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ABSTRACT Diffusion-mediated searching for interaction partners is an ubiquitous process in cell biology. Transcription factors,
for example, search specific DNA sequences, signaling proteins aim at interactingwith specific cofactors, and peripheral membrane
proteins try to dock to membrane domains. Brownian motion, however, is affected by molecular crowding that induces anomalous
diffusion (so-called subdiffusion) of proteins and larger structures, thereby compromising diffusive transport and the associated
sampling processes. Contrary to the naive expectation that subdiffusion obstructs cellular processes, we show here by computer
simulations that subdiffusion rather increases the probability of finding a nearby target. Consequently, important events like protein
complex formation and signal propagation are enhanced as compared to normal diffusion. Hence, cells indeed benefit from their
crowded internal state and the associated anomalous diffusion.

INTRODUCTION

Searching for a specific target is an ubiquitous process in

biology ranging from the macroscopic prey-predator level in

zoology to the binding of macromolecules in living cells.

Commonly, the nondirected encounter rate of two interacting

entities, be it on the macro or micro scale, is assumed to be

determined by Brownian motion. This view is justified when

bearing in mind that the thermally driven motion of a molecule

is as much a random walk as the dispersal of insects in a forest

(1). Searching a target by means of a random walk (i.e.,

Brownian motion) is fully characterized by the following

features. The average position does not change in time, but the

quadratic length of the excursions, i.e., the mean-square

displacement (MSD) Ær2(t)æ, grows linear in time with a

prefactor that depends on the dimension (d) of the search space
and the diffusion coefficient (D): Ær2(t)æ¼ 2dDt. For diffusion in
bulk solution, one obtains the familiar expression Ær2(t)æ¼ 6Dt.
On the macroscopic level also enhanced diffusion, i.e.,

superdiffusion, with a MSD Ær2(t)æ ; tb, b . 1, plays an

important role, e.g., in the traveling behavior of humans and

the associated spreading of infectious diseases (2). Indeed,

superdiffusion has been shown to be a very efficient way to

search for targets (3), e.g., in the context of gaze shifts (4).

Most of the searching events inside a living cell, however, are

governed by normal diffusion or its qualitatively slower

companion subdiffusion. Subdiffusion is characterized by a

MSD that grows like Ær2(t)æ ; ta, a , 1, i.e., a qualitatively

slower spreading than for normal diffusion is observed due to

the exponent a, 1 (see, e.g., (5) and (6) for a more detailed

introduction to subdiffusion). In fact, we have recently shown

that diffusion in the cytoplasm and the nucleus of eukaryotic

cells is generically subdiffusive due to molecular crowding

(7,8), with 0.5, a, 0.85; the same holds true for bacteria (9).

The emergence of subdiffusion appears to be a consequence

of the crowding-induced viscoelasticity of the cytoplasm

and nucleoplasm (8). The poor spreading associated with

subdiffusion (particles stay longer at their original position

and return slower when having escaped to a far-away distance)

implies a slow sampling process. One may ask whether the

cell would not be better off when diluting its intracellular

fluids. Or does the cell actually benefit from the crowding-

induced subdiffusion?

Here we have investigated the efficiency of (sub)diffusion

as a sampling strategy in the context of a diffuse-to-capture

scenario. In particular, we asked how many particles (e.g.,

proteins) starting in a distance R from the target with radius a
(e.g., a piece of DNA) are captured by the target within a

given time tmax. For normal diffusion in bulk solution, the

probability of capturing can be calculated to decrease as P(R)
; a/R (10). Using computer simulations, we demonstrate

here that subdiffusion can massively enhance this probabil-

ity, thus making the crowding-induced subdiffusion a slow

but more reliable search algorithm. The increased reliability

translates directly into facilitated intracellular signal propa-

gation and complex formation, i.e., cells indeed benefit from

their crowded internal state.

MATERIALS AND METHODS

Simulations

To record the probability of getting captured at the target, we started N

individual, noninteracting particles on a sphere with radius R around the

target’s center, followed their (subdiffusive) random walk up to a time tmax,

and monitored the fraction of captured particles. The target’s radius a was

used as an intrinsic length scale, whichwe have set to unity for simplicity. The

erratic motion of the particles was simulated using the forward integration of

the Langevin equation, i.e., the positions at times t ¼ 1, 2, . . . , tmax were

obtained via xi(t1 1)¼ xi(t)1 ji with i¼ 1, 2, 3. As a model for subdiffusive

motion we have chosen to calculate the spatial increments ji in each spatial

direction i ¼ 1, 2, 3 via the Weierstrass-Mandelbrot function (11,12):

WðtÞ ¼ +
N

n¼�N

cosðfnÞ � cos½gn
t
� 1fn�

g
na=2 : (1)
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Here, fn are random phases in the interval [0, 2p], g . 1 is an irrational

number, tmax is the length of the desired time series, and a is the degree of

anomality that appears in the MSD (Ær2(t)æ; ta). In accordance with Saxton

(12), we have chosen g ¼ ffiffiffiffi
p

p
and restricted the sum to the terms

n ¼ �8; . . . ; 48: The increments ji ¼W(t1 1) –W(t) were chosen in such a

way that the MSD for all a-values coincided at t ¼ 1. By this approach, we

took into account that in the realm of anomalous diffusion random motion in

a viscoelastic fluid, (a, 1) will be hampered by elastic restoring forces with

respect to a purely viscous fluid with normal diffusion (a ¼ 1). Thus,

anomalous diffusion should be subordinated with respect to the normal

diffusion.

Conversion to SI units

To convert the simulation data to SI units, we took the following approach.

The target radius awas the unit of length in our simulations, i.e., defining the

respective targets as 1), a DNA operon (a¼ 2 nm) and 2), a Golgi membrane

patch (a ¼ 100 nm), automatically fixed the length scale. For gauging the

timescale, we first note that anomalous diffusion may not be observed for

very small timescales at which the moving particle essentially experiences a

thin layer of a homogenous, viscous fluid; periods in which the entity moves

less than its own radius may thus be regarded as governed by normal

diffusion. We therefore assumed that normal diffusion governed the motion

on timescales smaller than a single (sub)diffusion step in the simulations (t,
1) while anomalous diffusion emerged for t . 1. The associated crossover

time t¼ 1, i.e., a single diffusive time step in our simulations, was translated

to real time via the time a diffusing entity needs to move about its own

radius. This time can be calculated via the Einstein-Stokes equation as

t ¼ r
2

6D
¼ r

3
ph

kBT
: (2)

Here, kBT is the thermal energy, r denotes the radius of the diffusing entity

(e.g., a protein), and h is the viscosity of the fluid. Assuming h ¼ 3 3 10�3

Pa s, which is a reasonable value for the cytoplasm (13), a single time step of

the simulation corresponded to (1) t ¼ 0.02 ms and (2) t ¼ 0.3 ms when

assuming that LacI and the coatomer complex have radii r ¼ 2 nm and r ¼
10 nm, respectively.

RESULTS AND DISCUSSION

To determine the probability of finding a binding target by

(anomalous) diffusion, we have used a diffuse-to-capture

scenario. We started N noninteracting point particles (repre-

senting, for example, proteins) on the surface of a sphere with

radius R. The particles were allowed to move in three-

dimensional space by (anomalous) diffusion for tmax time steps,

thereby showing the typical MSD of the associated (sub)-

diffusive random walk (Fig. 1). When a particle hit the target

(having radius a) in the sphere’s center, it was absorbed. After
tmax time steps,we recorded the fractionof absorbedparticles as

P(R) and repeated the approach for another radiusR. To ensure
a fair competition between the different random walks, the

MSD for a single time step, Ær2(t¼ 1)æ, was chosen equal for all
simulations (compare to Fig. 1 andMethods). For reporting our

data, we have taken the target radius a as the unit of length and
measured the time in number of diffusion steps. A conversion

to SI units is performed below in the context of biological

examples. For the sake of simplicity, we have neglected that

virtually all subdiffusive processes are transient and converge

toward a normal diffusive behavior at asymptotically large

times (see, e.g., (14,15) for discussion).

To mimic the subdiffusion of particles in crowded

intracellular fluids like the cytoplasm, we have determined

the diffusive steps according to the Weierstrass-Mandelbrot

function (WMF; see Eq. 1). The WMF yields a path with the

characteristics of fractional Brownian motion (11,16), i.e.,

the individual step sizes are not independent but correlated.

The choice of a non-Markovian process seemed appropriate

as the experimentally observed subdiffusion is a conse-

quence of the viscoelasticity of the intracellular fluids (8),

i.e., the WMFmodels the fluid’s memory that is reflected in a

nontrivial creep function (17). Due to its Markovian

character we refrained from using a continuous time random

walk (CTRW) where subdiffusion is achieved by assigning

power-law distributed resting times to particles between

periods of free diffusion (see (5) for a detailed introduction).

In particular, the CTRW induces subdiffusion by altering the

timing between two diffusional steps yielding a diffusion

equation with a fractional time derivative (5). In contrast, the

WMF rather affects the spatial increments and is thus similar

in spirit to the porous media equation that describes per-

colation in disordered media.

As a result of the simulations, we observed for normal

diffusion the well-known relation P(R) ; a/R (Fig. 2), i.e.,

the probability to find the target decreased quite rapidly and

became ,1% when starting in a distance that exceeded the

target’s 10-fold radius. It is noteworthy that the statistics in

P(R) may become limiting in two ways for very large radii:

1), to retain a smooth curve beyond P(R)¼ 0.1% the number

of particles N needs to be larger; and 2), to maintain the

scaling P(R); a/R for large radii R, the imposed search time

tmax has to be larger than the mean time T ¼ R2/(6D) needed
to travel a distance R (where D is the diffusion coefficient).

FIGURE 1 Representative MSD curves Ær2(t)æ for normal and anomalous

diffusion as used in the simulations (solid circles, a ¼ 1; shaded diamonds,

a ¼ 0.7; shaded circles, a ¼ 0.5). Dashed lines highlight the respective

scaling behavior Ær2(t)æ ; ta. To ensure a fair competition between the

different random walks, the MSD for a single time step r2(t¼ 1) was chosen

equal for all simulations.
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We have chosen N¼ 1000 and tmax ¼ 23 106 (unless stated

otherwise) for which a proper scaling in the range R/a# 100

was guaranteed (compare to Fig. 2).

In contrast to the nice power law P(R) ; a/R for normal

diffusion, subdiffusion with different degrees of anomality

a , 1 resulted in significantly different curves (compare to

Fig. 2). For small radii, P(R) was considerably larger than for
normal diffusion, while for large radii, a sudden drop below

the efficiency of normal diffusion was observed. This drop is

not a consequence of the limited number of particles in the

simulation but can be well understood when comparing the

crossover radius Rc (i.e., the intersection of P(R) for normal

and anomalous diffusion) with the average maximum

excursion length
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ær2ðtmaxÞæ

p
of a population of particles

(as determined from the MSD in Fig. 1). Essentially, we find

Rc �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ær2ðtmaxÞæ

p
for all anomalities a (Fig. 2, inset). Thus,

when starting beyond this critical radius, the majority of

particles have no chance to reach the target by (sub)diffusion

(except a few fast particles) and consequently the probability

P(R) massively decreases. Still, the probability of finding the

target from a nearby position, say within a range of some

multiple target radii, is up to 10-fold higher as compared to

normal diffusion.

Increasing the search time tmax improves the probability to

find the target by subdiffusion even for larger radii (Fig. 3).

From the above result Rc �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ær2ðtmaxÞæ

p
and the scaling of

the MSD Ær2(t)æ ; a2ta, we predicted Rc ¼ c 3 a 3 t
a=2
max

with some constant c, i.e., extending the search time tmax

increases the range of radii for which anomalous diffusion

provides a better sampling strategy. The predicted scaling is

confirmed by our numerical data with c � 3 (Fig. 3, inset),
i.e., the critical radius Rc below which subdiffusion finds the

target with a higher probability increases algebraically with

tmax. Therefore, for an infinite search time, subdiffusion

would always be the better search strategy for finding a

binding partner.

Given that molecular crowding is a major cause for the

emergence of subdiffusion (7,8,18), our results strengthen

the previous physico-chemical considerations (based solely

on the free energy of a reaction) that crowding enhances the

rate and extent of macromolecular associations (19). Also,

the previously observed higher yield in binary reactions on a

percolation cluster (20) and the weak ergodicity breaking in

the presence of a reactive boundary (21) fit well to our

results.

Having demonstrated the basic features of subdiffusion as

a powerful strategy to enhance the encounter probability, we

would like to translate our findings now to the biological

context. Let us first consider the sequential events that

underlie signaling cascades and complex formation (e.g., the

assembly of the ribosomal complex). In both cases, the

sequence of events may be represented by a symbolic chain

A1 / A2/ A3 /. . ., where the indices of the states Ai may

describe the number of proteins in the complex or the

number of already activated submodules in the signaling

cascade, respectively. Transition from one state to another

occurs with a probability pi that basically depends on the

(diffusion-mediated) encountering probability of two in-

volved reaction partners. Assuming a typical distance R ¼
10a between the reaction partners and restricting the number

of states to i # 3, normal diffusion yields a very low

probability (p ¼ 0.0433 � 6 3 10�5) for assuming the

terminal state A3. In contrast, subdiffusion with a¼ 0.5 and a

search time tmax ¼ 2 3 106 yields a roughly 100-fold higher

probability to reach the terminal state A3 (p ¼ 0.1333 � 2 3
10�3), i.e., signal propagation and complex formation

FIGURE 2 For normal diffusion, the probability P(R) to find a target

within tmax¼ 23 106 time steps, when starting off in a distance R, decays as

P(R) ; 1/R (solid circles and dashed line). The probability is strongly

increased when using subdiffusion, e.g., with a ¼ 0.7 (shaded diamonds) or

a ¼ 0.5 (shaded circles). Full lines are guides to the eye. (Inset) The

crossover distance Rc at which the anomalous diffusion becomes worse than

normal diffusion (determined as the intersection of the full lines and the

dashed line) increases linearly with the average excursion length. Please

note the double logarithmic plot style.

FIGURE 3 The probability P(R) to find a target with subdiffusion (a ¼
0.5) when starting off in a distance R is enhanced when the search time is

prolonged (tmax¼ 23 103, 23 104, 23 105, 23 106 time steps: circles, up-
triangles, down-triangles, and diamonds, respectively). Full lines are guides

to the eye, dashed lines highlight the behavior P(R) ; 1/R for normal

diffusion. (Inset) The crossover distance Rc at which anomalous diffusion

(a ¼ 0.5) becomes worse than normal diffusion (determined as the

intersection of the full lines and the dashed line) increases algebraically with

the maximum search time tmax. Please note the double logarithmic plot style.
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become much more reliable. Subdiffusion performs even

better when considering more intermediate states before the

terminal state: Using i # 8, subdiffusion yields a 104-fold

higher probability to assume the terminal state A8.

We next want to give two particular cell-biological ex-

amples that are likely to benefit from subdiffusion as a search

strategy. We consider 1), the search of the transcription factor

LacI for its operon (22) as a typical problem in gene

regulation; and 2), the binding of the coatomer complex to

Golgi cisternae (23). In both cases, we will assume an

anomality a¼ 0.5, which has been measured for diffusion in

the cytoplasm and the nucleus of eukaryotes (8); gauging the

simulation units to SI units was done as described inMaterials

and Methods.

For LacI (radius roughly 2 nm), the time frame for com-

pleting the search for its target operon (a ¼ 2 nm) may be

estimated to be ;1 s via the tumbling frequency of the

bacterium (24). This corresponds to tmax ¼ 5 3 107 and via

Rc ¼ c3 a3 t
a=2
max (see above) transfers to a critical radius ofRc

� 500 nm. Given that only ;10 LacI copies are present in a

bacterium (volume 1 mm3), the typical distance of 450 nm

between a LacI protein and the operon of interest is smaller

thanRc, i.e., subdiffusion is themost advantageous strategy for

LacI to search for the operon. If the nucleoplasm would be

diluted, thereby allowing normal instead of anomalous diffu-

sion, LacImaynot bind the operonwith a sufficient probability,

thus compromising the cell’s gene expression pattern.

For coatomer (radius 5 nm), the typical search time for a

membrane patch on Golgi cisternae (a¼ 100 nm) is given by

the turnover time of its adaptor protein ARF-1 (10 s, i.e.,

tmax ¼ 3.4 3 107) (13). This transfers to Rc � 13 mm, which

is approximately the radius of the entire cell, i.e., also here

subdiffusion yields the most favorable searching strategy.

While subdiffusion alone already provides an improved

efficiency of finding the respective binding target, we would

like to emphasize here that, of course, also other mechanisms,

e.g., reduction-of-dimension (25) in the case of LacI, may

contribute to an advanced search in the considered examples.

Given the numerical observations and biological implica-

tions, what is actually the fundamental reason for sub-

diffusion performing so much better in finding a target?

The answer to this is hidden in the geometric properties of

the (subdiffusive) random walk—its fractal dimension. The

fractal dimension of a random walk essentially determines

how complete a given space will be explored for infinitely

large times (see, e.g., (26) for a more thorough definition).

Simple Brownian motion and a CTRW, for example, have a

fractal dimension df ¼ 2, i.e., the random walker explores a

surface completely but will only visit a negligible subspace

when moving in three-dimensional bulk solution. Subdiffu-

sion in a viscoelastic fluid as modeled via the WMF on the

other hand explores more than just a surface as its fractal

dimension is given by df ¼ 2/a (16). Thus, for the

physiological range 0.5 # a # 0.85, the sampled subspace

is considerably larger than a surface (df ¼ 2) and may even

exceed the dimension of the bulk (df¼ 3). Cells therefore are

not hampered by the crowding-induced subdiffusion but can

use it to enhance their performance.

A strong anomality (low a) not only is associated with an

increasing probability of eventually finding the target but also

with a long search time. For fractional Brownian motion the

best trade-off appears to be given at a ¼ 2/3. At this value,

the three-dimensional space is fully explored while the

subdiffusive spreading is not too slow. A generalized optimal

a based only on the observation of subdiffusion may not be

derived without considering the details of the random walk,

i.e., its fractal dimension df. It is interesting, however, that

intracellular fluids have just the right amount of crowding to

induce an anomalous diffusion near to the critical a predicted

by the fractional Brownian motion model (7–9).
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