2
1),

ρ3 = α3(1− α22)(1− α
2
1)+ α

3
1(1− α2)

2
+ α1(2α2 − α22),

ρ4 = α4 +
[
α21 + α

2
2 + α

2
3 − α

2
1α
2
2 − α

2
1α
2
3 − α

2
2α
2
3 + α

2
1α
2
2α
2
3

]
(1− α4)

+ (1− α21)(1− α2)
(
α2α3 + α3 − α1 + α1α2

)2
.

The next proposition explains a general pattern of the ρk’s in terms of the αj’s. This and the previous proposition help with
the evaluation, via symbolicmanipulation software, of themoments of the randomρk’s orφk’swhen theαj’s are independent
random variables.

Proposition 4.2. For k = 1, 2, . . . , p, ρk is a polynomial in α1, . . . , αk; the highest degree of αi in ρk is k + 1 − i, where
i = 1, . . . , k. For example, in ρ4, the highest power of α1 is α41 , the highest power of α2 is α

3
2 , the highest power of α3 is α

2
3 , the

highest power of α4 is α14 .

Proof. This can be shown inductively fromProposition 4.1 and (2.4). Assume that for all j = 1, 2, . . . , k−1 , whenm ≤ k−j,
the highest power of αm in ρk−j is α

k+1−j−m
m . In what follows, we consider the highest power of αi , i = 1, 2, . . . , k, for each

terms ϕk,jρk−j.

Case: i = 1, 2, . . . , k − 1. From Proposition 4.1, the highest power of αi in ϕk,j is α1i . By our inductive assumptions, the
highest power of αi in ρk−j is α

(k+1−j−i)
i .We see that on the right-hand side of (2.4), the highest power of αi appears in the

term with j = 1 , and the power is 1+ (k− i) = k+ 1− i.

Case: i = k . Note that αk appears only in the term with j = k and we have ϕk,kρk−k = αk = αk+1−kk .

This completes the induction. �

If the partial correlations αj have independent Beta distributions as given in Sections 2.1 and 2.2, then ρ1 = α1 has a Beta
distribution. However there are no simple marginal distributions for ρ2, . . . , ρp. For example for AR(2), it can be checked
that there is no simple distribution for ρ2 = α21 + α2(1 − α

2
1) when α1, α2 are random. Because φp = αp for AR(p), p ≥ 2,

αp has a Beta distribution. However there are no simple marginal distributions for φ1, . . . , φp−1.
This differs from the case of an unstructured correlation matrix, as studied in Joe [2]; with appropriate Beta distributions

on some partial correlations, the joint distribution of all correlations is proportional to a power of the determinant, which
then implies that the marginal distribution of each correlation is the same Beta distribution.
Therefore for comparing the distributions of ρj andφj for based on uniform over theρp space orφp space, we compare the

expected values and variances. Table 1 show the numerical values for p = 3, 4, 5; the results were obtained with symbolic
manipulation programs in Maple (and compared with simulation results as a check); the properties of Propositions 4.1 and
4.2 were embedded in the programs. The last two columns contain another interesting case, corresponding to uniform over
the ρp space with the restriction to positive α values. This is interpretation as a case of strong positive serial dependence,
which one might be useful in simulation studies. Probabilistically, αj are independent random variables with density
functions

fαj(a) ∝ (1− a
2)p−j for 0 < a < 1, (4.1)

that is, αj = |Bj|where Bj ∼ Beta(p+1− j, p+1− j) on (−1, 1) or equivalently α2j ∼ Beta(
1
2 , p+1− j); the evenmoments

of αj can be obtained from the Beta distribution and the odds moments can be obtained through a recursion.
Note that uniform over the φp space leads to ρj that have higher variance than uniform over the ρp space. Also the

expected values of the φj are all zero only in the latter case of uniform ρp. For the case of positive αj in (4.1), note that the
condition implies all ρj are positive, but the φj can be negative. The pattern from larger values of p ≥ 5 is the expected value
of φ1 is negative and then increases to 0.5 for φp. Some of the patterns appearing in Table 1 are explained in the following
proposition.

Proposition 4.3. (I) For α1, . . . , αp leading to uniform in the φp space, E [φj] = 0 for j odd, and E [φj] < 0 for j even; in
addition, when p is odd, E[φ1], . . . , E[φp−1] are the same as those for p − 1. For α1, . . . , αp leading to uniform in the ρp
space, E [φj] = 0 for all j;

(II) For α1, . . . , αp leading to uniform in the φp or ρp space, E [ρj] = 0 for j odd.
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Table 1
Means and variances for AR(p) with p = 3 and p = 4.

Variable Uniform ρp Uniform φp Uniform Toeplitz, pos. α
Exp. value Variance Exp. value Variance Exp. value Variance

p = 3

ρ1 0 0.143 0 0.333 0.312 0.045
ρ2 0.143 0.180 0.111 0.277 0.464 0.056
ρ3 0 0.247 0 0.263 0.550 0.059

φ1 0 0.238 0 0.733 0.008 0.076
φ2 0 0.257 −0.333 0.356 0.277 0.090
φ3 0 0.333 0 0.200 0.500 0.083

p = 4

ρ1 0 0.111 0 0.333 0.273 0.036
ρ2 0.111 0.133 0.111 0.277 0.389 0.045
ρ3 0 0.168 0 0.263 0.446 0.048
ρ4 0.123 0.215 0.076 0.244 0.570 0.055

φ1 0 0.222 0 0.800 −0.117 0.096
φ2 0 0.224 −0.400 0.587 0.121 0.025
φ3 0 0.252 0 0.373 0.340 0.094
φ4 0 0.333 −0.200 0.160 0.500 0.083

p = 5

ρ1 0 0.091 0 0.333 0.246 0.030
ρ2 0.091 0.106 0.111 0.277 0.339 0.037
ρ3 0 0.127 0 0.263 0.383 0.039
ρ4 0.099 0.153 0.076 0.244 0.477 0.045
ρ5 0 0.195 0 0.238 0.501 0.054

φ1 0 0.212 0 0.828 −0.211 0.108
φ2 0 0.206 −0.400 0.640 −0.003 0.050
φ3 0 0.216 0 0.480 0.210 0.070
φ4 0 0.248 −0.200 0.274 0.387 0.097
φ5 0 0.333 0 0.143 0.500 0.083

Proof of (I). Uniform ρp. The required results can be established by induction using the Levinson–Durbin formula (2.3), the
facts that E[ϕj,j] = E[αj] = 0 , and ϕk,k+1−j do not depend on αk+1.
Uniform φp. Note that when k is odd, the two Beta parameters of αk are the same, and E[ϕk,k] = E[αk] = 0 . When k is

even, the two Beta parameters differ by one, and E[ϕk,k] = E[αk] < 0 . Next, we apply mathematical induction with the
Levinson–Durbin formula. Assume that E [ϕk,j] = 0 for j odd, and E [ϕk,j] < 0 for j even. Below, we show that E [ϕk+1,j] = 0
for j odd, and E [ϕk+1,j] < 0 for j even.
Case: j is odd. Note that k + 1 and k + 1 − j cannot be both odd or both even. Therefore, either E[ϕk+1,k+1] = 0 or
E[ϕk,k+1−j] = 0 . Then, we have E[ϕk+1,j] = 0.
Case: j is even. When k is even, both E[ϕk+1,k+1] and E[ϕk,k+1−j] equal zero, whereas when k is odd, both of the above
expectations. are less than zero. In both situations, we have E[ϕk+1,j] < 0 by the Levinson–Durbin formula.
From the Levinson–Durbin formula (2.3), when p is odd and j < p, we have

E[φj] = E[ϕpj] = E[ϕp−1,j] − E[αp]E[ϕp−1,p−j] = E[ϕp−1,j],

and the latter is E(φj) for AR(p− 1). Here, we have used E[αp] = 0.
Proof of (II). Uniform ρp: This can be seen by noting that the one to one transformation

(ρ1, ρ2, ρ3, . . . , ρp) 7−→ (−ρ1, ρ2,−ρ3, . . . , (−1)pρp)

preserves the positive definiteness of Rp . Therefore, E [ρj] = 0 is a result of symmetry. In addition, we have E [h(ρj)] = 0
for any odd function h(·).
Uniform φp. Note that the above transformation is equivalent to

(α1, α2, α3, . . . , αp) 7−→ (−α1, α2,−α3, . . . , (−1)pαp).

The density function of ρ remains unchange under this transformation, because αk have symmetric Beta distributions on
(−1, 1) for k odd. �

Wenext show some results for p = 3 to illustrate the effect of η in Section 2.2. Bymaking the joint density of ρp proportional
to |r|η−1, increasing η leads to decreasing variance in the ρj and φj. The equations for the variances are obtained via Maple
as:
• Var (ρ1) = 1/(6η + 1);
• Var (ρ2) = 4η(9η + 2)/[(4η + 1)(6η + 1)2];
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Table 2
Means and variances for MA(q) with q = 3 and q = 4.

Variable Uniform ρq Uniform θq

Exp. value Variance Exp. value Variance

q = 3

ρ1 0 0.104 0 0.242
ρ2 0.084 0.054 0.104 0.097
ρ3 0 0.039 0 0.049

θ1 0 0.167 0 0.733
θ2 −0.140 0.094 −0.333 0.356
θ3 0 0.076 0 0.200

q = 4

ρ1 0 0.101 0 0.267
ρ2 0.096 0.065 0.137 0.143
ρ3 0 0.041 0 0.070
ρ4 0.057 0.029 0.067 0.031

θ1 0 0.155 0 0.800
θ2 −0.140 0.106 −0.400 0.587
θ3 0 0.071 0 0.373
θ4 −0.088 0.062 −0.200 0.160

• Var (ρ3) = (72η2 + 18η + 5)/[(4η + 1)(6η + 1)(6η + 5)];
• Var (φ1) = (2η + 3)/[(2η + 1)(6η + 1)];
• Var (φ2) = 3(2η + 1)/[(4η + 1)(6η + 1)];
• Var (φ3) = 1/(2η + 1).

The non-zero mean is E (ρ2) = 1/(6η + 1).
Finally, we go to the MA(q) model as discussed in Section 3. The MA coefficients can be simulated to be uniform in the

θq space, from the pseudo-partial autocorrelations α̃j ∼ Beta([(j + 1)/2], [j/2] + 1) on the interval (−1, 1). Also, random
MA coefficients corresponding to uniform in the ρq space can be obtained. Table 2 has some simulation results for MA(3)
and MA(4) models; the means and variances are obtained from 106 replications. Note that the mean and variance of θj for
uniform θq coincide with the results of φj for uniform φp. As before, there is smaller variances for uniform in the ρq space.
Some patterns shown in Table 2 are summarized in the next proposition.

Proposition 4.4. (I) For pseudo-partial autocorrelations α̃1, . . . , α̃q leading to uniform in the θq space or the ρq space, we have
E [θj] = 0 and E [ρj] = 0 for j odd.

(II) For pseudo-partial autocorrelations α̃1, . . . , α̃q leading to uniform in the θq space, we have E [θj] < 0 for j even.

Proof. The conclusion (I) can be seen by considering the following three bijections,

(ρ1, ρ2, ρ3, . . . , ρq) 7−→ (−ρ1, ρ2,−ρ3, . . . , (−1)qρq)
(α̃1, α̃2, α̃3, . . . , α̃q) 7−→ (−α̃1, α̃2,−α̃3, . . . , (−1)qα̃q)
(θ1, θ2, θ3, . . . , θq) 7−→ (−θ1, θ2,−θ3, . . . , (−1)qθq).

The above transformations are equivalent to each other. Therefore, the conclusions are a result of symmetry. The conclusion
(II) is a consequence of Proposition 4.3 by considering the equivalence of θq space and φq space. �

5. Application of random Toeplitz matrix

In this section,we give an example to illustrate the usefulness of randomToeplitzmatrices for non-normal time series.We
apply the simulation methods developed in Section 2.2 to check if a Toeplitz matrix can be a Spearman rank correlation for
a given time series model, and estimate the proportion of such Toeplitz matrices relative to all Toeplitz correlation matrices
of a fixed dimension.
Let F be a continuous univariate cumulative distribution function. One example of a model with stationary margin F is

constructed as follows. Let Φ be the standard normal cumulative distribution function. Let {Xt} is a stationary zero-mean
Gaussian time series, and let Yt = F−1(Φ(Xt)), so that {Yt} is a stationary time series with univariate margin F . This model
is used in Biller and Nelson [11].
The serial correlation Corr(Yt , Yt+k) depends on F , but the rank correlation Corr(F(Yt), F(Yt+k)) does not. The rank

correlation corresponds to the correlation when F is the U(0, 1) cumulative distribution function. For the bivariate normal
distribution with correlation parameter ρ, the rank correlation is ρr = 6π−1 arcsin(ρ/2).
For a stationary time series model with non-normal margin, we might be interested in the possible Toeplitz matrices of

order p+1.We can do the following to get a proportion. Startwith a (p+1)×(p+1) Toeplitzmatrixwith entriesρr1, . . . , ρrp



1544 C.T. Ng, H. Joe / Journal of Multivariate Analysis 101 (2010) 1532–1545

Table 3
Proportion of Toeplitz matrices that can be served as a Ranked Correlation matrix of Φ(Xt ) with {Xt } being stationary zero-mean AR(p) Gaussian time
series.

p Proportion p Proportion

3 0.943 11 0.667
4 0.908 12 0.637
5 0.870 13 0.610
6 0.835 14 0.582
7 0.798 15 0.557
8 0.764 16 0.532
9 0.730 17 0.509
10 0.699 18 0.485

for lags 1 to p. Let ρj = 2 sin(πρrj/6) for j = 1, . . . , p. If the Toeplitz matrix with ρp = (ρ1, . . . , ρp) is positive definite,
then it corresponds to a stationary zero-mean AR(p) Gaussian time series {Xt} and ρr1, . . . , ρrp are the serial correlations for
{Φ(Xt)}. By simulating random (ρr1, . . . , ρrp) uniform inMp, and determining the proportion for which the Toeplitz matrix
with ρp is positive definite, wewill get the proportion of Toeplitz correlationmatrices that can be serial correlations of some
stationary time series of the form {Φ(Xt)}.
The simulation results are summarized in Table 3. Each estimated value is obtained from106 replications and the standard

errors are from 0.0002 to 0.0005 so we report three decimal places. The proportions do not decrease to 0 as fast as in the
case of the correlation matrix based on the general normal-to-anything method (compare with page 82 of [12]).
More generally in dependence modelling (see [13]), multivariate models are compared in the range of dependence

that they cover. For models for non-normal time series and longitudinal data for which autocorrelations are a reasonable
dependence measure, the inequalities for the autocorrelations might be complicated. Examples are integer-valued moving
average time series in Al-Osh and Alzaid [14], integer-valued autoregressive time series in Al-Osh and Alzaid [15], methods
for generating binary longitudinal data with m-dependence in Lunn and Davies [16]. The range of dependence of different
models can be assessed via the proportion of the relevant Toeplitz matrix space that is covered.

6. Discussion

The main idea in this paper has been to derive distributions, include uniform, of (a) ρp and φp for AR(p) based on the
partial autocorrelation vector αp ∈ (−1, 1)p, and (b) ρq and θq for MA(q), based on the pseudo-partial autocorrelation
vector α̃q ∈ (−1, 1)q. The (pseudo)-partial autocorrelations are algebraically independent, whereas the constraints of ρp,
φp, ρq and θq are non-linear.
We have shown that there are big differences in the behavior of the autocorrelations and AR or MA coefficients when

generating at random uniformly from the autocorrelation ρ space versus uniformly from the coefficient vector φ or θ space.
Researcherswhowant to simulate randomparameters for aGaussian time seriesmodel or amodelwith a structured Toeplitz
correlation matrix need to think carefully about the choice of distributions for the partial autocorrelations.
Themain results that we derive include the Jacobians in Sections 2.1 and 2.2 and Proposition 3.1. Combining the Jacobian

with any distribution for αp or α̃q and we can get non-uniform distributions for ρ consistent with AR(p) or MA(q). For
applications such as random effects for ρ or Bayesian inference with historical information, one might want to choose
distributions for αp or α̃q so that the distribution of ρ is centered at a Toeplitz matrix with positive dependence, rather than
having a simple density that is proportional to a power of det(r). More specifically, consider a large data setwith longitudinal
data for many subjects or multivariate time series (univariate time series for many different related financial/economic
variables). The model can be simplified if we assume that the autocorrelation parameters of the marginal time series are
random with a parametric mixing distribution. Our theory provides a way to specify the mixing distribution by choosing
appropriate distributions for αp or α̃q. If a mixing density that is proportional to a power of det(r), is appropriate, then the
parameter η or δ in (2.1) could be estimated with an empirical Bayesian approach.
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