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In this Letter by utilizing the Noether symmetry approach in cosmology, we attempt to find the tachyon
potential via the application of this kind of symmetry to a flat Friedmann–Robertson–Walker (FRW)
metric. We reduce the system of equations to simpler ones and obtain the general class of the tachyon’s
potential function and f (R) functions. We have found that the Noether symmetric model results in a
power law f (R) and an inverse fourth power potential for the tachyonic field. Further we investigate
numerically the cosmological evolution of our model and show explicitly the behavior of the equation of
state crossing the cosmological constant boundary.

© 2011 Elsevier B.V. Open access under CC BY license. 
1. Introduction

Observations of type Ia supernovae (SNIa) indicate that cur-
rently the observable Universe is undergoing an accelerating ex-
pansion [1]. This cosmic acceleration has also been confirmed
by numerous observations of large scale structure (LSS) [2] and
measurements of the cosmic microwave background (CMB)
anisotropy [3]. The cause of this cosmic acceleration is generally
labeled as “dark energy”, a mysterious exotic energy which gen-
erates a large negative pressure, whose energy density dominates
the Universe (for a review see e.g. [4]). The astrophysical nature of
dark energy is that it does not cluster at any scale unlike normal
baryonic matter which forms structures. The combined analysis of
cosmological observations suggests that the Universe is spatially
flat and consists of about 70% dark energy, 30% dust matter (cold
dark matter plus baryons) and negligible radiation. The nature of
dark energy as well as its cosmological origin remain mysterious
at present.

One of the approaches to the construction of a dark energy
model is to modify the geometrical part of the Einstein equa-
tions. The general paradigm consists in adding into the effective
action, physically motivated higher-order curvature invariants and
non-minimally coupled scalar fields. The representative models
based on this strategy are termed ‘modified gravity’ and include
f (R) gravity [5], Horava–Lifshitz gravity [6–8], scalar-tensor grav-
ity [9,10] and the braneworld model [11,12]. Modified gravity has
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been successful to explain the rotation curves of galaxies, the mo-
tion of galaxy clusters and the Bullet Cluster [13].

Besides compatibility with the observational data, the minimal
criteria that a modified gravity theory must satisfy in order to be
viable are [14]: (1) reproducing the desired dynamics of the Uni-
verse including an inflationary era, followed by a radiation era and
a matter era and finally, by the present acceleration epoch; (2) the
theory must have Newtonian and post-Newtonian limits compat-
ible with the available Solar System observational data; (3) the
theory must not have deviations from general relativity at the level
of accuracy following from present laboratory and Solar System
tests of gravity; (4) the theory must possess a future stable (or
at least meta-stable) de Sitter asymptote, which is necessary for
a description of the present dark energy; (5) the theory must be
stable at the classical and quantum level.

The f (R) theory of gravity is a meticulous class of modified
theories of gravity. This theory can be obtained by replacing the
Ricci scalar R with an arbitrary function f (R) in the Einstein–
Hilbert Lagrangian. The dynamical equations of motion can be
obtained by varying the Lagrangian with respect to the metric
(metric formalism) or viewing the metric and connections as in-
dependent variables and varying the action with respect to both
independently (Platini formalism) [15,16]. Nojiri and Odintsov have
shown that inflation and current cosmic acceleration may take
place by adding positive and negative powers of curvature into the
Einstein–Hilbert Lagrangian [17]. Carroll et al. have proposed that
by adding an inverse term of R to the Einstein–Hilbert Lagrangian
would lead to cosmic speed-up which will instigate purely gravita-
tional effects [18]. It should be mentioned that the main deficiency
of such theories is that they are solemnly constrained by Solar Sys-
tem tests [19,20]. Amendola et al. [21] and Starobinsky [22] have
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proposed different forms of f (R) that can satisfy both cosmologi-
cal and local gravity constraints.

In the past, the use of tachyon in certain string theories has
been explored which has resulted in a better understanding of
the D-brane decaying process [34,35]. This led to study the role
of tachyon in cosmology as well. A rolling tachyon field φ has an
equation of state whose parameter smoothly interpolates between
−1 and 0 [36]. Thus, a tachyon can be realized as a suitable can-
didate for the inflation at high energy [37] as well as a source of
dark energy depending on the form of the tachyon potential [38].
Therefore it becomes meaningful to reconstruct a tachyon potential
V (φ) in the framework of f (R) gravity. It was demonstrated that
dark energy driven by tachyon, decays to cold dark matter in the
late accelerated Universe and this phenomenon yields a solution to
the cosmic coincidence problem [39].

The plan of this Letter is as follows: In Section 2, we present
the formal framework of the f (R)–Born–Infeld effective action of
tachyon. In Section 3, we construct the governing differential equa-
tions from the Noether condition and solve them in an accompany-
ing subsection. In Section 4, we study the dynamics of the present
model. Finally we conclude this work.

2. Formal framework of the f (R)–Born–Infeld effective action
of tachyon

We consider a spatially flat FRW cosmology with a tachyon part
is taken as the usual Born–Infeld action. A generalization of the
Einstein–Hilbert action with a modified tachyon action for matter
sector has been discussed previously [40]. The action in (n + 1)

dimensions is

S =
∫

dn+1x
√−g

[
f (R) − V (φ)

√
1 − α′∇μφ∇μφ

]
. (1)

We take c = 1,16πG = 1, sig(g) = 1 − n and the coordinates are
xμ = (t, xi), i = 2 . . .n + 1. We define α′ = α

M4 as the coupling
constant and M an energy scale to make the kinetic part of the
action dimensionless. For n = 3, the action (1) represents the 4-D
effective action of tachyon field and gives the dynamics to the low-
est order in ∇μφ∇μφ. The function f (R) is an arbitrary function
of the Ricci scalar R . The energy–momentum (EM) tensor for the
tachyon field is [41]

T μν
T = gμν V (φ)h + α

M4

V (φ)

h
∇μφ∇μφ. (2)

Here we take h = √
1 − α′∇μφ∇μφ. By varying the action (1) with

respect to the metric gμν and the scalar field φ, we obtain the
corresponding equations of motion (EOM)1:

1

2
gμν f (R) − f ′(R)Rμν + ∇μ∇ν f ′(R) − gμν� f ′(R)

= 1

2

(
gμν V (φ)h + α

M4

V (φ)

h
∇μφ∇μφ

)
, (3)

∇μ

(
V (φ)∇μφ

h

)
+ h

α′
dV (φ)

dφ
= 0. (4)

Our main goal is the construction of a potential function V (φ) and
the exact form of the gravity sector f (R) using the Noether sym-
metry by following the procedure of [42]. If the tachyon sector is
removed, the resulting action is nothing but the f (R) action whose
symmetry analysis (without the gauge term) has been discussed
in [25].

1 In this Letter we adopt ȧ = da
dt , f ′ = ∂ f

∂ R .
3. Noether symmetry approach in f (R)–tachyon model in four
dimensions

We consider the action (1) representing the dynamical sys-
tem in which the scale factor a(t), curvature scalar R and the
tachyon field φ play the role of independent dynamical variables.
We can write (1) in a background of flat FRW metric gμν =
diag(1,−a2(t)ηi j) (i, j = 2,3,4) as

S =
∫

dt

[
a3( f (R) − V (φ)

√
1 − α′φ̇2

)

− λ

(
R − 6

((
ȧ

a

)2

+ ä

a

))]
. (5)

We can obtain the Lagrange-multiplier λ by varying the action
(5) with respect to R . This procedure leads to λ = a3 f ′(R). For a
purely vacuum f (R)–tachyon cosmology, we obtain the following
Lagrangian

L(a, ȧ, R, Ṙ, φ, φ̇) = 6ȧ2af ′ + 6ȧṘa2 f ′′ + a3( f ′R − f
)

− a3 V (φ)

√
1 − α′φ̇2. (6)

3.1. Exact solutions

Noether symmetries are the symmetries associated with La-
grangians which may help in discovering new features of the grav-
itational theories. For instance, the application of Noether sym-
metries in higher-order theory of gravity turns out to be a pow-
erful tool to find the solution of the field equations [23]. The
Noether symmetry approach when applied to scalar-tensor cos-
mology yields an extra correction term R−1 and fixes the form
of the coupling parameter and the field potential [24]. Noether
symmetries when applied to a generic f (R) cosmological model
yields exact forms of the f (R) functions and also generates an
effective state parameter that produces cosmic acceleration [25–
29]. A similar approach when applied to Platini f (R) gravity yields
a power-law form f (R) ∼ Rn [31]. Recently a model-independent
criterion has been proposed based on first integrals of motion,
due to Noether symmetries of the equations of motion, in order
to classify the dark energy models in the context of scalar field
(quintessence or phantom) FRW cosmologies [30]. Although in the
literature Noether symmetries have been studied in the context of
f (R) theory of gravity [25–29], all these authors have used the
definition of Noether symmetries without a gauge term. Taking
into account the gauge term gives a more general definition [32,
33] of the Noether symmetries. Thus one may expect some extra
symmetry generators from this definition and hence one may ob-
tain some extra (new) forms of f (R). Here we apply the Noether
condition with the gauge term to look at some interesting forms
of f (R).

A vector field

X = τ (t,a, R, φ)
∂

∂t
+ α(t,a, R, φ)

∂

∂a

+ β(t,a, R, φ)
∂

∂ R
+ γ (t,a, R, φ)

∂

∂φ
, (7)

is a Noether symmetry corresponding to a Lagrangian L(t,a, R, φ,

ȧ, Ṙ, φ̇) if

X [1]L + LDt(τ ) = Dt B, (8)

holds, where X [1] is the first prolongation of the generator X ,
B(t,a, R, φ) is a gauge function and Dt is the total derivative oper-
ator
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Dt ≡ ∂

∂t
+ ȧ

∂

∂a
+ Ṙ

∂

∂ R
+ φ̇

∂

∂φ
. (9)

The prolonged vector field is given by

X [1] = X + αt
∂

∂ȧ
+ βt

∂

∂ Ṙ
+ γt

∂

∂φ̇
, (10)

in which

αt = Dtα − ȧDtτ , βt = Dtβ − Ṙ Dtτ ,

γt = Dtγ − φ̇Dtτ . (11)

The Noether condition (8) results in the over-determined system
of equations

γ (φ)′ − τ̇ (t) = 0, (12)

3αV + γ aV ′ + τ̇aV = 0, (13)

αR = αφ = 0, (14)

βφ = 0, (15)

α f ′ + βaf ′′ + 2af ′αa − af ′τ̇ + a2 f ′′βa = 0, (16)

2aα f ′′ + a2β f ′′′ + a2αa f ′′ + a2 f ′′βR = 0, (17)

12αtaf ′ + 6a2 f ′′βt = Ba, (18)

6a2 f ′′αt = B R , (19)

Bφ = 0, (20)(
3a2α + τ̇a3)( f ′R − f

) + βa3 f ′′R = Bt, (21)

provided f ′′ �= 0. Eq. (12) implies

γ = c1φ + c2,

τ = c1t + c3, (22)

where cis are constants. Then Eqs. (13) and (14) give

α = c4a, (23)

where c4 is a further arbitrary constant. Thus V (φ) satisfies the
ordinary differential equation

(3c4 + c1)V + (c1φ + c2)V ′ = 0. (24)

Its solution is

V = V 0(φ + φ0)
−4,

where V 0 and φ0 are constants. Eqs. (15), (18)–(21) and (23) fur-
ther reveal that β satisfies

β f ′′R + (3c4 + c1)
(

f ′R − f
) = c5a−3, (25)

where c5 is a constant. Then (16) gives rise to f (R) being of the
form

f (R) = rRν, (26)

where r is a constant and ν = (3c4 + c1)/2c1 provided c1 �= 0.
Note that c1 = 0 results in f being constant so it is excluded from
further consideration. Also c5 in (25) turns out to be zero as a con-
sequence of (16).

The insertion of (26) into (21) yields

β = −2c1 R. (27)

Eq. (17) now provides the further constraint

c4 = c1. (28)
As we saw earlier ν = (3c4 + c1)/2c1, thus using (28) we deduce
ν = 2 and therefore the quadratic power law

f (R) = rR2. (29)

For f (R) = rR2 and V = V 0(φ + φ0)
−4, there are two Noether

symmetries given by

X1 = ∂

∂t
,

X2 = t
∂

∂t
+ a

∂

∂a
+ (φ + φ0)

∂

∂φ
− 2R

∂

∂ R
. (30)

Here the gauge function is zero. The first symmetry X1 (invari-
ance under time translation) gives the energy conservation of the
dynamical system in the form of (31) below, while the second
symmetry X2 (scaling symmetry) and a corresponding conserved
quantity of the form (32) below. The two first integrals (conserved
quantities) which are

I1 = τ L − ȧ
∂L

∂ȧ
− Ṙ

∂L

∂ Ṙ
− φ̇

∂L

∂φ̇

= −6aȧ2 f ′ − 6a2ȧṘ f ′′ + a3( f ′R − f
) − a3 V

√
1 − α′φ̇2

− α′a3 V φ̇2(1 − α′φ̇2)−1/2
, (31)

I2 = tL + (a − tȧ)
∂L

∂ȧ
+ (−2R − t Ṙ)

∂L

∂ Ṙ
+ (φ + φ0 − tφ̇)

∂L

∂φ̇

= −12aȧ2trR + a3trR2 + 12a3r Ṙ

− 12a2tȧṘ − ta3
√

1 − α′φ̇2 V 0(φ + φ0)
−4

− α′a3tφ̇2(1 − α′φ̇2)−1/2
V 0(φ + φ0)

−4

+ α′a3φ̇V 0(φ + φ0)
−3(1 − α′φ̇2)−1/2

. (32)

4. Cosmic evolution

According to the observations of type Ia supernovae Gold
dataset [38,43], there exists the possibility that the effective equa-
tion of state (EOS) parameter, which is the ratio of the effective
pressure of the Universe to the effective energy density, evolves
from values greater than −1 to less than −1 (see [44] for ex-
tensive set of references on the studies of phantom crossing in
different frameworks), namely, it crosses the cosmological constant
boundary (the phantom divide) currently or in near future. In this
section, we derive the effective equation of state that admits the
phantom crossing with suitable adjustment of parameters.

The field equation (3) can be rewritten in the form of Einstein
equations with an effective stress-energy tensor. Specifically, as

Gμν = κ
(
T T
μν + T eff

μν

)

= κ

(
gμν V (φ)h + α′ V (φ)

h
∇μφ∇μφ + f (R) − R f ′(R)

2
gμν

+ ∇μ∇ν f ′(R) − gμν� f ′(R)

)
. (33)

Here κ = 1
2 . Since T eff

μν is only a formal energy–momentum tensor,
it is not expected to satisfy any of the energy conditions deemed
reasonable for physical matter, in particular the effective energy
density cannot be expected to be positive-definite. An effective
gravitational coupling Geff = G

f ′(R)
can be defined in a way anal-

ogous to scalar-tensor gravity. It is apparent that f ′(R) must be
positive for the graviton to carry positive kinetic energy. Motivated
by recent cosmological observations, we adopt the spatially flat
FRW metric
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ds2 = −dt2 + a2(t)
(
dx2 + dy2 + dz2). (34)

Then the field equations for the f (R)–tachyon cosmology become

H2 = 1

6 f ′(R)

(
ρT + f (R) − R f ′(R)

2
− 3H Ṙ f ′′(R)

)
, (35)

2Ḣ + 3H2 = − 1

2 f ′(R)

(
PT + f ′′′(R)Ṙ2 + 2H Ṙ f ′′(R)

+ R̈ f ′′(R) + f (R) − R f ′(R)

2

)
. (36)

For f (R) = rR2 and V = V 0(φ + φ0)
−4, we have

H2 = 1

12rR

(
V 0r(φ + φ0)

−4(1 + α′φ̇2)1/2

− α′ V 0(φ + φ0)
−4

(1 + α′φ̇2)1/2
φ̇2 − rR2

2
− 6rH Ṙ

)
, (37)

2Ḣ + 3H2 = − 1

4rR

(
−V 0r(φ + φ0)

−4(1 + α′φ̇2)1/2

+ 4rH Ṙ + 2r R̈ − rR2

2

)
. (38)

Thus

ρtot = 1

2rR

(
V 0r(φ + φ0)

−4(1 + α′φ̇2)1/2

− α′φ̇2 V 0(φ + φ0)
−4

(1 + α′φ̇2)1/2
− rR2

2
− 6rH Ṙ

)
, (39)

P tot = 1

2rR

(
−V 0r(φ + φ0)

−4(1 + α′φ̇2)1/2

+ 4rH Ṙ + 2r R̈ − rR2

2

)
. (40)

Hence, the effective equation of state parameter for the f (R)–
tachyon cosmology is

weff = P tot

ρtot

= −V 0r(φ+φ0)−4(1+α′φ̇2)1/2+4rH Ṙ+2r R̈− rR2
2

V 0r(φ+φ0)−4(1+α′φ̇2)1/2−α′φ̇2 V0(φ+φ0)−4

(1+α′ φ̇2)1/2 − rR2
2 −6rH Ṙ

. (41)

For simplicity, we take V 0 = r = α′ = 1, φ0 = 0; therefore the EOS
is now

weff = −φ−4(1 + φ̇2)1/2 + 4H Ṙ + 2R̈ − R2

2

φ−4(1 + φ̇2)1/2 − φ−4φ̇2

(1+φ̇2)1/2 − R2

2 − 6H Ṙ
. (42)

For better understanding of this type of phase transition we must
analyze (42). For metric (34), the equations of motion for scalar
field φ(t) and the scale factor a(t) are

1

a3

d(a3φ̇)

dt
− d log h

dt
φ̇ + 4

α′φ
= 0, (43)

(
ȧ(t)

a(t)

)2

= 1

12R

(
φ−4(1 + α′φ̇2)1/2

− α′φ̇2φ−4

(1 + α′φ̇2)1/2
+ R2

2
− 6H Ṙ

)
. (44)

Here R is the Ricci scalar of metric (34). We solved Eqs. (43) and
(44) for a(t) and φ(t) numerically for a suitable set of the initial
conditions imposed on these functions. Fig. 1 shows the general
Fig. 1. The general behavior of the weff for a set of initial conditions. It shows the
phantom crossing line weff = −1.

behavior of the weff. It shows the phantom crossing line weff =
−1. It can crosses the dark energy line w = −1 several times with
respect to the values of H, φ, R . Further, since −1 < weff < 0, one
type of dark energy, namely quintessence, can be addressed in the
model described above. Also another type of dark energy known
as phantom, with weff < −1, can be accounted.

5. Conclusion

In this work, we have studied the f (R)–tachyon cosmology by
the Noether symmetry approach. This approach is based on the
search for Noether symmetries which allow one to find the form
of the function f (R) and the tachyon’s potential V = V (φ). We
have shown that the Noether symmetric model results in a power
law expansion f (R) = rR2 for the action (up to a constant multi-
plicative factor) and an inverse fourth power V = V 0(φ +φ0)

−4 for
tachyon’s potential. This form may be of interest to tachyonic cos-
mology and it’s extensions. Moreover, the gauge function turns out
to be zero. The case V = constant was not considered for which
the Noether symmetry is translation in φ or something equiva-
lent. Also, by analyzing the equation of state, we addressed the
so-called crossing the phantom divide line (w = −1) of dark en-
ergy.
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