
M

U
a

b

c

a

A
R
R
A

K
Y
R
G
O
M

1

a
a
c
I
s
d
i
s
a
t
t
c
e
l
i

N
a
i

j
A

0
h

CORE re.ac.uk

Provided by Els
Field Crops Research 143 (2013) 151–156

Contents lists available at SciVerse ScienceDirect

Field  Crops  Research

jou rn al h om epage: www.elsev ier .com/ locate / fc r

apping  field-scale  yield  gaps  for  maize:  An  example  from  Bangladesh

.  Schulthessa,∗, J.  Timsinab, J.M.  Herreraa, A.  McDonaldc

CIMMYT (Centro Internacional de Mejoramiento de Maíz y Trigo), Apdo. Postal 6-641, México, D.F., CP 06600, Mexico
Melbourne School of Land and Environment, The University of Melbourne, Melbourne, Vic. 3010, Australia
CIMMYT – South Asia Regional Office, P.O. Box 5186, Kathmandu, Nepal

 r  t  i  c  l  e  i  n  f  o

rticle history:
eceived 9 July 2012
eceived  in revised form 2 November 2012
ccepted 5 November 2012

eywords:
ield gap analysis
emote  sensing

a  b  s  t  r  a  c  t

Accurate  estimation  of  the size  and  spatial  distribution  of the  yield  gap  has  many  practical  applications,
including  relevance  to precision  agriculture  and  technology  targeting.  The  objectives  of  this study  were
to  illustrate  a methodology  to  create  a yield  gap  map  and  to discuss  its potential  uses  to provide  optimal
crop  management  recommendations  to the  farmers.  We  used  the  HybridMaize  crop  simulation  model
to  estimate  potential  yield  for maize  grown  in the  winter  season  in  northwestern  Bangladesh.  This  is
a  high  yielding  environment,  where  farmers  achieve  yields  as  high  as 12  Mg/ha.  The  model  predicted  a
mean  potential  yield  of  12.87  Mg/ha.  We  used  a  RapidEye  satellite  image  acquired  around  tasseling  to
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identify  the  maize  fields,  calculate  ground  cover  and  its  regression  to  actual  yield  from  farmers’  fields.
Next,  the  regression  was  applied  to  all the  maize  pixels  in  the  image  to calculate  actual  yield.  In the  last
step,  we  created  a yield  gap map  based  on  the  difference  between  potential  and  actual  yield.  Yield  gap
maps  will  enable  agronomists  to identify  production  constraints  on  farmers’  fields  with  large  yield gaps.
Alternatively,  by  learning  from  the  farmers  with  the highest  actual  yields  and analyzing  their data,  it  will

gion
be  possible  to generate  re

. Introduction

Knowledge of the size of the gap between the potential and
ctual yield has various applications. They range from tailoring
gricultural policies aiming at improving the livelihood of resource-
onstrained farmers to prioritizing research and extension work.
nformation on the spatial variability of the yield gap will also
upport the development of region, field or site specific recommen-
ations, including ‘real time’ adjustments to management practices

n response to weather events that change yield potential in a given
eason. There are various methodologies to estimate potential and
ctual yield, which then allow for a calculation of the gap between
he two (Van Ittersum et al., 2013). One way to estimate poten-
ial yield is to conduct field experiments under well-managed,
ontrolled conditions to restrict any limitations to yield. In such

xperiments, potential yield of any crop variety should not be
imited by factors other than climate. However, it is a challeng-
ng task to omit any factor that limits and reduces growth and

Abbreviations: HI, harvest index; LAI, leaf area index; MSE, mean squared error;
DVI, normalized difference vegetation index; PAR, photosynthetically active radi-
tion; PVI, perpendicular vegetation index; WDVI, weighted difference vegetation
ndex.
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 or  field  specific,  optimized  crop  management  recommendations.
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yield under field conditions. An alternative method is to use process
based crop simulation models. Some of them have been calibrated
and validated for a wide range of environments (Bouman and van
Laar, 2006; Timsina and Humphreys, 2006). Their main strength is
that they can take into account varying weather conditions among
years and interactions with the environment and management, and
thus are able to quantify the magnitude and variability of the poten-
tial yield. Moreover, they can also be used to assess whether a given
year for which the actual yield data are available is representative or
not. Data on actual yield are typically based on crop statistics. For-
mal  and informal surveys, trade statistics as well as expert opinions
are used for its estimation. Crop statistics are generally summa-
rized and aggregated at various levels of administrative districts.
These are political boundaries, and generally they do not delineate
agro-ecological zones. Hence, there might be large differences in
the yield gaps within an administrative district and they may  not
be representative for an agro-ecological zone or a field within that
district.

In this paper, we are describing a method that makes use of
remote sensing and crop modeling to predict the magnitude of the
yield gap for maize at the field level. The case study with maize is set
in northwestern Bangladesh. Maize has great potential in that coun-
try. Total area of maize production in 2010 was  152,000 ha with

Open access under CC BY-NC-ND license.
an average yield of 5.8 Mg/ha (FAOSTAT; http://faostat3.fao.org;
verified October 31, 2012). When grown in the winter months
(Rabi season), maize yields of up to 12 Mg/ha have been reported
(Ali et al., 2008). Such high yields can be achieved with
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–5 irrigations, which is about 1/10 of the irrigation water require-
ents of ponded rice grown in the same region and season.

nowledge of the yield gap will serve to set up demonstration tri-
ls at key locations and to improve management recommendations.
ence, the objectives of this study are to illustrate a methodology

o create a yield gap map  and to discuss its potential uses to provide
ptimal crop management recommendations to the farmers.

.  Theory

In order to estimate actual yield of maize for an entire region,
e are using remote sensing derived ground cover as an estimate

f the light intercepted by the crop, which in return tends to be
losely related to yield.

.1.  Estimation of ground cover with remote sensing

Optical sensors on satellites that are used for earth observation
easure the amount of light reflected from the earth’s surface.

eflectance from the bare soil usually steadily increases with
avelength. Plants, however exhibit a rather distinctive reflec-

ive pattern between wavelengths in the visible and near infrared
pectrum. Healthy, unstressed plants use most of the light in the
isible spectrum for photosynthesis and reflect only a small portion
f it. However, in the near infrared spectrum, most of the light
s scattered back from the interfaces of cell walls and intercellu-
ar air spaces (Slaton et al., 2001). These distinctive properties are
eing used in most algorithms that aim at estimating ground cover
GC), leaf area index (LAI) and other canopy properties such as
hlorophyll content from remote sensing. The most commonly used
egetation index is the normalized difference vegetation index
NDVI). However, it tends to be strongly influenced by soil back-
round conditions and to saturate when LAI exceeds 2. Huete
1987) demonstrated the strong influence of soil background on
egetation indices. The perpendicular vegetation index (PVI) devel-
ped by Richardson and Wiegand (1977) seeks to limit the effects
f differences in soil moisture content on the index. The math-
matically related weighted difference vegetation index (WDVI)
escribed by Clevers (1989) assumes that the soil line runs through
he origin.

The capability of WDVI to predict ground cover was  widely
ested in the 1980s and early 1990s in the Netherlands (Bouman
t al., 1992). They found linear relationships between ground cover
nd WDVI throughout the growing season for potato, sugar beet,
arley, wheat and oats. They reported that the average estimation
ccuracy of ground cover from WDVI was of the same magnitude
s that of conventional methods, i.e., about 5% (absolute value) in
ost cases.
Most methods to predict ground cover require remote sensing

ata that have been calibrated to reflectance because they are mak-
ng use of the soil line. However, Maas and Rajan (2008) described
n elegant way to calculate ground cover based on digital num-
ers (DN), i.e., uncalibrated imagery. That approach is based on a
isual analysis of the so-called tasseled cap. This is a plot of the DNs
f the red (x-axis) versus those of the NIR (y-axis) band. That plot
xhibits the two key features needed to calculate ground cover:
he full canopy point and the soil line. At the full canopy point,
he ground cover approximates 100%. This approach works well in
egions with a diverse cropping pattern, where some fields have
eached a full canopy, whereas other ones have bare soil.

.2.  The relation between ground cover and yield
Per definition, ground cover is the percentage ground covered
y green leaves when seen from above. It is therefore a measure
f the amount of light or photosynthetically active radiation (PAR)
search 143 (2013) 151–156

that  is intercepted by a plant canopy. Monteith and Moss (1977)
showed that cumulative light interception throughout a season
is closely related to biomass production. In line with their find-
ings, several studies demonstrated that cumulative intercepted
PAR derived from remote sensing can be used to accurately esti-
mate above ground biomass (Casanova et al., 1998; Christensen
and Goudriaan, 1993). However, in order to estimate cumulative
intercepted radiation, several satellite images as well as the date
of crop emergence and maturity for each field are required. This
approach is not very practical for a country like Bangladesh, where
skies tend to be hazy during the winter months and typical field
sizes are less than 1 ha.

The LAI, and thus ground cover of maize reaches its peak
just before tasseling. It then declines at a slow and steady rate
(Odenweller and Johnson, 1984). Hence, there is a period of several
weeks around tasseling during which LAI does not change much.
This offers a rather long window for the estimation of LAI. In maize,
it has been shown that the amount of light intercepted around the
silking phase is a key determinant of grain set (D’Andrea et al., 2008;
Kiniry and Knievel, 1995; Lizaso et al., 2001). Hence, even if there
are differences in sowing date among maize fields in a given region,
an image taken around the time when the majority of the fields has
reached tasseling or soon thereafter, can potentially serve as good
indicator of the spatial variability of yield. However, the slope and
intercept of the relation between ground cover and yield changes
from year to year, since temperature and solar radiation have a
strong impact on grain filling. It is therefore necessary to calibrate
that equation.

3.  Materials and methods

3.1.  Study area

The  study was conducted in the Rangpur district, in northwest-
ern Bangladesh. That area is intensively cropped with rice during
the rainy season. Winter (Boro) rice, potato, wheat and increasingly
maize, as well as lentils, mustard, jute and other crops are grown
during the remainder of the year under irrigated as well as rainfed
conditions.

3.2. General crop production practices for maize

Maize in Rangpur is most commonly grown in the follow-
ing cropping patterns: maize–fallow–transplanted monsoon (T.
Aman) rice, potato–maize/relay maize–T. Aman rice, maize–relay
jute/jute–T. Aman rice, or maize–pre monsoon (Aus) rice–T. Aman
rice. In most of the areas, however, T. Aman–maize–fallow and
T. Aman–potato–maize are the predominant cropping patterns. In
T. Aman–maize–fallow system, maize is generally planted during
November and December (called Rabi maize) and harvested during
April and May, thus the growth duration of Rabi maize is around
150 days. In the T. Aman–potato–maize system, maize is sown as
a relay crop 20–35 days after planting potato in January or it is
grown after the early harvest of potato in late February to early
March (called Kharif-1 maize), thus the growth duration of kharif-
1 maize is around 110–115 days. The long duration, and hence the
late variety of Rabi maize results in delay in planting of main Kharif
season rice resulting in reduced rice yield while delay in harvest-
ing of kharif-1 maize results in crop damage and poor grain quality
due to storm and heavy rainfall at crop maturity (Ali et al., 2008;
Timsina et al., 2011). Short duration hybrids are required in NW

Bangladesh to intensify the cropping systems but they must have
high yield potential too.

Most  maize in Rangpur is grown on deep fertile alluvial soils
supplemented by large amounts of NPK fertilizer. Maize farmers
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pply N fertilizer rates of around 200 kg N/ha in three splits: 1/3
 as a basal dressing during land preparation, 1/3 at the 8 leaf

tage and the remaining 1/3 at tasseling. Maize is planted in rows
t approximately 53,000–66,000 plants/ha on conventionally tilled
and. Some farmers maintain a higher plant population of up to
0,000 plants/ha. Soil ridges are made after hand weeding.

Almost 100% of the maize area is planted with hybrid maize
eed each year, mainly with single cross and double cross hybrids
Ali et al., 2008). Almost all the maize is sole cropped but farmers
re interested to intercrop maize with very early harvested vegeta-
les, including potato, red-amaranth, spinach, radish, coriander and
rench bean. Irrigation scheduling is well developed, with around
0–85% of farmers providing the optimal 2–4 irrigations at appro-
riate stages of crop development.

.3.  Ground truth data

In  a survey maize yield data from the 2010/2011 season
ere collected in June of 2012 for more than 40 farmers’ fields.
dditionally, sowing and harvest dates as well as the names of vari-
ties/hybrids were recorded. The coordinates of one point within

 field were recorded with a GPS. The yield data set was first
hecked for plausibility. Some fields had to be eliminated due
o geo-location inconsistencies that could not be resolved. All in
ll, yield data from 30 fields passed the quality control. Next,
eld boundaries were created using a RapidEye satellite image
nd GoogleEarth (http://www.google.com/earth/index.html; ver-
fied October 31, 2012) as a reference.

.4. Estimation of potential yield

Potential yield was estimated with the HybridMaize model
Yang et al., 2004, 2006). The model requires only a few parameters
hen used to simulate growth and yield under non-limiting con-
itions. They were: start from planting on (m/d): 12/1 (DOY = 335);
eed brand: generic (default name when the name of the maize
ybrid being simulated is not known); cumulative thermal time

rom emergence to maturity (total GDD10C): 1360; cumulative
hermal time from emergence to silking (GDD10C to silking): 680;
lant population (×1000/ha): 80; seed depth (cm): 5; water regime:
ptimal (fully irrigated). Base temperature for all thermal time cal-
ulations is 10 ◦C. Neither potential nutrient deficiencies nor yield
educing effects due to pests were simulated. HybridMaize requires
he following weather parameters on a daily basis: maximum and

inimum temperature and solar radiation.
The HybridMaize model has been validated against a range of

ata sets in Indonesia, Philippines and Vietnam (Witt et al., 2006)
nd used extensively to predict yield potential of maize for 29
ocations in nine countries in Asia, including three locations in
angladesh (Timsina et al., 2010, 2011).

The weather data for the long-term simulations
ere  satellite derived and are being provided by NASA

http://power.larc.nasa.gov/; verified 31 October 2012). They
ere  selected using the coordinates of the city of Rangpur

25.700◦N; 89.230◦E), which is in the center of the study area.
ASA recommends not using them for long-term simulations

hat run across January 1, 2008. Hence, they were limited to the
eriod 1987–2007. In addition, data measured near the city of
angpur by the Rangpur office of the Meteorological Department
f Bangladesh were used to simulate growth for the 2010/2011
rowing season.
.5.  Remote sensing

An  optical remote sensing image was obtained from RapidEye
G. The image had been acquired on March 26, 2011 and covered
search 143 (2013) 151–156 153

644  km2. The native resolution of the RapidEye images is 6.5 m,  but
during the geo-rectification process they are resampled to 5.0 m.
The RapidEye images have five bands: blue, green, red, red-edge
and NIR.

The  image was used to identify the maize fields and to calculate
ground cover as well as calibrated yield. For crop identification an
object-based approach was used. First, segments were created with
eCognition (Definiens Imaging GmbH). Segments with an average
ground cover of less than 5% were excluded for the subsequent
classification steps in order to keep the number of segments low.
There were still more than 170,000 segments left for classification.
Next, two  training classes, “Maize” and “Others” were created. The
Maize class consisted of 100 segments and Others of 250. They
were created based on a visual analysis of the image. The classifi-
cation algorithm used was Random Forest, implemented in WEKA
(Hall et al., 2009). Random Forest has been shown to be able to
handle data sets with a non-uniform distribution. However, it can-
not detect crop type specific interactions among the information
contained in the spectral bands, which can be useful for separat-
ing the various crop types. Hence, in addition to digital numbers
of the 5 bands, GC, NDVI and the ratio of the digital numbers of
[NIR/(blue + green + red)] were used as input for the classification.
The visual quality control revealed that the main source of errors
was the misclassification of rice fields as maize. However, this could
easily be corrected for, since rice production typically takes place
in large pockets, because it requires access to a suitable irrigation
infrastructure.

Ground cover was  calculated using the methodology described
by Maas and Rajan (2008). The study area certainly contained pixels
with dense vegetation, since some crops, such as the maize fields
in question had reached the peak of their canopy development.
Moreover, it contained wetland and evergreen forest. The other key
feature, the soil line could also be easily detected, since many potato
fields had been freshly harvested and contained no green vegeta-
tion. For the subsequent prediction of yield, the average ground
cover of each field was  extracted.

3.6.  Prediction of actual yield with ground cover

Actual yield was predicted by regressing ground cover derived
from remote sensing versus reported yield of 30 fields. The con-
fidence limits of the prediction were assessed using a stratified
10-fold cross-validation approach. Standard procedure for this
approach is to divide the data set into ten parts (Witten et al., 2011).
Each part is held out in turn, and the learning scheme is trained on
the remaining nine-tenths. The error rate is determined based on
the hold-out part.

Actual  yield of maize for the entire study area was  then calcu-
lated by applying the regression line to all the maize pixels in the
image.

4. Results

4.1. Estimation of potential yield with HybridMaize

The HybridMaize model estimated an average yield of
12.87 Mg/ha (Table 1) across the 20 years. The highest yield was
simulated for 2002, with 15.04 Mg/ha, while 1991 was  the worst
year with 10.96 Mg/ha. In that year, the harvest index was par-
ticularly low. In all years, the simulated harvest index was below
0.50. Changing the sowing date between December 1 and December

31 led to a decline in yield with time (Table 2). Noteworthy is
the steady increase of the coefficient of variability of yield from
9% for the first sowing date to 14% for the last date. We  also
wanted to test whether the 2010/2011 weather conditions were

http://www.google.com/earth/index.html
http://power.larc.nasa.gov/
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Table  1
Potential yield of maize grown in the Rangpur district, Bangladesh estimated with the HybridMaize model. Weather data spanning 20 years from 1987 until 2007 were used.
Sowing  date was  set to December 1.

Rank Year Grain yielda (Mg/ha) Stover (Mg/ha) Harvest index Growth duration (days)

Vegetative Reproductive Total

Best yield 2002 15.04 13.29 0.49 83 54 137
75%  percentile 1993 13.68  15.21 0.43 66 55 121
Median  yield 2000 13.00 14.62 0.43 74 50 124
25%  percentile 2006 12.23 13.97 0.43 65 53 118
Worst  yield 1991 10.96 16.97 0.35 80 44 124

Long-term  mean 12.87 14.11 0.44 73 49 122
Long-term  CV (%) 9 9 

a Grain yield at 15.5% moisture content.

Table 2
Potential yield of maize grown in the Rangpur district, Bangladesh estimated with
the HybridMaize model. Sowing date was varied from December 1 to December 31.
As input, either 20 years or the actual 2010/2011 weather data were used. The 20
years covered the period from 1987 until 2007.

Sowing date 20 years 2010/2011 season

Grain yielda (Mg/ha) CV (%) Grain yielda (Mg/ha)

December 1 12.87 9 12.85
December  11 12.58 10 12.65
December  21 12.58 12 11.87
December  31 12.48 14 10.89

c
d
t
a
D
t
s

4
t

t
t
t
a
o
p
l
w
d
1

r
s
T
s
s
R
0
t
w
i
U
R
s
b

The estimated yield potential of maize of 12.87 Mg/ha is in-line
with other published results in previous studies and seems to be
plausible (Timsina et al., 2010, 2011). Ali et al. (2008) reported

Fig. 1. Calibration of the model predicting maize yield as a function of ground cover
in the Rangpur District, Bangladesh. Ground cover was derived from a satellite image
acquired on March 26, 2011. The observed yield data consisted of the average yield
of 30 farmers’ fields from the 2010/2011 growing season.
a Grain yield at 15.5% moisture content.

omparable to the long-term data. It turned out that the pre-
icted yield (12.85 Mg/ha) for that season was almost identical with
he long-term average yield. Late sowing dates, however showed

 slightly sharper decline in yield than the long-term average.
ecember 1 is the earliest practically feasible sowing date. Hence,

he simulated average yield of 12.87 Mg/ha was assumed to repre-
ent potential yield for the study area.

.2. Estimation of actual yield with remote sensing and ground
ruth  data

Ground cover data derived from remote sensing in conjunc-
ion with ground truth data were used to establish a function
o predict yield for all maize pixels in the image. The results of
he calibration of the model with the average yield of 30 fields
re shown in Fig. 1. In order to obtain a more reliable estimate
f the accuracy of the prediction, a 10-fold cross validation was
erformed. Fig. 2 shows the results of calculating a regression

ine using 9 sets to train the algorithm, while the remaining set
as used to calculate the mean squared error (MSE). This proce-
ure was repeated ten times. This resulted in an average MSE  of
.15 Mg/ha.

In  order to assess the spatial variability of the yield gap at the
egional level, the function that had been derived in the calibration
tep was applied to all the maize pixels in the remote sensing image.
he satellite image did not cover the entire Upazilas (administrative
ub-districts), hence the comparisons to the official statistical data
hown in Table 3 are to be seen with caution. For two sub-districts
angpur Sadar and Gangachara, yield was over predicted by 1.1 and
.9 Mg/ha respectively as compared to the yield data estimated by
he Bangladesh Bureau of Statistics, while for Mithapukur, yield
as underestimated by 0.5 Mg/ha. The map  (Fig. 3) also shows that

n general, smaller yield gaps were observed for the Mithapukur
pazila. There were large pockets especially in the Gangachara and

angpur Sadar sub-districts that had very low ground cover or bare
oil. Most likely, these were potato fields that had been harvested
efore the satellite image was acquired.
8 7 8 5

5.  Discussion
Fig. 2. Outcome of the 10-fold cross-validation used to establish the confidence
limits  of the prediction of actual yield with remote sensing derived ground cover
estimates. The resulting mean square error was 1.15 Mg/ha.
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Fig. 3. Map  depicting the spatial variability of the yield gap within three Upazilas (sub-districts) in the Rangpur district, Bangladesh. Potential yield was estimated with the
H over c
e

y
d

b
t
b
d

T
Y
R
s
r

ybridMaize model, actual yield data estimates were generated based on ground c
rror of the prediction of actual yield was 1.15 Mg/ha.

ields as high as 11–12.5 Mg/ha from on-farm experiments con-
ucted in northwestern Bangladesh.

The cumulative thermal time used to characterize a hybrid has a
ig impact on the yield estimates generated by HybridMaize. Since

he Rabi season maize crop is usually followed by another crop
efore the Kharif-1 or Aus rice crop, we chose a somewhat shorter
uration hybrid, so that the Rabi maize would fit well into the

able 3
ield  estimates of maize at the Upazila (administrative sub-district) level within the
angpur district of Bangladesh in the 2010/2011 Rabi growing season. The remote
ensing estimates did not cover the entire Upazilas, and therefore, may not be fully
epresentative for a given Upazila.

Upazila Average yield (Mg/ha)

Bangladesh Bureau of Statistics Remote sensing

Gangachara 7.0  7.9
Mithapukur 9.0 8.5
Rangpur Sadar 6.5  7.6
alculated from satellite data and yield data of 30 famer’s fields. The mean squared

cropping system. The simulated harvest indices were relatively low
when compared to values reported in the literature (Lorenz et al.,
2010). This might be due to the relatively high temperatures during
the grain filling period, shortening its duration when expressed in
days as compared to other maize productions regions such as the
corn belt in the USA.

The  actual yields that are currently being achieved by the farm-
ers are generally high, though there is quite some spatial variability
in the actual yield data. It seems that especially in the sub-districts
of Gangachara and Rangpur Sadar where maize yields tended to
be lower, farmers prefer to grow Rabi-rice if water for irrigation
is available. Maize is a relatively new crop for Bangladesh, and the
demand for rice is much higher than for maize as rice is a staple crop
and is a primary source of food for every Bangladeshi. However,
maize is an important feed source for poultry and fish and is now

increasingly being used as a food crop, especially by the rural poor.

The proposed methodology of using ground truth data for yield
collected from farmers’ fields to calibrate a ground cover map  to
estimate actual yield is rather challenging and time consuming.
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here are issues with geo-location accuracies of the data points,
s well as potential in-accuracies of the yield estimates provided
y the farmers. However, it allows to create maps with an MSE  of
.15 Mg/ha for an area of several hundred square kilometers based
n the input of a rather small number of fields.

The size of the yield gap in the study area was variable, but for
ome of the fields, it was less than 2.5 Mg/ha. One of the potential
ses of a yield gap map  is to learn from the farmers with the highest
ields what their management practices were, in order to establish
p-to date management recommendations. Alternatively, it might
lso be worthwhile to visit the low yielding fields in order to identify
he production constraints. This information could greatly enhance
he efficacy of the extension work and would allow agronomists to
enerate region or even field specific recommendations.

. Conclusions

Generating an accurate yield gap map  at the field level is chal-
enging. While potential yield estimates under non (water) limiting
onditions can be relatively easily generated with a crop simulation
odel, an accurate estimation of the actual yield at the field level

s prone to errors. The method described in this paper allowed to
patially extend the yield data of maize from initially 40 farmers’
elds to a region of 600 km2 with a MSE  of 1.15 Mg/ha. For practical
pplications such as identifying the causes of yield gaps in a given
egion and improving information and knowledge provided by the
xtension services, this accuracy should be sufficient.
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