
Journal of Computational and Applied Mathematics 222 (2008) 429–439
www.elsevier.com/locate/cam

Modified subspace limited memory BFGS algorithm for large-scale
bound constrained optimizationI

Yunhai Xiaoa,∗, Hongchuan Zhangb

a Institute of Applied Mathematics, School of Mathematics and Information Science, Henan University, Kaifeng, Henan, 475004, PR China
b College of Electric and Information Engineering, Hunan University, Changsha, 410082, PR China

Received 19 April 2006; received in revised form 7 September 2007

Abstract

In this paper, a subspace limited memory BFGS algorithm for solving large-scale bound constrained optimization problems is
developed. It is modifications of the subspace limited memory quasi-Newton method proposed by Ni and Yuan [Q. Ni, Y.X. Yuan,
A subspace limited memory quasi-Newton algorithm for large-scale nonlinear bound constrained optimization, Math. Comput. 66
(1997) 1509–1520]. An important property of our proposed method is that more limited memory BFGS update is used. Under
appropriate conditions, the global convergence of the method is established. The implementations of the method on CUTE test
problems are presented, which indicate the modifications are beneficial to the performance of the algorithm.
c© 2007 Elsevier B.V. All rights reserved.

Keywords: Bound constrained problem; Limited memory BFGS method; Projected line search; Stationary point; Gradient projection

1. Introduction

The bound constrained optimization problem to be considered is

min f (x) s.t. l ≤ x ≤ u, (1.1)

where f : Rn
→ R is continuously differentiable, and l, u ∈ Rn with l < u. Here and throughout the vector

inequality is element-wise. The gradient of f at x is denoted by ∇ f = (∇ f1(x), . . . ,∇ fn(x)). Let Ω be the feasible
region of (1.1), i.e.

Ω = {x ∈ Rn
: l ≤ x ≤ u}. (1.2)

A vector x ∈ Ω is said to be a stationary point for problem (1.1) if it satisfiesli = x i ⇒ ∇ fi (x) ≥ 0,
li < x i < ui ⇒ ∇ fi (x) = 0,
x i = ui ⇒ ∇ fi (x) ≤ 0.

(1.3)

I This work was supported by Chinese NSF grant 10471036.
∗ Corresponding address: School of Mathematics and Information Science, Henan University, 475000 Kaifeng, Henan, PR China.

E-mail addresses: yunhai816@163.com (Y. Xiao), tingboweila@126.com (H. Zhang).

0377-0427/$ - see front matter c© 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.cam.2007.11.014

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82528187?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/cam
mailto:yunhai816@163.com
mailto:tingboweila@126.com
http://dx.doi.org/10.1016/j.cam.2007.11.014

430 Y. Xiao, H. Zhang / Journal of Computational and Applied Mathematics 222 (2008) 429–439

Strict complementarity is said to be hold at x if the strict inequality hold in the first and the third implications of (1.3).
The bound constrained minimization algorithms are usually used as subalgorithms for solving the subproblems in the
augmented Lagrangian and penalty methods for general constrained optimization problems (see [1,2,9,10,13,22]).

Many algorithms for solving this type of problems are based on active set strategies (see [4,14,15,21]). The
approaches of this class are quite efficient for relatively small dimensional problems, but are typically unattractive
for large-scale problems (see [3,12]). The main reason is that at most one constraint can be added to or dropped from
the active set at each iteration. Recently, there is a growing interest in the design of active set methods that are capable
of making rapid changes to incorrect predictions (e.g. [3,4,14,15]).

The gradient projection methods (e.g. [3]) provide an alternative way for the solution of problem (1.1). They have
the advantage that many constraints can be added to or dropped from the active set at each step. The gradient projection
technique has been further studied for solving nonlinear optimization problems, both for general linearly constrained
case and for the bound constrained case (see [5,8,9,19,20,23]). The bound constrained optimization problems have
received much attention in recent decades, we refer to [16,17] for good reviews.

In [24], Ni and Yuan proposed a subspace limited memory quasi-Newton algorithm for solving problem (1.1).
At each iteration, the active and inactive variables are determined by a small tolerance ε, and the inactive variables
are updated by limited memory BFGS method. The reported numerical experiments [24] show that this method is
effective for solving large-scale bound constrained optimization problems. The purpose of this paper is to further
study the application of the limited memory BFGS method for the solution of problem (1.1). The proposed method
in this paper can be considered as the modifications of the subspace limited memory BFGS method by Ni and Yuan.
Unlike [24] where only the active variables are updated by the limited memory BFGS method, in this paper, we also
adopt the limited memory BFGS method to update parts of the active variables. Specifically, at each iteration, we use
a parameter to estimate the active or inactive variables, and the parameter becomes zero automatically as the iteration
progresses. Under appropriate, we establish the global convergence of the method. In addition, the proposed method
reserves the advantages of the limited memory BFGS method. The numerical experiments of the method on a set of
large problems indicated are promising.

The paper is organized as follows. We first discuss the construction of our new algorithm in the next section. In
Section 3, we establish the global convergence of the method. In Section 4, we test the performance of the proposed
algorithm and compare it with the well known routine L-BFGS-B. Throughout the paper, the symbol ‖ · ‖ denotes the
Euclidean norm of vectors.

2. Motivation and the new algorithm

In this section, based on the method in [24], we propose a new algorithm for solving (1.1). The method generates
a sequence of points {xk

} by

xk+1
= xk

+ αkdk, k = 0, 1, 2, . . . ,

where dk is a descent direction of f at xk , and αk is the steplength that is determined by a projected line search. In
what follows, we describe the method in detail.

In order to introduce the procedure that estimate the active bounds, we give a sufficiently small scalar εb, such that
0 < εb < mini

1
3 (ui − li). Let

ωk = ‖x
k
− PΩ [x

k
−∇ f (xk)]‖ and εk = min{εb, ωk}, (2.1)

where PΩ [·] is the projection on Ω , that is

PΩ [x] =

xi , if li ≤ xi ≤ ui ,

li , if xi < li ,
ui , if xi > ui .

(2.2)

Note that while the starting point is far from a stationary point, then εk will be bounded away from zero, and becomes
zero automatically as the iteration progresses.

For x ∈ Ω , we define index set A(x) and B(x) as follows:

A(x) = {i : li ≤ xi ≤ li + εk or ui − εk ≤ xi ≤ ui }, (2.3)

Y. Xiao, H. Zhang / Journal of Computational and Applied Mathematics 222 (2008) 429–439 431

B(x) = {1, . . . , n}\A(x) = {i : li + εk ≤ xi ≤ ui − εk}. (2.4)

The variables with indices in A(x) are called active variables, while the variables with indices in B(x) are called
inactive variables.

In order to obtain the search direction of the active variables, as in [24], we also partition the active set A(x) into
three parts,

A1(x) = {i : xi = li or xi = ui , and (li + ui − 2xi)∇ fi ≥ 0}, (2.5)

A2(x) = {i : li ≤ xi ≤ li + εk or ui − εk ≤ xi ≤ ui , and (li + ui − 2xi)∇ fi < 0}, (2.6)

A3(x) = {i : li < xi ≤ li + εk or ui − εk ≤ xi < ui , and (li + ui − 2xi)∇ fi ≥ 0}. (2.7)

Consider the above implications, we note that A1(x) is the index set of variables where the corresponding gradient
satisfy the first (or third) implication of (1.3), therefore it is reasonable to be fixed. A3(x) is the set of the variables
where the steepest directions move towards the boundary, thus the steepest descent direction in this subspace should
be backtracked to ensure feasibility. A2(x) is the index set of the variables where the steepest descent direction move
into the interior of the feasible region, in this situation, unlike [24] where the steepest descent direction is used, we
use the Newton direction instead. We assume, from now on, the variables with indices in B(x)∪ A2(x) are called free
variables, although most of the prevenient researchers did not use the assertion.

Let Z be the matrix whose columns are {ei | i ∈ B(xk) ∪ A2(xk)}, and P be the matrix whose columns are
{ei | i ∈ A3(xk)}, where ei is the i-th column of the identity matrix I in Rn×n . Let H

k
= Z T H k Z , where H k is an

approximation of ∇2 f −1(xk). From now on, we abbreviate ∇ f (xk) as gk for sake of simplicity.
For simplicity, we let Bk

= B(xk) and Ak
i = Ai (xk)(i = 1, 2, 3). The search direction dk is defined by

dk
i =


0, if i ∈ Ak

1,

−(P PT Λk gk)i , if i ∈ Ak
3,

−(Z H
k

Z T gk)i , if i ∈ Bk
∪ Ak

2,

(2.8)

where Λk = diag(λk
1, . . . , λ

k
n) which is given by

λk
i =



0, if i 6∈ Ak
3,

xk
i − li
gk

i

, if li < xi ≤ li + εk and xk
i − gk

i ≤ li ,

xk
i − ui

gk
i

, if ui − εk ≤ xi < ui and xk
i − gk

i ≥ ui ,

1, otherwise.

(2.9)

The calculation of the search direction at current point xk in the subspace of i ∈ Ak
3 can be explained as follows: Let

dk
i = −gk

i , if in the next iteration we have xk
i + dk

i = xk+1
i ∈ Ω , we set λk

i = 1. Otherwise we backtrack the steepest

direction with steplength λk
i =

xk
i −li
gk

i
, and in the next iteration we also have xk+1

i = xk
i + λ

k
i dk

i = li . The case of the

third implication in (2.9) is analogous. This is to say, the definition of Λk in (2.9) ensures that

li ≤ xk
i + dk

i ≤ ui , ∀i ∈ Ak
3 (2.10)

holds.
The following result shows that whenever dk

6= 0, it is at least a descent direction for objective function f at the
current point, it is very important to establish our global convergence theorem.

Lemma 2.1. If H k is positive definite, then dk defined by (2.8) satisfies

(dk)T gk
≤ 0, (2.11)

and the equality holds if and only if dk
= 0.

432 Y. Xiao, H. Zhang / Journal of Computational and Applied Mathematics 222 (2008) 429–439

Proof. From the definition of search direction dk in (2.8), we have

(dk)T gk
=

∑
i∈Ak

3

−(P PT Λk gk)i g
k
i +

∑
i∈Bk∪Ak

2

−gk
i (Z H

k
Z T gk)i ≤ 0.

The above relation comes from the positive definite of H k and the definition of the active set Ak
3, (2.8) and (2.9).

Which also indicates (dk)T gk
= 0 if and only if dk

= 0. �

The limited memory BFGS method is an adaptation of the BFGS method to large-scale problems. In the limited
memory BFGS method, matrix H k is obtained by updating the basic matrix H0m times using BFGS formula with the
previous m iterations. The standard BFGS correction with H k have the following form:

H k+1
= (V k)T H k V k

+ ρksk(sk)T , (2.12)

where ρk
=

1
(yk)T sk , sk

= xk+1
− xk , yk

= gk+1
− gk , and V k

= I − ρk yk(sk)T . Therefore, H k+1 in the limited
BFGS method has the following form:

H k+1
= (V k)T [(V k−1)T H k−1V k−1

+ ρk−1sk−1(sk−1)T]V k
+ ρksk(sk)T

= [(V k)T · · · (V k−m+1)T]H k−m+1
[V k−m+1

· · · V k−1
]

+ ρk−m+1
[(V k−1)T · · · (V k−m+2)T]sk−m+1(sk−m+1)T [V k−m+2

· · · V k−1
]

+ · · · + ρksk(sk)T . (2.13)

To maintain the positive definiteness of the limited memory BFGS matrix, some researchers suggest to discard a
correction pair {sk, yk

} if (yk)T sk
≤ 0 (e.g. [6,7]). Another approach which proposed by Powell can be seen in [25].

The projected line search has been used by several authors for solving quadratic and nonlinear programming
problems with bounds on the variables (see [3,19,23,24]). The projected search requires that a steplength, αk , be
chosen such that

φk(α) ≤ φk(0)+ δφk ′(0)α (2.14)

is satisfied for some constant δ ∈ (0, 1
2). Here φk is the piecewise twice continuously differentiable function, that is

φk(α) = f (PΩ [x
k
+ αdk

]).

Now, we state the steps of the modified subspace limited memory BFGS (MSLBFGS) algorithm as follows.

Algorithm 2.1. Step 0. Given starting point x0
∈ Ω , constant δ ∈ (0, 1

2), m ∈ (3, 20) and β ∈ (0, 1), the “basic
matrix” H0, a small scalar εb > 0 and 0 < σ1 < σ2 < 1; compute f (x0), g0 and set k = 0.
Step 1. Determine Bk , Ak

i (i = 1, 2, 3) according to (2.3)–(2.7).
Step 2. Determine dk by (2.8).
Step 3. If dk

= 0, then stop.
Step 4. If

f (PΩ [x
k
+ αk, j d

k
]) ≤ f (xk)+ δ∇ f (xk)T (PΩ [x

k
+ αk, j d

k
] − xk). (2.15)

then define αk = αk, j , else find αk, j ∈ [σ1αk, j , σ2αk, j], go to Step 4.
Step 5. Set xk+1

= PΩ [xk
+ αkdk

]. Update H k to get H k+1 by (2.13).
Step 6. Let k = k + 1. Go to Step 1.

3. Convergence analysis

In the section, we show that the sequence {xk
} generated by Algorithm 2.1 converges to a stationary point of

problem (1.1). The following result shows that the Step 4 is well defined.

Y. Xiao, H. Zhang / Journal of Computational and Applied Mathematics 222 (2008) 429–439 433

Lemma 3.1. Suppose the sequence {dk
} and {xk

} be generated by Algorithm 2.1, and assume that dk
6= 0. Then we

have

min
{

1,
‖u − l‖∞
‖dk‖∞

}
≥ βk

≥ min
{

1,
εk

‖dk‖∞

}
, (3.1)

where βk
= sup0≤γ≤1{γ | l ≤ xk

+ γ dk
≤ u}.

Proof. Since dk
6= 0, from (2.8) we have gk

6= 0, so also εk 6= 0. By the definition of βk , xk and xk
+ βkdk are

feasible points of (1.1), which gives

‖βkdk
‖∞ ≤ ‖u − l‖∞.

Thus the first part of (3.1) is true.
Now we show the second part of (3.1). It is sufficient to prove that

xk
i + βdk

i ∈ [li , ui] (3.2)

for all i = 1, . . . , n, where β = min{1, εk
‖dk‖∞

}. If i ∈ Bk , (3.2) follows from (2.4) and |βdk
i | ≤ εk . If i ∈ Ak

1, (3.2) is

trivial as dk
i = 0. If i ∈ Ak

3, it follows from definition (2.9) that

xk
i + dk

i ∈ [li , ui] (3.3)

which implies (3.2). Finally we consider the case when i ∈ Ak
2. We have dk

i = −(Z H
k

Z T gk)i 6= 0. If di > 0, then
xk

i ∈ [li , li + εk] which shows that

li ≤ xk
i < xk

i + βdk
i ≤ xk

i + εk ≤ li + 2εk < ui . (3.4)

Similarly, if dk
i < 0, we have

li < ui − 2εk ≤ xk
i − εk ≤ xk

i + βdk
i < xk

i ≤ ui . (3.5)

Hence (3.2) holds for all i = 1, . . . , n. Therefore, we have shown that the relations (3.1) hold. �

The following lemma indicates that the search direction does not vanish if the iteration point is not a stationary
point. The proof can be found in [24, Lemma 3.1], and we omit it here.

Lemma 3.2. Suppose the sequence {dk
} and {xk

} be generated by Algorithm 2.1. Then xk is a stationary point of
problem (1.1) if and only if dk

= 0.

The following theorem establishes the global convergence of Algorithm 2.1, and the proof is similar with Theorem
3.2 in [24].

Theorem 3.1. Suppose the sequence {dk
} and {xk

} be generated by Algorithm 2.1. Assume that f is twice
continuously differentiable in Ω , and there exists positive constants γ1, γ2 such that

γ1‖Z
T gk
‖

2
≤ (gk)T Z H

k
Z T gk (3.6)

‖Z T H
k

Z‖ ≤ γ2 (3.7)

for all k. Then every accumulation point of {xk
} is a stationary point of the problem (1.1).

Proof. First we establish an upper bound for (gk)T dk ,

(gk)T dk
= −(gk)T Z H

k
Z T gk

− ‖PT Λ1/2
k gk
‖

2

≤ −

γ1‖Z
T gk
‖

2
+

∑
i∈Ak

3

τ k
i |g

k
i |

 , (3.8)

434 Y. Xiao, H. Zhang / Journal of Computational and Applied Mathematics 222 (2008) 429–439

where τ k
i = min{|gk

i |, |x
k
i − li |, |ui − xk

i |}. We also have

‖dk
‖

2
= ‖Z H

k
Z T gk

‖
2
+ ‖PT Λk gk

‖
2. (3.9)

Because λk
i ∈ [0, 1], and H

k
satisfies (3.7), it follows from (3.8) and (3.9) that

‖dk
‖

2
≤ −max{1, γ2}(g

k)T dk . (3.10)

Furthermore, from (3.7) and (3.9) yield

‖dk
‖

2
≤ γ 2

2 ‖g
k
‖

2
+ ‖gk

‖
2
≤ (γ 2

2 + 1)η1, (3.11)

where η1 = maxx∈Ω ‖gk
‖

2. Thus from (3.1) and (3.11), there exists a constant β ∈ (0, 1) such that

βk ≥ β for all k. (3.12)

If αk < σ1β, by the definition of αk there exists αk, j such that αk, j ≤
αk
σ1

, and αk, j is an unacceptable steplength,
which implies that

f (xk)+ δαk, j (g
k)T dk

≤ f (xk
+ αkdk)

≤ f (xk)+ αk, j (g
k)T dk

+
1
2
η2α

2
k, j‖d

k
‖

2, (3.13)

where η2 = maxx∈Ω ‖∇
2 f (x)‖. The above inequality and (3.10) imply that

αk, j ≥
−2(1− δ)(gk)T dk

η2‖dk‖2
≥

2(1− δ)
η2 max{1, γ2}

. (3.14)

Hence the above inequality and αk ≥ σ1αk, j yield

αk ≥ min
{

2σ1(1− δ)
η2 max{1, γ2}

, σ1β

}
> 0 (3.15)

for all k. Because Ω is a bounded set,

∞ >

∞∑
k=1

(f (xk)− f (xk+1)) ≥

∞∑
k=1

−δαk(g
k)T dk . (3.16)

(3.15) and (3.16) show that

∞∑
k=1

−(gk)T dk <∞, (3.17)

which implies

lim
k→∞

(gk)T dk
= 0. (3.18)

It follows from (3.18) and (3.8) that

lim
k→∞
‖Z T gk

‖ = 0, (3.19)

lim
k→∞

∑
i∈Ak

3

τ k
i |g

k
i | = 0. (3.20)

For the remanent proof we can see [24, Theorem 3.2]. �

Conditions (3.6) and (3.7) are satisfied if the matrix H k is adjusted by limited memory BFGS inverse m-update
(2.13).

Y. Xiao, H. Zhang / Journal of Computational and Applied Mathematics 222 (2008) 429–439 435

Table 4.1
Performance of MSLBFGS

Problem Dim iter fcnt time f (x) pginfn pgtwon

nonscomp 1000 68 244 0.031 0.180671E−10 0.653346E−05 0.173956E−04
2000 68 244 0.141 0.366668E−10 0.990403E−05 0.253062E−04
5000 71 253 0.281 0.100082E−10 0.969158E−05 0.176238E−04

explin 12 68 239 0.016 −0.684995E+04 0.565795E−05 0.650469E−05
120 91 317 0.016 −0.723756E+06 0.904604E−05 0.108707E−04

1200 418 2000 0.375 −0.719252E+08 0.623492E+01 0.714967E+01
explin2 12 54 192 0.000 −0.709247E+04 0.688739E−05 0.688739E−05

120 154 529 0.016 −0.724459E+06 0.849201E−05 0.106886E−04
1200 416 2000 0.453 −0.719988E+08 0.113915E−02 0.113915E−02

mccormck 100 32 61 0.016 −0.917881E+02 0.711845E−05 0.189380E−04
500 32 61 0.000 −0.457077E+03 0.711845E−05 0.189380E−04

1000 32 61 0.016 −0.913689E+03 0.711845E−05 0.189380E−04
probpenl 1000 33 298 0.125 0.199800E−06 0.521194E−05 0.164810E−03

5000 35 351 0.703 0.399921E−07 0.621565E−05 0.439512E−03
qrtquad 12 78 2000 0.016 −0.111826E+04 0.845710E+02 0.154986E+03

120 400 2000 0.031 −0.364807E+07 0.114270E−02 0.127514E−02
1200 354 2001 0.500 −0.360944E+10 0.192813E+05 0.345388E+05

bdexp 5000 1001 1002 7.859 0.571006E−01 0.152184E−03 0.792156E−02
hatfldc 25 58 147 0.000 0.651092E−10 0.956225E−05 0.193433E−04

1000 49 126 0.031 0.483624E−10 0.896835E−05 0.196945E−04
5000 53 136 0.188 0.551863E−10 0.899976E−05 0.150257E−04

hs110 50 1 2 0.000 −0.999000E+10 0.000000E+00 0.000000E+00
100 1 2 0.000 −0.998002E+20 0.000000E+00 0.000000E+00

biggsb1 1000 1001 1795 0.531 0.197249E−01 0.493937E−03 0.320872E−02
5000 1001 1795 2.531 0.197249E−01 0.493937E−03 0.320872E−02

hatflda 1000 2 2000 4.750 0.721579E+01 0.100000E+21 0.100000E+21
edensch 2000 35 95 0.031 0.120033E+05 0.984496E−05 0.327110E−03
edensch 2000 0 1 0.000 0.339990E+05 0.000000E+00 0.000000E+00
edensch 2000 160 2000 0.578 0.137024E+05 0.107196E−04 0.317539E−04
edensch 2000 156 2000 0.609 0.120046E+05 0.190917E−04 0.255474E−04
edensch 2000 52 171 0.109 0.144263E+05 0.574050E−05 0.311840E−04
penalty1 2000 1001 1082 1.062 0.195573E−01 0.258528E−04 0.112000E−02
penalty1 2000 1001 1078 0.984 0.196613E−01 0.163280E−03 0.580891E−02
penalty1 2000 12 79 0.031 0.411068E+02 0.100762E−05 0.212506E−04
penalty1 2000 31 143 0.047 0.950806E+02 0.627337E−05 0.114593E−03
cvbqp1 1000 1 2 0.000 0.225225E+05 0.000000E+00 0.000000E+00
nbcvbqp1 1000 1 2 0.000 −0.198680E+09 0.000000E+00 0.000000E+00
nbcvbqp2 1000 195 2000 0.406 −0.133388E+09 0.142076E−02 0.143546E−02
nbcvbqp3 1000 54 274 0.094 −0.657738E+08 0.942524E−05 0.961508E−05
qudlin 1000 1 2 0.000 −0.500000E+08 0.000000E+00 0.000000E+00

5000 1 2 0.000 −0.125000E+10 0.000000E+00 0.000000E+00
s368 100 75 2000 0.922 0.105413E+10 0.970297E+00 0.570547E+01
harkerp2 100 58 2000 0.406 −0.957207E−06 0.999582E+00 0.999582E+01
pentdi 1000 21 62 0.000 −0.375000E+00 0.626885E−05 0.626885E−05

5000 21 62 0.047 −0.375000E+00 0.626885E−05 0.626885E−05
chenhark 1000 820 2000 0.609 −0.996941E+00 0.175296E−02 0.577422E−02
sineali 1000 182 2001 0.500 −0.997205E+05 0.582061E+01 0.204143E+02

We note that our global convergence result based on a small scalar εb > 0. If we initialize εb > 0, then the
algorithm falls into an exact active set framework. In this case, although more variables are updated by the limited
memory BFGS method, we think the direction should be more complicated. For example, suppose that at the optimal
solution the i-th component is at its lower bound li , and xk

i is very near to the bound, we set dk
i = li − xk

i , and in the
next iteration we have xk+1

i = li , provided that λk
i is defined by the third implication of (2.9). The above strategy is

very natural and simple, and it is easier to be performed than use limited memory BFGS update instead, the numerical
experiments as follows indicate our claims.

436 Y. Xiao, H. Zhang / Journal of Computational and Applied Mathematics 222 (2008) 429–439

Table 4.2
Performance of NIYUAN

Problem dim iter fcnt time f (x) pginfn pgtwon

nonscomp 1000 60 174 0.031 0.124730E−10 0.811342E−05 0.203497E−04
2000 233 634 0.281 0.218738E−10 0.975859E−05 0.106368E−04
5000 233 634 0.703 0.218738E−10 0.975859E−05 0.106368E−04

explin 12 90 253 0.000 −0.684995E+04 0.842454E−05 0.870068E−05
120 118 326 0.016 −0.723756E+06 0.842447E−05 0.106771E−04

1200 542 2000 0.516 −0.719244E+08 0.398635E−02 0.474291E−02
explin2 12 65 191 0.000 −0.709247E+04 0.839495E−05 0.839495E−05

120 742 2000 0.109 −0.724459E+06 0.340264E−04 0.340264E−04
1200 542 2001 0.547 −0.719988E+08 0.512678E−03 0.514950E−03

mccormck 100 47 90 0.000 −0.917881E+02 0.899848E−05 0.101388E−04
500 55 106 0.016 −0.457077E+03 0.949250E−05 0.102015E−04

1000 61 119 0.047 −0.913689E+03 0.863085E−05 0.927314E−05
probpenl 1000 104 729 0.359 0.199800E−06 0.832719E−05 0.263323E−03

5000 2 15 0.031 0.399920E−07 0.159874E−07 0.284578E−06
qrtquad 12 110 2000 0.016 −0.112839E+04 0.856392E+02 0.157287E+03

120 525 2000 0.094 −0.364807E+07 0.213147E−02 0.242191E−02
1200 428 2000 0.484 −0.337453E+10 0.386732E+05 0.750081E+05

bdexp 5000 1001 1002 8.078 0.571006E−01 0.152184E−03 0.792156E−02
hatfldc 25 53 105 0.000 0.319488E−10 0.880218E−05 0.263278E−04

1000 46 92 0.031 0.265908E−08 0.871123E−05 0.103529E−03
5000 46 92 0.172 0.133791E−07 0.871123E−05 0.231514E−03

hs110 50 1 2 0.000 −0.999000E+10 0.000000E+00 0.000000E+00
100 1 2 0.000 −0.998002E+20 0.000000E+00 0.000000E+00

biggsb1 1000 1001 1688 0.609 0.196231E−01 0.468674E−02 0.660522E−02
5000 1001 1688 2.609 0.196231E−01 0.468674E−02 0.660522E−02

hatflda 1000 2 2000 4.750 0.721579E+01 0.100000E+21 0.100000E+21
edensch 2000 100 273 0.172 0.120033E+05 0.900582E−05 0.182303E−04
edensch 2000 0 1 0.000 0.339990E+05 0.000000E+00 0.000000E+00
edensch 2000 241 2000 0.688 0.137024E+05 0.113263E−03 0.235224E−03
edensch 2000 233 2000 0.641 0.120046E+05 0.122858E−03 0.199621E−03
edensch 2000 479 2000 0.875 0.144263E+05 0.208728E−04 0.408671E−04
penalty1 2000 1001 1059 0.906 0.198206E−01 0.556919E−04 0.128783E−02
penalty1 2000 1001 1101 0.922 0.196674E−01 0.174975E−03 0.619743E−02
penalty1 2000 40 147 0.062 0.411068E+02 0.845885E−05 0.178404E−03
penalty1 2000 32 148 0.062 0.950806E+02 0.832141E−05 0.152028E−03
cvbqp1 1000 1 2 0.000 0.225225E+05 0.000000E+00 0.000000E+00
nbcvbqp1 1000 1 2 0.000 −0.198680E+09 0.000000E+00 0.000000E+00
nbcvbqp2 1000 255 2000 0.500 −0.133388E+09 0.502444E−03 0.531423E−03
nbcvbqp3 1000 208 2000 0.453 −0.657738E+08 0.470544E−03 0.559064E−03
qudlin 1000 1 2 0.000 −0.500000E+08 0.000000E+00 0.000000E+00

5000 1 2 0.000 −0.125000E+10 0.000000E+00 0.000000E+00
s368 100 106 2000 1.000 0.105413E+10 0.970297E+00 0.570547E+01
harkerp2 100 84 2000 0.547 −0.959748E−06 0.999592E+00 0.999592E+01
pentdi 1000 16 32 0.000 −0.375000E+00 0.768000E−05 0.809543E−05

5000 16 32 0.063 −0.375000E+00 0.768000E−05 0.809543E−05
chenhark 1000 1001 1846 0.641 −0.998423E+00 0.481583E−03 0.246523E−02
sineali 1000 2 5 0.000 −0.976805E+05 0.000000E+00 0.000000E+00

Problem: name of the problem; dim: dimension of the problem; iter: number of iterations; fcnt: number of function evaluations; time: CPU time in
seconds; f (x): final function value; pginfn: infinity norm of the final gradient projection; pgtwon: norm of the final gradient projection.

4. Numerical experiments

In this section we test the numerical behaviour of Algorithm 2.1 (MSLBFGS), and compare with the subspace
limited memory quasi-Newton algorithm (called NIYUAN here) in [24]. For all test problems, we stop the iteration if

‖PΩ (x
k
− gk)− xk

‖ ≤ 10−5 or ‖PΩ (x
k
− gk)− xk

‖∞ ≤ 10−5 (4.1)

Y. Xiao, H. Zhang / Journal of Computational and Applied Mathematics 222 (2008) 429–439 437

Table 4.3
Performance of L-BFGS-B

problem dim iter fcnt time f (x) pginfn

nonscomp 1000 28 32 0.031 0.164332E−08 0.218253E−03
2000 36 41 0.078 0.108606E−08 0.156895E−03
5000 34 38 0.188 0.806444E−09 0.472007E−04

mccormck 100 683 777 0.172 −0.500187E+13 0.532978E+02
probpenl 1000 2 4 0.016 0.199800E−06 0.166319E−06

5000 2 4 0.016 0.399920E−07 0.310914E−06
qrtquad 12 5 87 0.000 −0.119530E+04 0.663373E+02

120 5 49 0.016 −0.291560E+07 0.448379E+04
1200 1 21 0.000 0.000000E+00 0.119900E+05

bdexp 5000 16 18 0.234 0.196787E−02 0.552114E−05
hatfldc 25 18 22 0.000 0.550329E−09 0.371552E−04

1000 20 24 0.016 0.819539E−09 0.528848E−04
5000 21 26 0.125 0.193954E−09 0.253317E−04

biggsb1 1000 1398 1450 1.438 0.486819E−06 0.915080E−05
biggsb1 5000 3772 3897 20.172 0.126528E−03 0.831051E−05
edensch 2000 13 16 0.031 0.120033E+05 0.386546E−02
edensch 2000 0 1 0.000 0.339990E+05 0.000000E+00
edensch 2000 13 16 0.047 0.120033E+05 0.386546E−02
edensch 2000 13 16 0.016 0.120033E+05 0.386546E−02
edensch 2000 65 90 0.188 0.120033E+05 0.451844E−02
penalty1 2000 61 71 0.141 0.195552E−01 0.278097E−05
penalty1 2000 61 71 0.125 0.195552E−01 0.278097E−05
penalty1 2000 61 71 0.172 0.195552E−01 0.278097E−05
penalty1 2000 61 71 0.172 0.195552E−01 0.278097E−05
cvbqp1 1000 625 640 0.703 0.629610E−06 0.735262E−02
bcvbqp1 1000 1 21 0.016 −0.492469E+06 0.525000E+04
bcvbqp2 1000 1 21 0.000 −0.281250E+06 0.375000E+04
bcvbqp3 1000 1 21 0.016 0.705938E+05 0.375000E+04
qudlin 1000 21 268 0.047 −∞ 0.424033+155
s368 100 1 15 0.016 0.105413E+10 0.221993E+02
harkerp2 100 3 42 0.266 0.437139E+11 0.658443E+02
pentdi 1000 17 37 0.016 −0.410122E+02 0.644267E−03

5000 17 37 0.125 −0.207679E+03 0.982725E−03
sineali 1000 2 50 0.031 −0.998754E+05 0.407471E+03

is satisfied. The iteration is also stopped if the number of iterations exceed 1000, or the number of function evaluations
reached 2000. Both the codes are written in Fortran77 and in double precision arithmetic. All runs are perform on a PC
with CPU P4 2.6 GHz and 256 M memory. Our experiments are performed on a set of the nonlinear bound constrained
problems from CUTE (see [11]) collection that have second derivatives available, all the selected problems both have
upper and lower bound. Different bounds of problems penalty1 and edensch are designed in [6].

Both in algorithm MSLBFGS and NIYUAN, we choose δ = 10−4 in projected line search, and choose εb =
1

1000 min{ui − li |i = 1, . . . , n}, this choice is very small and can approximate the active set at initialization. In the
limited memory BFGS update, we set the ”basic matrix” to be the identity matrix I . The number of corrections pairs
used in limited memory BFGS method is m = 5.

We note that, if the initial data is far from a local minimizer, the active set can change with each iteration, and the
calculations involved H k must be designed to account for this. One efficient way to do this is to store the sequence
{s̄k
} and {ȳk

} according to the reduced gradient and projected steps at each iteration, and use a recursive algorithm to
determine the search direction in free subspace. Let p ≤ m be the indices of the correction pairs, initialize d̄ = −gk .
An updating process that implements these savings in computation is as follows:

Subalgorithm 4.1. update(p, {s̄k
}, {ȳk

}, I, d̄, Z)
step 1. d̄ = Z T d̄.
step 2. if p = 0, d̄ = I d̄ , return.

step 3. α =
s̄T

p−1d̄

ȳT
p−1 s̄k

p−1
, d̄ = d̄ − α ȳk

p−1.

438 Y. Xiao, H. Zhang / Journal of Computational and Applied Mathematics 222 (2008) 429–439

step 4. call update(p − 1, {s̄k
}, {ȳk

}, I, d̄, Z),

step 5. d̄ = d̄ + (α −
s̄T

p−1d̄

ȳT
p−1 s̄k

p−1
)s̄k

p−1,

step 6. d̄ = Z T d̄ .
The above recursive subalgorithm comes from [18], and it is used to compute the direction (2.8) of variables with

indices in Bk
∪ Ak

2. The output of the subalgorithm is an n× 1 vector d̄ with d̄i = 0 for all i 6∈ Ak
2 ∪ Bk . In our codes,

we reinitialize p to zero when (ȳk)T s̄k
≤ 0 or p = m is met, that is to say, a steepest descent direction is used in this

situation.
The numerical results of the algorithms MSLBFGS and NIYUAN are listed in Tables 4.1 and 4.2, respectively. The

columns have the following meanings:
From the above tables, we observe that MSLBFGS method performed a little better than NIYUAN method. In most

cases, its behaviour in the problems where it works quite efficiently, which require fewer iterations, fewer function
evaluations and less time consuming. Preliminary numerical results also indicate the modifications are beneficial to
the performance of the algorithm.

In order to asses the reliability algorithm MSLBFGS, we tested this method against a well-known routine L-BFGS-
B (see [6,26]). The fortran77 codes of L-BFGS-B are contributed by J. Nocedal, which are available at

http://www.ece.northwestern.edu/˜nocedal/software.html.
In running the codes, default values are used for all parameters. Table 4.3 reports the numerical results for this

method.
We see from Table 4.3 that L-BFGS-B fails to solve the problems explin, explin2, hs110, hatflda, and

chenark, for the reason can be found in [26]. We also note an interesting fact that L-BFGS-B is sometimes stopped
before the projected gradient sufficient to satisfy the stopping condition, and the reason should be that the codes
could make no further progress in reducing the value of f (see [26]). In addition, L-BFGS-B method seemly perform
better than MSLBFGS and NIYUAN did, especially on problems nonscomp, probpenl, hatfldc, edensch and
penalty1. Moreover, preliminary experimental comparisons also indicate algorithm MSLBFGS is competitive with
some well-known methods.

Acknowledgements

We thank Professor Dong-Hui Li for his careful reading of the manuscript and for catching several typos. We are
also very grateful to two anonymous referees for their useful suggestions and comments on the previous version of
this paper. This work was supported by Chinese NSF grant 10471036.

References

[1] R. Andreani, E.G. Birgin, J.M. Martı́nez, M.L. Schuverdt, Augmented Lagrangian methods under the constant positive linear dependence
constraint qualification, Math. Program. 111 (2008) 5–32.

[2] R. Andreani, E.G. Birgin, J.M. Martı́nez, M.L. Schuverdt, On augmented Lagrangian methods with general lower-level constraints, SIAM J.
Optim. 18 (2007) 1286–1309.

[3] D.P. Bertsekas, Projected Newton methods for optimization problems with simple constrains, SIAM J. Control Optim. 20 (1982) 221–246.
[4] E.G. Birgin, J.M. Martı́nez, Large-scale active-set box-constrained optimization method with spectral projected gradients, Comput. Optim.

Appl. 23 (2002) 101–125.
[5] J.V. Burke, J.J. Moré, On the identification of active constraints, SIAM J. Numer. Anal. 25 (1988) 1197–1211.
[6] R.H. Byrd, P.H. Lu, J. Nocedal, A limited memory algorithm for bound constrained optimization, SIAM J. Sci. Stat. Comput. 16 (1995)

1190–1208.
[7] R.H. Byrd, J. Nocedal, R.B. Schnabel, Representations of quasi-Newton matrices and their use in limited memory methods, Math. Program.

63 (1994) 129–156.
[8] P. Calamai, J.J. Moré, Projected gradient for linearly constrained programs, Math. Program. 39 (1987) 93–116.
[9] A.R. Conn, N.I.M. Gould, Ph.L. Toint, Global convergence of a class of trust region algorithm for optimization with simple bounds, SIAM J.

Numer. Anal. 25 (1988) 433–460.
[10] A.R. Conn, N.I.M. Gould, Ph.L. Toint, A globally convergent augmented Lagrangean algorithm for optimization with general constraints and

simple bounds, SIAM. J. Numer. Anal. 28 (1991) 545–472.
[11] A.R. Conn, N.I.M. Gould, Ph.L. Toint, CUTE: Constrained and unconstrained testing environment, ACM Trans. Math. Software 21 (1995)

123–160.
[12] Y.H. Dai, R. Fletcher, Projected Barzilai–Borwein methods for large-scale box constrained quadratic programming, Numer. Math. 100 (2005)

21–47.

http://www.ece.northwestern.edu/~nocedal/software.html

Y. Xiao, H. Zhang / Journal of Computational and Applied Mathematics 222 (2008) 429–439 439

[13] M.A. Diniz-Ehrhardt, M.A. Gomes-Ruggiero, J.M. Martı́nez, S.A. Santos, Augmented Lagrangian algorithms based on the spectral projected
gradient for solving nonlinear programming problems, J. Optim. Theory Appl. 123 (2004) 497–517.

[14] F. Facchinei, J. Júdice, J. Soares, An active set Newton slgorithm for large-scale nonlinear programs with box canstranits, SIAM J. Optim. 8
(1998) 158–186.

[15] F. Facchinei, S. Lucidi, L. Palagi, A truncated Newton algorithm for large scale box constrained optimization, SIAM J. Optim. 12 (2002)
1100–1125.

[16] N.I.M. Gould, D. Orban, Ph.L. Toint, Numerical methods for large-scale nonlinear optimization, Acta Numer. 14 (2005) 299–361.
[17] W.W. Hager, H. Zhang, A new active set algorithm for box constrained optimizaiton, SIAM J. Optim. 17 (2006) 526–557.
[18] C.T. Kelley, Iterative Methods for Optimization, Philadelphia, Pa., 1999.
[19] C.J. Lin, J.J. Moré, Nowton’s method for large bound-constrained optimization problems, SIAM J. Optim. 9 (1999) 1100–1127.
[20] M. Lescrenier, Convergence of trust region algorithm for optimization with bounds when strict complementarity does not hold, SIAM J.

Numer. Anal. 28 (1991) 467–695.
[21] D.G. Luenberger, Introduction to Linear and Nonlinear Programming, Addison-Wesley, Reading, MA, 1973 (Chapter 11).
[22] J.M. Martı́nez, BOX-QUACAN and the implementation of Augmented Lagrangian algorithms for minimization with inequality constraints,

Comput. Appl. Math. 19 (2000) 31–56.
[23] Q. Ni, A subspace projected conjuagte gradient algorithm for large bound constrained quadratic programming, Numer. Math. (A Journal of

Chinese Universities) 7 (1998) 51–60.
[24] Q. Ni, Y.X. Yuan, A subspace limited memory quasi-Newton algorithm for large-scale nonlinear bound constrained optimization, Math.

Comput. 66 (1997) 1509–1520.
[25] M.J.D. Powell, A fast algorithm for nonlinearly constrained optimization calculations, Numer. Anal. (1978) 155–157.
[26] C.Y. Zhu, R.H. Byrd, P.H. Lu, J. Nocedal, L-BFGS-B: Fortran subroutines for large-scale bound constrained optimization, ACM Trans. Math.

Software 23 (1997) 550–560.

	Modified subspace limited memory BFGS algorithm for large-scale bound constrained optimization
	Introduction
	Motivation and the new algorithm
	Convergence analysis
	Numerical experiments
	Acknowledgements
	References

