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a b s t r a c t

This paper presents a new numerical approach to the study of non-periodicity in signals,
which can complement the maximal Lyapunov exponent method for determining chaos
transitions of a givendynamical system. Theproposed technique is based on the continuous
wavelet transform and the wavelet multiresolution analysis. A new parameter, the scale
index, is introduced and interpreted as a measure of the degree of the signal’s non-
periodicity. This methodology is successfully applied to three classical dynamical systems:
the Bonhoeffer–van der Pol oscillator, the logistic map, and the Henon map.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

In the study of chaotic dynamical systems it is quite common to have bifurcation diagrams that represent, for each value
of one ormore parameters, the number of periodic orbits of the system. The determination of the parameter values forwhich
the system becomes chaotic is a classical problem within the theory of dynamical systems [1].
Although there is no universally accepted definition of chaos, usually, a bounded signal is considered chaotic if (see [2])

(a) it shows sensitive dependence on the initial conditions, and
(b1) it is non-periodic, or
(b2) it does not converge to a periodic orbit.

Usually, chaos transitions in bifurcation diagrams are numerically detected by means of the Maximal Lyapunov Exponent
(MLE). Roughly speaking, Lyapunov exponents characterize the rate of separation of initially nearby orbits and a system is
thus considered chaotic if the MLE is positive. Therefore, the MLE technique is one that focuses on the sensitivity to initial
conditions, in other words, on criterion (a).
As to criteria (b1) and (b2), Fourier analysis can be used in order to study non-periodicity. However chaotic signals may

be highly non-stationary, which makes wavelets more suitable [3]. Moreover, compactly supported wavelets are a useful
tool in the analysis of non-periodicity in compactly supported signals, as we will see in Corollary 2.
Wavelet theory is a quite recent area of mathematical research that has been applied to a wide range of physical and

engineering problems (see, for instance, [4,5] for classical applications to image processing and to time series analysis and
[6–8] for examples of non-standard applications to DNA sequences, astronomy and climatology). In particular, the wavelet
decomposition of a signal has been proved to be a very useful tool in the study of chaotic systems. Indeed,wavelets have been
successfully used in the analysis of the chaotic regimes of the Duffing oscillator, focusing on the detection of periodicities
within chaotic signals, and on chaos numerical control (see [9,10]).
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In this paper we present a method for studying non-periodicity that can complement the MLE for determining chaos
transitions of a given dynamical systemwhich can be either discrete or continuous. This method is based on the Continuous
Wavelet Transform (CWT) and the wavelet Multiresolution Analysis (MRA) of a signal. In particular, we compute the ratio of
the scalogram value at the dominant scale (i.e. the scale where themaximum is reached) to the value at the least significant
scale (i.e. the scale where the scalogram takes its minimum value after that maximum is reached). This quotient determines
the scale indexwhich is strictly positive when the signal is non-periodic, and can be interpreted as a measure of the degree
of non-periodicity.
The paper is organized as follows: Section 2 is devoted to the establishing of the background and the main results of the

wavelet theory used later in the paper. In Section 3 we give an overview of the scalogram and define the scale index. Finally,
Section 4 illustrates the value of the method by showing the successful detection of the chaos transitions for three classical
systems: the Bonhoeffer–van der Pol (BvP) oscillator, the logistic map and the Henon map.

2. Wavelet analysis of time series

In this section we introduce the wavelet tools and results needed for defining the scale index.

2.1. The continuous wavelet transform and scalogram

Wavelet theory is based on the existence of two special functions φ and ψ , known as the scaling and wavelet functions
respectively [11].
A wavelet function (or wavelet, for short) is a function ψ ∈ L2 (R) with zero average (i.e.

∫
R ψ = 0), with ‖ψ‖ = 1, and

centered in the neighborhood of t = 0 [11]. Moreover, we are going to demand that tψ (t) ∈ L1 (R) in order to ensure that
the continuous wavelet transform (3) is invertible in some way.
Given a wavelet ψ , its dilated and translated dyadic version is given by

ψj,k(t) :=
1
√
2j
ψ

(
t − 2jk
2j

)
, (1)

where j, k ∈ Z. It is important to construct wavelets such that the family of dyadic wavelets {ψj,k}j,k∈Z is an orthonormal
basis of L2 (R). These orthonormal bases are related to the Multiresolution Analysis (MRA) of signals.
Scalingψ by a positive quantity s, and translating it by u ∈ R, we define a family of time–frequency atoms,ψu,s, as follows:

ψu,s(t) :=
1
√
s
ψ

(
t − u
s

)
, u ∈ R, s > 0. (2)

Note that there is an abuse of notation in expressions (2) and (1).
Given f ∈ L2 (R), the continuous wavelet transform (CWT) of f at time u and scale s is defined as

Wf (u, s) :=
〈
f , ψu,s

〉
=

∫
+∞

−∞

f (t)ψ∗u,s(t)dt, (3)

and it provides the frequency component (or details) of f corresponding to the scale s and time location t .
The wavelet transform given in (3), provides a time–frequency decomposition of f in the so called time–frequency plane

(see Fig. 1).
The scalogram of f , S, is defined as follows:

S (s) := ‖Wf (u, s) ‖ =
(∫

+∞

−∞

|Wf (u, s) |2du
) 1
2

.

S (s) is the energy of the continuous wavelet transform of f at scale s. Obviously, S(s) ≥ 0 for all scale s, and if S(s) > 0 we
will say that the signal f has details at scale s. Thus, the scalogram is a useful tool for studying a signal, since it allows the
detection of its most representative scales (or frequencies), that is, the scales that mostly contribute to the total energy of
the signal.

2.2. Analysis of compactly supported discrete signals

In practice, to make a signal f suitable for a numerical study, we have to

(i) consider that it is defined over a finite time interval I = [a, b], and
(ii) sample it to get a discrete set of data.

Regarding the first point, boundary problems arise if the support of ψu,s overlaps t = a or t = b. There are several
methods for avoiding these problems, like using periodic wavelets, folded wavelets or boundary wavelets (see [11]); however,
these methods either produce large amplitude coefficients at the boundary or complicate the calculations. So, if the wavelet
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Fig. 1. Time–frequency plane decomposition corresponding to the BvP solution with A = 0.76 (left) and A = 1.16 (right) using Daubechies (eight-
wavelet and four-wavelet respectively) functions (see Section 4.1 for the definition of the BvP system). Each point in this 2D representation corresponds
to the modulus of the wavelet coefficients of the CWT. Note that the wavelet coefficients of the CWTwith A = 1.16 vanish at scale 12 (i.e. twice its period)
at any time, as we will prove in Theorem 1.

function ψ is compactly supported and the interval I is big enough, the simplest solution is to study only those wavelet
coefficients that are not affected by boundary effects.
Taking into account the considerations mentioned above, the inner scalogram of f at a scale s is defined by

Sinner (s) := ‖Wf (s, u) ‖J(s) =
(∫ d(s)

c(s)
|Wf (s, u) |2du

) 1
2

,

where J(s) = [c(s), d(s)] ⊆ I is the maximal subinterval in I for which the support of ψu,s is included in I for all u ∈ J(s).
Obviously, the length of I must be big enough for J(s) not to be empty or too small, i.e. b − a � sl, where l is the length of
the support of ψ .
Since the length of J(s) depends on the scale s, the values of the inner scalogram at different scales cannot be compared.

To avoid this problem, we can normalize the inner scalogram:

S
inner

(s) =
Sinner (s)

(d(s)− c(s))
1
2
.

With respect to the sampling of the signal, any discrete signal can be analyzed in a continuous way using a piecewise
constant interpolation. In this way, the CWT provides a scalogram with a better resolution than the Discrete Wavelet
Transform (DWT), that considers dyadic levels instead of continuous scales (see [11]).

3. The scale index

In this section we introduce a new parameter, the scale index, that will give us information about the degree of non-
periodicity of a signal. To this end we will first state some results for the wavelet analysis of periodic functions (for further
reading please refer to [11] and references therein).
If f : R→ C is a T -periodic function in L2 ([0, T ]), andψ is a compactly supportedwavelet, thenWf (u, s) is well-defined

for u ∈ R and s ∈ R+, although f is not in L2 (R).
The next theorem gives us a criterion for distinguishing between periodic and non-periodic signals. It ensures that if a

signal f has details at every scale (i.e. the scalogram of f does not vanish at any scale), then it is non-periodic.

Theorem 1. Let f : R → C be a T-periodic function in L2 ([0, T ]), and let ψ be a compactly supported wavelet. Then
Wf (u, 2T ) = 0 for all u ∈ R.

For a detailed proof see Appendix A. From this result we obtain the following corollary.

Corollary 2. Let f : I = [a, b] → C, a T -periodic function in L2 ([a, a+ T ]). If ψ is a compactly supported wavelet, then the
(normalized) inner scalogram of f at scale 2T is zero.

These results constitute a valuable tool for detecting periodic and non-periodic signals, because a signal with details at
every scale must be non-periodic (see Fig. 2). Note that in order to detect numerically whether a signal tends to be periodic,
we have to analyze its scalogram throughout a relatively wide time range.
Moreover, since the scalogram of a T -periodic signal vanishes at all 2kT scales (for all k ∈ N), it is sufficient to analyze

only scales greater than a fundamental scale s0. Thus, a signal which has details at an arbitrarily large scale is non-periodic.
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Fig. 2. Normalized inner scalograms for certain solutions of the BvP system (Section 4.1), from t = 20 to t = 400 (∆t = 0.05), for different values of
A, the scale parameter s running from s0 = 0.05 to s1 = 12.8, with ∆s = 0.05, and using the Daubechies eight-wavelet function. It is observed how the
scalogram of T -periodic signals vanishes at s = 2T .

In practice, we shall only study the scalogramon a finite interval [s0, s1]. Themost representative scale of a signal f will be
the scale smax for which the scalogram reaches its maximum value. If the scalogram S(s) never becomes too small compared
to S(smax) for s > smax, then the signal is ‘‘numerically non-periodic’’ in [s0, s1].
Taking into account these considerations, we will define the scale index of f in the scale interval [s0, s1] as the quotient

iscale :=
S(smin)
S(smax)

,

where smax is the smallest scale such that S(s) ≤ S(smax) for all s ∈ [s0, s1], and smin the smallest scale such that
S(smin) ≤ S(s) for all s ∈ [smax, s1]. Note that for compactly supported signals only the normalized inner scalogram will
be considered.
From its definition, the scale index iscale is such that 0 ≤ iscale ≤ 1 and it can be interpreted as a measure of the degree of

non-periodicity of the signal: the scale index will be zero (or numerically close to zero) for periodic signals and close to one
for highly non-periodic signals.
The selection of the scale interval [s0, s1] is an important issue in the scalogram analysis. Since the non-periodic character

of a signal is given by its behavior at large scales, there is no need for s0 to be very small. In general, we can choose s0 such
that smax = s0 + ε where ε is positive and close to zero.
On the other hand, s1 should be large enough for detecting periodicities. For example, if we have an almost-periodic

function f defined on R, then for any given ε > 0 there exists an almost-period T (ε) such that

|f (t + T )− f (t)| < ε

for all t ∈ R (see [12]). Hence, if we choose ε numerically close to zero, there is a large enough value of T for which the
function is ‘‘numerically T -periodic’’, and the scale index will be close to zero if s1 is greater than 2T . So, for an almost-
periodic function, the scale index tends to zero as we increase s1 (see Fig. 3). But as s1 increases, so does the computational
cost. In fact, the larger s1 is, thewider the time span should bewhere the signal is analyzed, in order tomaintain the accuracy
of the normalized inner scalogram.
Scales smin and smax determine the pattern that the scalogram follows (see Fig. 4). For example, in non-periodic signals

smin can be regarded as the ‘‘least non-periodic scale’’. Moreover, if smin ' s1, then the scalogram decreases at large scales
and s1 should be increased in order to distinguish between a non-periodic signal and a periodic signal with a very large
period.
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Fig. 3. Left: normalized inner scalogram of the almost-periodic function sin(t) + sin(t/
√
2) + sin(t/

√
5), from t = 0 to t = 800 (∆t = 0.1), using the

Daubechies four-wavelet function. Right: the scale index tends to zero as we increase the scale s1 .
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Fig. 4. Values of smax (grey) and smin (black) for orbits of the BvP oscillator.

4. Examples

In this section we illustrate how the scale index iscale is used in order to detect and study non-periodic orbits of three
classical dynamical systems: the logistic map, the Henon map and the forced Bonhoeffer–van der Pol oscillator.
The reason for choosing these dynamical systems as examples for testing the validity of the scale index is mainly that

they are three well known chaotic dynamical systems, arising from different research areas, and are mathematically very
different. These systems present typical bifurcation diagrams with chaotic and non-chaotic regions. In order to show the
effectiveness of the index iscale, we compare the bifurcation diagram, the MLE, and iscale. It will be shown that there is a
correspondence between the chaotic regions of the bifurcation diagram, the regions where the MLE is positive, and the
regions where iscale is positive.
Figs. 5 and 6 depict the comparison between the threemethodsmentioned above. The signals were studied from t0 = 20

to identify not only periodic signals, but also signals that converge to a periodic one. For the computation of the MLE, 1500
iterations were used. Integer scales between s0 = 1 and s1 = 64 were considered in the computation of iscale. A scale was
considered to have no details if the scalogram at that scale takes a value below ε = 10−4.

4.1. A continuous dynamical system: the Bonhoeffer–van der Pol oscillator

The Bonhoeffer–van der Pol oscillator (BvP) is the non-autonomous planar system

x′ = x−
x3

3
− y+ I(t)

y′ = c(x+ a− by)

 ,
being a, b, c real parameters, and I (t) an external force.We shall consider a periodic force I(t) = A cos (2π t) and the specific
values for the parameters a = 0.7, b = 0.8, c = 0.1. These values were considered in [13] because of their physical and
biological importance (see [14]).
The classical analysis of the BvP system is focused on its Poincaré map, defined by the flow of the system on t = 1

(see [1]). Plotting the first coordinate of the periodic fixed points of the Poincaré map versus the parameter A (amplitude of
the external force), a bifurcation diagram is obtained [15].
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Fig. 5. Comparison between the bifurcation diagram, MLE and iscale (from top to bottom) for the BvP oscillator.

Such diagrams present chaotic and non-chaotic zones. From a geometric point of view, chaos transitions are related to
homoclinic orbits (creation or destruction of Smale horseshoes) between the invariant manifolds of a saddle fixed point of
the Poincaré map (see [1]). Such a relationship is thoroughly described in a recent work [16].
Fig. 5 includes the analysis of the BvP system. The parameter range has been split in two regions, 0.7 ≤ A ≤ 0.8 and

1 ≤ A ≤ 1.3, which are the regions were chaotic orbits are found. Note the high level of agreement between the MLE and
the iscale index: the values of A for which the MLE is negative are also the values for which iscale ≈ 0.
Also remarkable is the coincidence between a relative maximum in the iscale and the well known ‘‘sudden’’ expansion of

the size of the attractor at A ≈ 0.748 (see [16,13]). Moreover, another relative maximum fits with a ‘‘sudden’’ contraction
at A ≈ 1.27.

4.2. Discrete dynamical systems: the logistic and the Henon maps

The logistic map is the discrete dynamical system given by the difference equation

xt+1 = Axt(1− xt).

This well known dynamical system, arising from population dynamics theory, is a classical example of a simple polynomial
map whose orbits exhibit chaotic behavior for some values of the real parameter A.
On the other hand, the Henon map is the two-dimensional dynamical system given by the quadratic map{

xt+1 = 1− Ax2t + yt
yt+1 = bxt ,

with A and b real parameters. For the values A = 1.4 and b = 0.3, giving what is often called the canonical Henon map, a
strange attractor is present. Fixing the value b = 0.3 and varying the parameter A, the map may be chaotic or not. Through
the representation of the x-coordinate of the orbits versus the value of the parameter A, a typical bifurcation diagram is
obtained.
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Fig. 6. Comparison between the bifurcation diagram, MLE and iscale (from top to bottom) for the logistic map (left) and the Henon map (right).

Fig. 6 shows the comparison between the bifurcation diagram, the MLE and iscale for both the logistic map (left) and the
Henon map (right). As in the case of the BvP oscillator, the agreement between the MLE and iscale is clear.
It is also noticeable that the maximum values of the iscale in these two dynamical systems are reached when the main

branches of their bifurcation diagrams overlap.

5. Conclusions

Wavelet analysis has proved to be a valuable tool in the study of chaotic systems. In particular, scalogram analysis and
the introduced scale index are a good complement to the MLE, since the scale index gives a measure of the degree of non-
periodicity of the signal, while the MLE gives information about the sensitivity to initial conditions. Thus, the combination
of the two methods gives us a comprehensive description of a chaotic signal.
Since the MLE and the scale index focus on different characteristics of the signals, the latter contributes to detecting

effects that are not detected by the MLE, for example, the sudden expansion of the size of the attractor in the BvP system,
and the overlapping of the main branches of the bifurcation diagram in the logistic and Henon maps. Moreover, there are
regions in the logistic and Henon graphs where the MLE is increasing but the iscale is decreasing. This means that while the
sensitivity to the initial conditions is greater, on the other hand, the signal is less non-periodic.
Additionally, the study of the scale index does not require an analytical expression for the signal. In those cases where

an analytical description of the dynamical system involved is not available (e.g. experimental signals), although there are
methods for estimating the MLE (see [17]), the scale index might be a useful alternative.
These techniques can also be applied to any other discipline where the analysis of time series is required, such as Earth

sciences, econometry, biomedicine and any other one where non-linear behavior is expected to occur. For instance, this
opens a route to the study of colour noise presented in this kind of time series; it also could be used to determine properties of
seismic and volcanic events [18]; to detect chaos in non-linear economic time series [19] as a complement to other methods
already used, like those based on Lyapunov exponents and the power spectral density; and in biomedicine, where wavelets
have already been used to analyze non-stationary cardiac signals [20].
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Appendix. Proof of Theorem 1

Given g : R→ Cwith compact support, its periodization over [0, 1] is defined as

gper(t) :=
∑
k∈Z

g(t + k), t ∈ R.

It is clear that, if gu(t) := g(t − u) is a translated version of g , then

(gu)per (t) = gper(t − u). (A.1)

Moreover, if h ∈ L2 ([0, 1]), then

〈hper, g〉 = 〈h, gper〉[0,1]. (A.2)

Lemma 3. The periodization ψperu,s is zero almost everywhere for u = 0 and s = 2.

Proof. In this proof we are going to use the dyadic notation for the dilated and translated wavelets given by expression (1).
So, we have to prove that ψperj,k = 0 a.e. for j = 1 and k = 0.
Let h ∈ L2 ([0, 1]). Since

{
ψ
per
j,k

}
−∞<j≤0, 0≤k<2−j

∪ {1} is an orthogonal basis of L2 ([0, 1]) and the periodization ψper1,0 is

orthogonal to the family of functions
{
ψ
per
j,k

}
−∞<j≤0, 0≤k<2−j

(see [11, Thm. 7.16, Lem. 7.2]), we have

〈h, ψper1,0 〉[0,1] = M〈1, ψ
per
1,0 〉[0,1] = M〈1, ψ1,0〉,

whereM = 〈h, 1〉[0,1]. Taking into account that ψ has zero average, we have that 〈1, ψ1,0〉 = 0, and so

〈h, ψper1,0 〉[0,1] = 0.

In general, it can be proved that ψperj,k = 0 a.e. for all j ≥ 1 and for all k ∈ Z. �

Lemma 4. The periodization ψperu,2 = 0 a.e. for all u ∈ R.

Proof. Sinceψu,2(t) = ψ0,2(t− u)we have thatψ
per
u,2 (t) = ψ

per
0,2 (t− u) = 0 a.e. taking into account (A.1) and Lemma 3. �

Theorem 1. Let f : R → C be a T-periodic function in L2 ([0, T ]), and let ψ be a compactly supported wavelet. Then
Wf (u, 2T ) = 0 for all u ∈ R.

Proof. Without loss of generality we may assume that T = 1. Then, it will be proved thatWf (u, 2) = 0 for all u ∈ R:
Let h := f |[0,1]. Then f = hper and we get

Wf (u, 2) = 〈f , ψu,2〉 = 〈hper, ψu,2〉 = 〈h, ψ
per
u,2 〉[0,1] = 0,

taking into account (A.2) and Lemma 4. �
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